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ABSTRACT

This paper is concerned with the physics-based simulation of light tracked vehicles operating on rough
deformable terrain. The focus is on small autonomous vehicles, which weigh less than 100 lb and move on
deformable and rough terrain that is feature rich and no longer representable using a continuum approach.
A scenario of interest is, for instance, the simulation of a reconnaissance mission for a high mobility
lightweight robot where objects such as a boulder or a ditch that could otherwise be considered small
for a truck or tank, become major obstacles that can impede the mobility of the light autonomous vehicle
and negatively impact the success of its mission. Analyzing and gauging the mobility and performance of
these light vehicles is accomplished through a modeling and simulation capability called Chrono::Engine.
Chrono::Engine relies on parallel execution on Graphics Processing Unit (GPU) cards.

1 INTRODUCTION

Engineers are increasingly relying on simulation
to augment and, in some cases, replace costly and
time consuming experimental work. However, cur-
rent simulation capabilities are sometimes inadequate
to capture phenomena of interest. In tracked vehi-
cle analysis, for example, the interaction of the track
with granular terrain has been difficult to character-
ize through simulation due to the prohibitively long
simulation times associated with many-body dynam-
ics problems. This is the generic name used here to

characterize dynamic systems with a large number of
bodies encountered, for instance, when one adopts a
discrete representation of the terrain in vehicle dy-
namics problems. However, these many-body dynam-
ics problems can now capitalize on recent advances
in the microprocessor industry that are a consequence
of Moore’s law, of doubling the number of transis-
tors per unit area roughly every 18 months. Specifi-
cally, until recently, access to massive computational
power on parallel supercomputers has been the priv-
ilege of a relatively small number of research groups
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in a select number of research facilities, thus limiting
the scope and impact of high performance comput-
ing (HPC). This scenario is rapidly changing due to
a trend set by general-purpose computing on graph-
ics processing unit (GPU) cards. NVIDIA’s CUDA
library [20] allows one to use the streaming multipro-
cessors available in high-end graphics cards. In this
setup, a latest generation NVIDIA GPU Kepler card
will reach 1.5 Teraflops by the end of 2012 owing to a
set of 1536 scalar processors working in parallel, each
following a Single Instruction Multiple Data (SIMD)
execution paradigm. Despite having only 1536 scalar
processors, such a card is capable of managing tens of
thousands of parallel threads at any given time. This
overcommitting of the GPU hardware resources is at
the cornerstone of a computing paradigm that aggres-
sively attempts to hide costly memory transactions
with useful computation, a strategy that has lead, in
frictional contact dynamics simulation, to a one order
of magnitude reduction in simulation time for many-
body systems [19, 33].

The challenge of using parallel computing to re-
duce simulation time and/or increase system size
stems, for the most part, from the task of design-
ing and implementing many-body dynamics specific
parallel numerical methods. Designing parallel algo-
rithms suitable for frictional contact many-body dy-
namics simulation remains an area of active research.
Results reported in [15] indicate that the most widely
used commercial software package for multibody dy-
namics simulation, which draws on a so called penalty
or regularization approach, runs into significant diffi-
culties when handling simple problems involving hun-
dreds of contact events, and thus cases with thousands
of contacts become intractable. Unlike these penalty
or regularization approaches where the frictional in-
teraction is represented by a collection of stiff springs
combined with damping elements that act at the inter-
face of the two bodies [10, 21, 27, 28], the approach
embraced herein draws on a different mathematical
framework. Specifically, the parallel algorithms rely
on time-stepping procedures producing weak solu-
tions of the differential variational inequality (DVI)

problem that describes the time evolution of rigid bod-
ies with impact, contact, friction, and bilateral con-
straints. When compared to penalty-methods, the DVI
approach has a greater algorithmic complexity, but
avoids the small time steps that plague the former ap-
proach.

