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ABSTRACT 

The goal of this work is to develop an efficient numerical modeling method for the structural dynamic response of 
hybrid electric vehicle (HEV) batteries in order to support fatigue life predictions. The dynamics of HEV battery 
packs are known to feature very high modal density in many frequency bands. The high modal density combined 
with small, random structural variations among the cells (which are unavoidable in practice) can lead to drastic 
changes in the structural dynamics. Therefore, it may be important to perform probabilistic simulations of the 
structural dynamic response with cell-to-cell parameter variations in order to accurately predict the fatigue life of a 
battery pack. However, the computational time for obtaining forced response results for just a single sample of 
parameter variations with a finite element model can be on the order of a day. One approach to overcome this 
challenge is to generate parametric reduced-order models (PROMs). The novel approach is based on two key 
assumptions. First, it is assumed that the mode shapes of a battery pack (with parametric variations in the cells) can 
be represented by a linear combination of the mode shapes of the nominal system (with identical cells). Second, it is 
assumed that the frame holding each cell has vibratory motion. PROMs are validated numerically with full-order 
finite element models by comparing forced response predictions. The new PROMs are able to predict the dynamics 
of battery packs 1,000 to 10,000 times faster than full-order finite element models while maintaining accuracy. For 
the few initial cases considered, small cell-to-cell parameter variations are found to lead to an increase of up to 
60% in the vibration amplitude of a battery cell, which could have a significant impact on fatigue life. 

 
INTRODUCTION 

A typical hybrid electric vehicle (HEV) battery has 100–
300 cells, which are stacked into several packs. Because 
these cells are nominally identical, battery packs fall under 
the class of structures known as periodic structures. The 
dynamics of periodic structures are known to feature very 
high modal density in many frequency bands. The high 
modal density combined with small, random structural 
variations among the cells (which are unavoidable in 
practice) can lead to drastic consequences on the structural 
dynamics. Therefore, it may be important to use statistical 
dynamic response calculations for predicting the fatigue life 
of a pack. Such statistical calculations are hard to perform 
using linear methods, because the mode shapes of a pack 
depend in a nonlinear fashion on the parameters of each cell. 
The alternative is to use sample-based statistical analyses. 

However, typical finite element models (FEMs) of battery 
packs have several million degrees of freedom (DOF). Thus, 
the computational time for obtaining just a single sample can 
be on the order of a day.  

To overcome this issue, in the field of structural dynamic 
analysis, component mode synthesis (CMS) [1-7] is well 
established as an alternative to conventional FEMs with 
large numbers of DOF. CMS belongs to a wide class of 
domain decomposition techniques. CMS divides the global 
structure into several substructures, and the DOF of each 
individual substructure are reduced significantly. Then, the 
substructures are reconnected, and the dynamic response of 
the system is predicted very efficiently and accurately. 
However, classical CMS must be modified in order to 
account for parametric variability in the structure. Thus, 
alternate, design-oriented techniques have been developed. 
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One such approach is to generate what is referred to as 
parametric reduced-order model (PROM). PROMs were 
introduced initially by Balmès [8-9] to avoid the expensive 
process of reanalysis of complex structures. In addition, 
several other PROM methods have been developed [10-13]. 
In particular, the multi-component PROM (MC-PROM) 
technique has been developed recently by Hong et al. [13]  

These PROM techniques are highly efficient methods for 
estimating the statistics of the structural dynamic response. 
However, for a structure with very high modal density, 
previously developed PROMs have to be modified to 
efficiently capture the dynamic response. In particular, the 
component mode mistuning (CMM) [14] method was 
developed for predicting the dynamic response of bladed 
disks found in turbomachinery rotors. Typically these rotors 
suffer from high modal density. Thus, small structural 
variations in the blades affect significantly the system-level 
dynamic response. Nonetheless, it has been shown that the 
mode shapes of a mistuned bladed disk can be represented as 
a linear combination of the mode shapes of the tuned bladed 
disk. [15] This allows CMM to capture the dynamic 
response effectively with a small number of DOF, and that is 
the inspiration for the new PROMs, as discussed next. 

 

 
Figure 1: The geometry of a battery pack with 20 cells 

 
STRUCTURAL PROPERTIES OF BATTERY PACKS 

HEV battery packs typically have 100-300 individual cells 
that are nominally identical. To demonstrate the structural 
characteristics of battery packs, an academic battery model 
was developed using finite elements as shown in Figure 1. A 
total of 20 nominally identical cells are stacked. 

Figure 2 shows a single cell and the frames that join it to 
the adjacent cells. The single cell is a plate-like structure 
which can have structural variations in its density (  ) or 

elastic modulus (E). The repetitive cells are mechanically 
coupled through the frames and that induces a high modal 
density to the entire battery pack structure, as shown in 
Figure 3.  