The task of presenting this class of algorithms
and their parallel implementation is organized as fol-
lows. Section 2 provides a brief description of the
general equations that capture the dynamics of many-
body systems. This section also contains an out-
line of the parallel method embraced to numerically
solve the equations of motion. One of the challeng-
ing components of the solution method is the colli-
sion detection step required to determine the set of
contacts active in the many-body system. These con-
tacts, crucial in producing the frictional contact forces
at work in the system, are determined in parallel using
an approach outlined in Section 3. A scalable ren-
dering pipeline that can leverage thousands of CPU
cores for visualization purposes is discussed in Sec-
tion 4. The engineering application used to demon-
strate this parallel simulation capability is that of a
light tracked vehicle that operates on granular terrain
and negotiates an obstacle course. To further illustrate
the versatility of the simulation capability, the vehi-
cle is assumed to be equipped with a drilling device
used to penetrate the terrain. Both the vehicle dynam-
ics and the drilling process are seamlessly analyzed
within the same HPC-enabled simulation capability.
A schematic of the vehicle is provided in Fig. 1. A
cut-away image of the drilling tool is shown in isola-
tion in Fig. 2.

2 THE MANY-BODY DYNAMICS PROBLEM

2.1 General Considerations

The modeling approach adopted in order to
abstract and represent the dynamics of the vehi-
cle/terrain interaction is based on a differential vari-
ational inequality (DVI) methodology. Compared to
penalty or regularization approaches [10, 21, 27, 28],
it allows for larger integration step sizes. The formu-
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FIGURE 1: Light autonomous vehicle negotiating a pile of rubble.

FIGURE 2: Cutaway view: Anchor penetrating granular material [17].

lation of the equations of motion, that is, the equa-
tions that govern the time evolution of a multibody
system, is based on the so-called absolute, or Carte-
sian, representation of the position and attitude of each
rigid body in the system. The state of the system
is denoted by the generalized positions q =

[
rT

1 ,ε
T
1 ,

. . . ,rT
nb
,εT

nb

]T ∈ R7nb and their time derivatives q̇ =[
ṙT

1 , ε̇
T
1 , . . . , ṙ

T
nb
, ε̇T

nb

]T ∈ R7nb , where nb is the number
of bodies, r j is the absolute position of the center of
mass of the jth body, and the quaternions (Euler pa-
rameters) ε j are used to represent rotation and to avoid
singularities. Instead of using quaternion derivatives

in q̇, it is more advantageous to work with angu-
lar velocities expressed in the local (body-attached)
reference frames; in other words, the method de-
scribed will use the vector of generalized velocities
v =

[
ṙT

1 , ω̄
T
1 , . . . , ṙ

T
nb
, ω̄T

nb

]T ∈ R6nb . Note that the gen-
eralized velocity can be easily obtained as q̇ = L(q)v,
where L is a linear mapping that transforms each
ω̄i into the corresponding quaternion derivative ε̇i by
means of the linear algebra formula ε̇i =

1
2GT (q)ω̄i,

with 3x4 matrix G(q) as defined in [11].
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2.1.1 Bilateral Constraints Bilateral constraints
represent kinematic relationships between two rigid
bodies in the system. For example, spherical joints,
prismatic joints, or revolute joints can be expressed as
holonomic algebraic equations constraining the rela-
tive positions of two bodies. A set B of constraints
leads to a collection of scalar equations

Ψi(q, t) = 0, i ∈B , (1)

the number of which depends on the type of con-
straints in set B. Bilateral constraints must also be sat-
isfied at the velocity level,

dΨi(q, t)
dt

= 0 ⇒

∂Ψi

∂q
q̇+

∂Ψi

∂ t
= ∇qΨ

T
i q̇+

∂Ψi

∂ t

= ∇qΨ
T
i L(q)v+

∂Ψi

∂ t
= 0,

which is obtained by taking one time derivative of
Equation 1.

2.1.2 Unilateral Constraints and Friction Uni-
lateral constraints enforce contact constraints between
rigid bodies in the system. It is assumed that a gap
function, Φ(q), can be defined for each pair of near-
enough bodies. This gap function describes the dis-
tance between the closest points on the two bodies of
interest.

Unilateral contact constraints also introduce fric-
tion forces into the system. When a contact is active,
or Φi(q) = 0, a normal force acts on each of the two
bodies at the contact point. When a contact is inac-
tive, or Φi(q) > 0 , no normal force exists. This rep-
resents a complementarity condition. Consider two
bodies A and B in contact as shown in Fig. 3. Let ni
be the normal at the contact pointing toward the exte-
rior of the body of lower index, which by convention
is considered to be body A. Let ui and wi be two vec-
tors in the contact plane such that ni,ui,wi ∈ R3 are

mutually orthonormal vectors. The frictional contact
forces are defined by the multipliers γ̂i,n ≥ 0, γ̂i,u, and
γ̂i,w, which lead to the normal component of the fric-
tion force, Fi,N = γ̂i,nni and the tangential component
of the force Fi,T = γ̂i,uui + γ̂i,wwi.

The Coulomb friction model, which draws for
contact i on the friction coefficient µi, is used to write
the following constraints:

γ̂i,n ≥ 0, Φi(q)≥ 0, Φi(q)γ̂i,n = 0, (2)

µiγ̂i,n ≥
√

γ̂2
i,u + γ̂2

i,w , ||vi,T ||
(

µiγ̂i,n−
√

γ̂2
i,u + γ̂2

i,w

)
= 0,

〈Fi,T ,vi,T 〉=−||Fi,T || ||vi,T || (3)

Equation 2 captures the complementarity condition
previously described. The subsequent two equations
relate the magnitude and direction of the friction force
to the multipliers and tangential velocity of the con-
tact. These remaining equations can be expressed in
an equivalent manner using the maximum dissipation
principle. This frames the Coulomb friction model as
a minimization problem, which can be seen in Equa-
tion 4.

(γ̂i,u, γ̂i,w) = argmin√
γ̂2

i,u+γ̂2
i,w≤µiγ̂i,n

vT
i,T (γ̂i,uui + γ̂i,wwi) . (4)

The nature of the friction cone can be seen if yet an-
other form of the friction force equations is consid-
ered. The friction force of the i-th contact can be ex-
pressed as follows, where ϒ is a cone in three dimen-
sions whose slope is tan−1 µi.

Fi = Fi,N +Fi,T = γ̂i,nni + γ̂i,uui + γ̂i,wwi ∈ ϒ, (5)
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FIGURE 3: Contact i between two bodies A,B ∈ {1,2, . . . ,nb}.

2.1.3 Equations of Motion of Systems with Fric-
tional Contact The time evolution of the dynamical
system is governed by the following differential vari-
ational inequality [6]:

q̇ = L(q)v
Mv̇ = f(t,q,v)+ ∑

i∈B
γ̂i,b∇Ψi+

+ ∑
i∈A

(γ̂i,n Di,n + γ̂i,u Di,u + γ̂i,w Di,w)

i ∈B : Ψi(q, t) = 0
i ∈A : γ̂i,n ≥ 0 ⊥ Φi(q)≥ 0, and

(γ̂i,u, γ̂i,w) = argmin
µiγ̂i,n≥

√
γ̂2

i,u+γ̂2
i,w

vT (γ̂i,u Di,u + γ̂i,w Di,w) .

(6)
The tangent space generators Di = [Di,n, Di,u, Di,w]∈

R6nb×3 are sparse and are defined given a pair of con-
tacting bodies A and B as

DT
i =

[0 . . . −AT
i,p AT

i,pAAs̃i,A 0 . . .

0 . . . AT
i,p −AT

i,pABs̃i,B 0 . . .] ,
(7)

where AA is the orientation matrix associated with
body A, Ai,p = [ni,ui,wi] is the R3×3 matrix of the lo-
cal coordinates of the ith contact, the vectors s̄i,A and

s̄i,B are the contact point positions in body coordinates
(see Fig. 3). A tilde x̃ over a vector x ∈ R3 represents
the skew symmetric matrix associated with the outer
product of two vectors [11].