  

 
 

Figure 2: The geometry of a single battery cell 
 

  
Figure 3: Natural frequencies of the academic battery pack 

 
Table 1: Two cases of Young’s modulus variations 

Case 1 Case 2 
Cell  Variation Cell  Variation 

1 +5% 3 +3% 
5 -7% 9 -5% 

12 +1% 13 +2% 
16 +3% 20 -5% 

 

         
Figure 4: Mode shapes of the nominal structure with 

identical cells (left) and the structures with Case 1 (center) 
and Case 2 (right) of cell parameter variations 
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The flat regions in Figure 3 indicate frequency ranges of 
high modal density. For example, there are over 10 modes in 
the range 1,310–1,320 Hz. If the battery pack had more cells, 
the modal density would be even higher. 

To examine how structural variations in the cells affect the 
structural response, we applied the elastic modulus 
variations described in Table 1, and compared the mode 
shapes of the structure with nominal parameters (no 
variation) and the mode shapes of the structure with Cases 1 
and 2 of variations as shown in Figure 4. In general, all cells 
have some variability. To observe the consequences of small 
parameter variations, we first applied variations to only 4 
cells at a time.  
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Figure 5: Forced response for the 10th cell (top) and 18th 
cell (bottom) of for the nominal case of no parameter 
variations versus two cases with parameter variations 

 
Although the structural variations are small, the 

displacements are affected significantly. In particular, note 
that some displacements are localized at a few cells for the 
case in which there are no parameter variations. In addition, 
the forced responses were compared for each case of 
variation as shown in Figure 5. These results also show that 
small variations in local parameters can induce large 
changes in the global response.  

Figure 5 shows the response of the 10th cell (top plot) and 
the 18th cell (bottom plot). As shown in Table 1, there are no 
variations in the parameters of cells 10 and 18. However, 
there are significant changes in the dynamic response of 
these cells. For example, the maximum response of the 10th 
cell of the battery with nominal parameters is 0.03 mm, 
whereas the maximum response of the same cell in Case 2 of 
parameter variations is 0.04 mm. The maximum parameter 
variation between the nominal battery and that of Case 2 is 
only 5%. Nonetheless, the variation in the maximum 
response is almost 35%. This demonstrates that small local 
structural variations can have large global consequences. To 
capture the dynamic characteristics, we developed the new 
approach described in the next section. 

 
METHODOLOGY 

The equations of motion (EOMs) for the structure with no 
variation and with variation can be expressed as  

FKxxCxM   ,  (1) 

    FxKKxCxMM    ,  (2) 

where M and K are the mass and stiffness variations 
due to the structural variations. Based on Equations (1) and 
(2), the mode shapes are defined by the following eigenvalue 
problems 

0ΛMΦKΦ  ttt ,  (3) 

    0ΛΦMMΦKK  mmm  ,  (4) 

where superscript t  and m indicate the tuned (nominal) and 
mistuned (structural with variation) quantities.  
   The novel approach is based on two key assumptions. The 

first assumption is that the mode shapes mΦ  of a pack with 
parametric variations can be approximated as a linear 

combination of the mode shapes tΦ  of nominal pack with 
no parametric variations. This first assumption is ensured by 
the high modal density. 

 
 

Figure 6: 1st and 2nd modes of a fixed-boundary cell 
 

The second assumption in the PROMs is that the variations 
in mass and stiffness of a cell can be projected onto a small 
set of modes of the nominal cell with a fixed boundary, as 
shown in Figure 6. This second assumption usually relies on 
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the fact that the boundary motions can be ignored because 
the boundary of the plate is not moving much.  

 
Figure 7: Boundary-displaced motion of a plate-like cell 

 
However, it turns out that the boundary motion has to be 

considered because it is not small, as shown in Figure 7. 
Thus, the plate-like modes of a nominal cell—with its 
boundary displaced the same amount as the frame—are used 
in the proposed PROMs. This is a key step for ensuring 
accuracy. This approach is distinct from the usual CMM 
method. For example, the CMM method does not account 
for the boundary motion. 

By combining these two key assumptions, PROMs are 
developed and their effectiveness is demonstrated for the 
academic battery pack structure.  

 

 
Figure 8: Forced response predictions for the 20th cell 

predicted by a full-order finite element model and a PROM 
for parameter variation Case 1 (top) and Case 2 (bottom) 
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Figure 9: Maximum errors for each cell in the frequency 

range of interest for cases 1 (top) and 2 (bottom) 
 
NUMERICAL RESULTS 

Numerical results to demonstrate the performance of new 
method have been obtained using an academic battery model 
shown in Figure 1. This academic model has 208,753 DOF 
and 20 nominally identical cells. The frequency range of 
interest is 900-1,950 Hz (the first flat region in Figure 3). 
Two cases of Young’s modulus variations were applied to 4 
cells in the pack, as shown in Table 1. Forcing was applied 
at the center points of each cell. A PROM was constructed 
and used to compute the response at those locations. 

The PROM predictions agree very well with predictions of 
the FEM. For example, Figure 8 shows the response of the 
20th cell for two cases of variations. Figure 9 shows the 
maximum error between the PROM and the FEM 
predictions for all cells over the entire frequency range of 
interest. The maximum errors are between 1.18% and 1.64%. 
The analysis time required by the PROM for each variation 
is about 9,000 times shorter than that of the FEM.  