2.2 Discretization Scheme for Numerical Solution

Equation 2 expresses the complementarity condi-
tion between the normal force and the gap function
in a contact event. The presence of these comple-
mentarity conditions is the trademark of a DVI for-
mulation, whose numerical solution in the context of
rigid body dynamics can be traced back to [14,16,18].
The DVI formulations have been classified by differ-
ential index in [22] and recent time-stepping schemes
have included both acceleration-force linear comple-
mentarity problem (LCP) approaches [7, 23, 34] and
velocity-impulse LCP-based time-stepping methods
[4, 5, 29, 30]. The LCPs, obtained as a result of the
introduction of inequalities in time-stepping schemes
for DVI, coupled with a polyhedral approximation of
the friction cone must be solved at each time step in
order to determine the system state configuration as
well as the Lagrange multipliers representing the re-
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action forces [14, 30]. If the simulation entails a large
number of contacts and rigid bodies, as in the case of
part feeders, packaging machines, and granular flows,
the computational burden of classical LCP solvers can
become significant. Indeed, a well-known class of nu-
merical methods for LCPs based on simplex methods,
also known as direct or pivoting methods [9], may
exhibit exponential worst-case complexity [8]. They
may be impractical even for problems involving as
few as several hundred bodies when friction is present
[3, 32]. Moreover, the three-dimensional Coulomb
friction case leads to a nonlinear complementarity
problem (NCP): the use of a polyhedral approxima-
tion to transform the NCP into an LCP introduces ar-
tificial anisotropy in friction cones [4, 30, 34]. This
discrete and finite approximation of friction cones is
one of the reasons for the large dimension of the prob-
lem that needs to be solved in multibody dynamics
with frictional contact.

In order to circumvent the limitations imposed by
the use of classical LCP solvers and the limited accu-
racy associated with polyhedral approximations of the
friction cone, a parallel fixed-point iteration method
with projection on a convex set has been proposed,
developed, and tested in [6]. The method is based on
a time-stepping formulation that solves at every step a
cone constrained optimization problem [1]. The time-
stepping scheme, proved to converge in a measure dif-
ferential inclusion sense to the solution of the original
continuous-time DVI, sets off at time tl by assuming
that a set of contacts, A , exists between bodies in the
system, and a set of bilateral constraints, B, is also
active. The governing differential equations then as-
sume the form of a DVI problem. The equation of mo-
tion is discretized so that an approximation to the so-
lution can be found at discrete instants in time. Given
a position q(l) and velocity v(l) at the time step t(l),
the numerical solution is found at the new time step
t(l+1) = t(l)+h by solving the following optimization

problem with equilibrium constraints [31]:

M(v(l+1) −v(l)) = hf(t(l),q(l),v(l))+ ∑
i∈B

γi,b∇Ψi +

+∑i∈A (γi,n Di,n + γi,u Di,u + γi,w Di,w) ,(8)

i ∈B : 1
hΨi(q(l), t)+∇ΨT

i v(l+1)+ ∂Ψi
∂ t = 0 (9)

i ∈A : 0≤ 1
hΦi(q(l))+ DT

i,nv(l+1) ⊥ γ i
n ≥ 0, (10)

(γi,u,γi,w) = argmin
µiγi,n≥

√
γ2

i,u+γ2
i,w

v(l+1),T (γi,u Di,u + γi,w Di,w)

(11)

q(l+1) = q(l)+hL(q(l))v(l+1). (12)

Here, γs represents the constraint impulse of a con-
tact constraint; that is, γs = hγ̂s, for s = n,u,w. The
1
hΦi(q(l)) term achieves constraint stabilization; its ef-
fect is discussed in [2]. Similarly, the term 1

hΨi(q(l))
achieves stabilization for bilateral constraints. The
scheme converges to the solution of a measure differ-
ential inclusion [1] when the step size h→ 0.

The proposed approach casts the problem as
a monotone optimization problem through a relax-
ation over the complementarity constraints, replacing
Eq. (10) with

i ∈A :
0≤ 1

hΦi(q(l))+ DT
i,nv(l+1)

−µi
√

(vT Di,u)2 +(vT Di,w)2 ⊥ γ i
n ≥ 0.

The solution of the modified time-stepping
scheme will approach the solution of the same mea-
sure differential inclusion for h → 0 as the original
scheme [1], yet, in some situations, for large h, µ , or
relative velocity v(l+1), i.e., when not in an asymptotic
regime, this relaxation can introduce motion oscilla-
tions. It was shown in [6] that the modified scheme

Page 6 of 20



UNCLASSIFIED

is a cone complementarity problem (CCP), which can
be solved efficiently by an iterative numerical method
that relies on projected contractive maps. Omitting
for brevity some of the details discussed in [6, 33],
we note that the algorithm makes use of the following
vectors:

k̃ ≡Mv(l)+hf(t(l),q(l),v(l)) (13)

bi ≡
{

1
hΦi(q(l)),0,0

}T
i ∈A , (14)

bi ≡ 1
hΨi(q(l), t)+ ∂Ψi

∂ t , i ∈B. (15)

The solution, in terms of dual variables of the CCP
(the multipliers), is obtained by iterating the following
contraction maps until convergence, where Πϒi repre-
sents the orthogonal projection on the friction cone
associated with contact i [31]:

∀i∈A : γ
r+1
i = Πϒi

[
γr

i −ωηi
(
DT

i vr +bi
)]

(16)

∀i∈B : γ
r+1
i = Πϒi

[
γr

i −ωηi
(
∇ΨT

i vr +bi
)]
.(17)

At each iteration r, before repeating (16) and (17),
also the primal variables (the velocities) are updated
as

vr+1 = M−1

(
∑

z∈A
Dzγ

r+1
z + ∑

z∈B
∇Ψzγ

r+1
z + k̃

)
.(18)

2.3 Parallel Implementation
The dynamics of a large multibody system whose

bodies interact through contact, friction, and bilateral
constraints can be simulated in time via the CCP algo-
rithm previously described. A sequential implemen-
tation of this algorithm is described by the following
pseudo-code:

Algorithm 1: Inner Iteration Loop

1. For i∈A (q,δ ), evaluate ηi = 3/Trace(DT
i M−1 Di).

2. For i ∈B, evaluate ηi = 1/(∇Ψ
T
i M−1∇Ψi).

3. Warm start: if some initial guess γ∗ is available for
multipliers, then set γ0 = γ∗, otherwise γ0 = 0.

4. Initialize velocities: v0 = ∑i∈A M−1 Diγ
0
i +

∑i∈B M−1∇Ψiγi,b
0 +M−1k̃ .

5. For i ∈ A (q(l),δ ), compute changes in multipli-
ers for contact constraints:

γ
r+1
i = λ Πϒi

(
γr

i −ωηi
(

DT
i vr +bi

))
+

(1−λ )γr
i ;

∆γ
r+1
i = γ

r+1
i − γr

i ;
∆vi = M−1 Di∆γ

r+1
i .

6. For i ∈B, compute changes in multipliers for bi-
lateral constraints:

γ
r+1
i = λ

(
γr

i −ωηi
(
∇ΨT

i vr +bi
))

+
(1−λ )γr

i ;
∆ γ

r+1
i = γ

r+1
i − γr

i ;
∆vi = M−1∇Ψi∆γ

r+1
i .

7. Apply updates to the velocity vector:
vr+1 = vr +∑i∈A ∆vi +∑i∈B ∆vi

8. r := r + 1. Repeat from 5 until convergence, or
until r > rmax.

The stopping criterion is based on the value of the
velocity update. The overall algorithm that provides
an approximation to the solution of Eqs. 8 through 12
relies on Algorithm 1 and requires the following steps:

Algorithm 2: Outer, Time-Stepping, Loop

1. Set t = 0, step counter l = 0, provide initial values
for q(l) and v(l).

2. Perform collision detection between bodies, ob-
taining nA possible contact points within a dis-
tance δ . For each contact i, compute Di,n, Di,u,
Di,w; for each bilateral constraint compute the
residual Φi(q), which also provides bi.