This computational gain is expected to be even larger for 
more refined models. That is because the PROM captures 
the low-dimensional physics of the problem. This low 
dimensionality means that only a few coordinates are 
necessary to describe the dynamics of the actual physical 
system. This number of coordinates is a feature of the 
physics, not of the model used to discretize the physics. The 
model can increase in size by mesh refinement. However, 
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the physics remains the same and require only a few 
coordinates. The key is to find these coordinates, and PROM 
techniques are intended to do just that. Thus, the size of the 
PROM is not expected to increase when the size of the full 
order model increases (e.g., by mesh refinement). 
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Figure 10: Cell amplification factor for cases 1 and 2 of 

parameter variations 
 

In a battery pack, the failure of a single cell leads to the 
failure of the entire pack. Thus, identifying the cell that is 
most likely to fail is a key issue. The very high 
computational speed of the PROM developed in this work 
allows a very rapid identification of the cells most 
influenced by parameter variations. For that, a (traveling 
wave) excitation is applied at the center of each cell. The 
forced response is collected for all cells. A cell amplification 
factor (CAF) is defined as 
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where ω is the frequency of the excitation, p
iA  is the 

amplitude of the response of cell i of a battery with 

parameter variations, and nominal
iA  is the amplitude of the 

response of cell i of the battery with nominal parameters. 
The j and k indicate the case of variation and phase number.  

Herein, cell amplification factors were calculated for cases 
1 and 2 of parameter variations for a variety of forcing 
patterns with different cell-to-cell forcing phase (  ) 

difference as shown in Figure 10. These results highlight 
that the 5th and 9th cells suffer the largest amplification in 
their vibratory response due to case 1 and case 2 variations. 
For example, the largest amplification factor was 6.3 on the 
5th cell for case 1 parameter variations when 0 . This 

means that at least one cell had a forced response that was 
630% higher than would be predicted if all the cells were 
assumed to be identical. This level of forced response 
increase could potentially lead to a significant reduction in 
battery fatigue life. Therefore, the initial results suggest that 
it may be important to account for parameter variations in 
the cells when predicting the structural response and fatigue 
life of HEV batteries. 

As shown in Figure 10, the worst cell is different for each 
case. That means that the worst cell should be detected by a 
statistical analysis. We applied 10,000 separate cases of 
random variations in the elastic modulus of all 20 cells. The 
average cell amplification factor for cell i and excitation 
phase k is defined as 
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where vn is total number of samples (variations), 

000,10vn . Figure 11 shows the probability that cell i is 

the worst of all cells when the excitation has phase k. 
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Figure 11: Probability of cell being worst based on 10,000 

separate cases of random variations 



Proceedings of the 2012 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Reduced-Order Modeling Method for Fatigue Life Predictions of Hybrid Electric Vehicle Batteries, Sung-Kwon Hong, et al. 
Page 6 of 7 

 

0 5 10 15 20
0

1

2

3

4

5

6

A
ve

ra
ge

 c
el

l a
m

pl
ifi

ca
tio

n 
fa

ct
or

Phase number

18

5

1

3

3

1
3 2

20 3
813

18
18

19
19 18

20
20

20

# : Statistically highest vibrating cell for each phase

 
 

Figure 12: Average cell amplification factors for statistical 
analysis 

 
Based on the statistical results, the average cell 

amplification factors for all cases applied are shown in 
Figure 12. The worst cell is the 5th cell. Its average cell 
amplification factor is 3.9.  
 
CONCLUSIONS 

The dynamic characteristics of HEV battery packs can be 
sensitive to small structural variations among battery cells 
because the system features high modal density. Thus, to 
predict the fatigue life, statistical calculations should be 
performed. However, a structural finite element model of a 
full HEV battery could easily have millions of DOF. The 
large model size makes it cumbersome or infeasible to run 
Monte-Carlo-type simulations.  

In this paper, we developed new parametric reduced-order 
models (PROMs) to predict very quickly the structural 
dynamic response of HEV batteries. These PROMs are 
based on two key assumptions: (1) the mode shapes of the 
structure with variations can be represented as a linear 
combination of mode shapes of the structure with nominal 
parameters, and (2) the variability in parameters in the 
corresponding cell can be captured by mode shapes of the 
nominal cell with its boundary displaced the same amount as 
the frame.  

As a numerical example, a PROM was generated for an 
academic model of a battery pack with 20 cells. The forced 
response results from the PROM were found to match very 
well with those from the full-order finite element model. The 
results also showed that small local variations in the 
structural parameters induce very large changes in the global 
response.  

To help predict which cell is most likely to suffer fatigue 
failure, we defined an amplification factor that corresponds 
to the ratio of maximum forced response levels for the 
system with and without parameter variations. For the cases 
considered, the largest amplification factor was around 6.3. 
Thus, at least one cell had an increase in the forced response 
level of approximately 630% when small variations were 
included in the structural cell parameters, relative to the 
nominal system in which all cells are assumed to be identical. 
However, the worst cell may be different for each case of 
parameter variations. For that reason, 10,000 cases of 
random parameter variations were run and the average 
amplification factor was calculated for each cell. For the 
academic battery pack, the 5th cell was identified as the 
worst. The new computational methodology opens the door 
to the design of batteries with increased durability. 
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