3. For each body, compute forces f(t(l),q(l),v(l)).
4. Use Algorithm 1 to solve the cone complemen-

tarity problem and obtain unknown impulse γ and
velocity v(l+1).

5. Update positions using q(l+1) = q(l) +
hL(q(l))v(l+1).

6. Increment t := t + h, l := l + 1, and repeat from
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step 2 until t > tend

A parallel implementation that leveraged the par-
allel computing power of commodity GPUs was con-
sidered based on the two algorithms outlined above.
Solution of the CCP problem proceeds as a collec-
tion of functions, or kernels, which are executed on
the GPU. First, some pre-processing steps are exe-
cuted. Applied forces are calculated in a body-parallel
fashion, and contacts are preprocessed in a contact-
parallel fashion to compute the normal direction and
friction plane directions. Next, the inner iteration loop
is entered and a series of four kernels is executed until
convergence. In a contact-parallel manner, the unilat-
eral constraints are processed. In a constraint-parallel
manner, the bilateral constraints are processed. In
a reduction-slot-parallel manner, speed updates are
summed to a single resultant per body. Finally, in
a body-parallel manner, speed updates are applied to
each body. Once a certain number of iterations has
been performed or convergence has been achieved, the
generalized velocities are integrated forward in time
in a body-parallel fashion to get the set of generalized
positions. Details of the parallel reduction of speed-
updates can be found in [19]. Pseudo-code for the
parallel implementation can be seen below. Details re-
garding data structures and computational flow of the
parallel implementation can also be found in [19, 33].
The details regarding the parallel collision detection
are provided in Section 3.

Parallel Kernels for Solution of Dynamics
Problem

1. Parallel Collision Detection
2. (Body parallel) Force kernel
3. (Contact parallel) Contact preprocessing kernel
4. Inner Iteration Loop:

(a) (Contact parallel) CCP contact kernel
(b) (Bilateral-Constraint parallel) CCP constraint

kernel
(c) (Reduction-slot parallel) Velocity change re-

duction kernel
(d) (Body parallel) Body velocity update kernel

5. (Body parallel) Time integration kernel

3 PARALLEL COLLISION DETECTION
The implemented 3D collision detection algorithm

performs a two-level spatial subdivision using axis-
aligned bounding boxes. The first partitioning occurs
at the CPU level and yields a relatively small num-
ber of large boxes. The second partitioning of each of
these boxes occurs at the GPU level yielding a large
number of small bins. The GPU 3D collision detec-
tion, which handles spheres, ellipsoids, and planes,
occurs in parallel at the bin level. Any other geome-
tries are represented as a collection of these primitives
using a padding (decomposition) process detailed in
[12]. Several kernel calls build on each other to even-
tually enable, in a one-thread-per-bin GPU parallel
fashion, an exhaustive collision detection process in
which thread i checks for collisions between all the
bodies that happen to intersect the associated bin i.
This requires O(b2

i ) computational effort, where bi
represents the number of bodies touching bin i. The
value of bi is controlled by an appropriate selection
of the bin size. Figure 4 illustrates a typical collision
detection scenario and is used in what follows to out-
line the nine stages of the proposed approach. Note
that the actual implementation is for 3D collision de-
tection and does not require the bodies to be spheres.
Stage 1. The process begins by counting for each ob-
ject the number of bins it intersects. As Fig. 5 shows,
an object (body) can intersect, or touch, more than one
bin. The minimum and maximum bounding points of
each object are determined and placed in their respec-
tive bins. For example, Fig. 5 shows that object 4’s
minimum point lies in B4 and its maximum point in
A5. The entire object must fit between the minimum
and maximum points; therefore the number of bins
that the object intersects can be determined quickly by
counting the number of bins between the two points in
each axis and multiplying them. In this case the num-
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FIGURE 4: Two-dimensional example used to intro-
duce the nine stages of the collision detection pro-
cess. The grid is aligned to a global Cartesian refer-
ence frame.

FIGURE 5: Minimum and maximum bounds of object,
based on spatial subdivision in Fig. 4.

FIGURE 6: Array T with N entries, based on spatial
subdivision in Fig. 4.

FIGURE 7: Result of prefix sum operation on T,
based on spatial subdivision in Fig. 4. Each entry
represents an object’s offset based on the number
of bins it touches.

ber is 4. For each body, this number is saved into an
array T (see Fig. 6), of size equal to the number of
bodies N.
Stage 2. An inclusive parallel prefix sum is carried
out on T [26]. The CUDA-based Thrust library im-
plementation [13] of the scan algorithm operates on T
to return in S (see Fig. 7) the memory offset informa-
tion.
Stage 3. An array B (see Fig. 8), is first allocated of
size equal to the value of the last element in S. This
value is equal to the total number of object-bin inter-
sections. Each element in B is set to a key-value pair
of two unsigned integers. The key is the bin id and

the value is the object id. In this stage, the memory
offsets contained in S are used so that the thread as-
sociated with each body can write data to the correct
location in B.
Stage 4. In this stage, the key-value array B is sorted
by key, that is, by bin id. This effectively inverts
the body-to-bin mapping to a bin-to-body mapping by
grouping together all bodies in a given bin for further
processing. The stage draws on the GPU-based radix
sort from the Thrust library [13].
Stage 5. Next, the start of each bin in the sorted array
B is identified in parallel. The number of threads used
to this end is equal to the number of elements in B; i.e.,
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FIGURE 8: Array B, based on spatial subdivision in Fig. 4.

FIGURE 9: Sorted array B, based on spatial subdivision in Fig. 4.

the number of object-bin interactions. Each thread
reads the current and previous bin value; if these val-
ues differ, then the start of a bin has been detected.
The starting positions for each bin are written into an
array C of key-value pairs of size equal to the number
of bins in the 3D grid. When the start of a bin is found
in array B, the thread and bin id are saved as the key
and value, respectively. This pair is written to the ele-
ment in C indexed by the bin id. Note that not all bins
are active. Inactive bins; i.e., bins touched by zero
or one bodies, are set to 0xffffffff, the largest possible
value for an unsigned integer on a 32-bit, X86 archi-
tecture. Figure 10 shows the outcome of this stage.

Stage 6. The array C is next radix-sorted [13] by key.
Consequently, inactive bins (identified by the 0xffffffff
entries, represented for brevity as 0xfff in Fig. 11)
“migrate” to the end of the array.

Stage 7. The total number of active bins is determined
next by finding the index in the sorted array C of the
first occurrence of 0xffffffff. Determining this index
allows memory and thread usage to be allocated accu-
rately thus having no threads wasted on inactive bins.
One GPU thread is assigned in this stage to each active
bin to perform an exhaustive, brute-force, bin-parallel
collision detection for the purpose of only counting
the collision events. By carefully selecting the bin
size, the number of objects being tested for collisions

is expected to be small; i.e., on average, bi is in the
range of 3 to 4 objects per bin. After counting the
total number of collisions in its bin, the thread writes
that tally into an unsigned integer array D of size equal
to the number of active bins.

More involved, the algorithm for counting and
subsequently computing ellipsoid collision informa-
tion is described in detail in [24]. For spheres, the
algorithm checks for collisions by calculating the dis-
tance between the centers of the objects. Contacts can
occur only when the distance between the spheres’
centers is less than or equal to the sum of their radii.
Because one object could be contained within more
than one bin, checks were implemented to prevent
double counting. Since the midpoint of a collision
volume can be contained only within one bin, only one
thread (associated with that bin) will register/count a
collision event. For example, in order to determine
the midpoint of the collision volume the algorithm re-
lies on the vector from the centroid of object 4 to the
centroid of object 7; see Fig. 12. The points where this
vector intersects each object defines a segment; the lo-
cation of the middle of this segment is used to decide
the unique bin that claims ownership of the contact. If
one object is completely inside the other, the midpoint
of the collision volume is the centroid of the smaller
object. Using this process, the number of collisions
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FIGURE 10: Array C, based on spatial subdivision in Fig. 4.

FIGURE 11: Sorted array C, based on spatial subdivision
in Fig. 4.

FIGURE 12: Center of collision volume.
Based on spatial subdivision in Fig. 4.

are counted for each bin and written to D.
Stage 8. An inclusive parallel prefix scan operation
[13] is performed on D. This returns an array E whose
last element is the total number of collisions in the
uniform grid, a value that allows an exact amount of
memory to be allocated in the next stage.
Stage 9. The final stage of the collision detection al-
gorithm computes the actual contact information. To
this end, an array of contact information structures F
is allocated with a size equal to the value of the last
element in E. The collision pairs are then found by us-
ing the algorithm outlined in Stage 7. Instead of sim-
ply counting the number of collisions, actual contact
information is computed and written to its respective
place in F.

4 RENDERING PIPELINE
Adequately understanding the results of a simu-

lation would be very arduous without an element of
visualization since, as systems become more com-

plex, the sheer volume of components and numerical
outputs makes the results exceedingly difficult to in-
terpret; consequently, rendering is a critical last step
to the modeling and simulation process. To address
this issue, a high performance visualization pipeline
has been generated that allows for a simple means to
create general-purpose renderings of arbitrary mod-
els. It supports a variety of simulation data files (csvs,
custom-format, etc.) to remotely and easily generate
an animation during or immediately after a simulation
is computed. The “high-performance” attribute of this
pipeline stems from its ability to scale up to 1000s of
CPU cores as demonstrated by its use on the Euler su-
percomputer available to this research group [25].

Creating this pipeline poses several technical
problems, the most conspicuous of which being how
to “automate” the process as well as how to handle
massively complex scenes. These issues have been
addressed by utilizing Renderman [?] in conjunction
with in-house developed code with the overall goal
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of implementing a full fledged distributed-computing
rendering solution. The developed solution leverages
Renderman’s REYES (Renders Everything You Ever
Saw) algorithm to handle complexity, uses computer
clusters to process jobs, and utilizes the Renderman
Bytestream and Shading Language to generate proce-
dural scenes. Handling geometrically complex scenes
with limited hardware resources, such as rendering
a model with millions of granular bodies, is an in-
surmountable challenge for many commercial render-
ers. However, Renderman was particularly designed
to handle this problem with the REYES algorithm. At
the high-level, the REYES algorithm is a micropoly-
gon renderer, which only performs shading compu-
tations for a subset of visible polygons at any given
time, loading just this relevant scene data into mem-
ory. This data can be ”bucketed” according to grids
of pixels of the output image and rendered indepen-
dently. The REYES pipeline is illustrated in Fig. 13.

Speed is another critical attribute of the render-
ing pipeline; this is an attribute where, given the size
of the many-body systems considered, distributed-
computing becomes an absolute necessity. To put it
in perspective, in order to render a two-hour movie
at 24 frames per second in one year, each frame can
afford only three minutes of render time, a relatively
short timeframe for complex scenes. Computer clus-
ters combined with Renderman offer two vital means
to parallelize rendering: simultaneous image render-
ing and distributed bucket rendering. Simultaneous
image rendering tasks individual compute nodes with
rendering a single image from the animation, the num-
ber of frames rendered in parallel scaling linearly with
the number of nodes. Distributed bucket rendering al-
lows for parallel rendering of the same image, where
pixel buckets are rendered independently on separate
nodes and then stitched back together to form the final
image. The benefits of these approaches are immedi-
ately apparent in the speedup factor, but also with the
flexibility in rendering approach, where one can tai-
lor the computation for a particular need (such as dis-
tributed bucket rendering for an immensely-visually
complex still image).

Finally, in order to simplify the rendering pro-
cess for users without a background in graphics, the
pipeline, which is illustrated in Fig. 14, must automate
image generation as much as possible while retain-
ing the ability to render arbitrary visual effects; the
Renderman Bytestream and Shading Language pro-
vide the means to meet this demand. The Renderman
Bytestream simply allows us to pipe Renderman calls
into the renderer at runtime thus facilitating procedu-
ral calls as the scene is being rendered. These pro-
cedural calls are determined by interpreting data with
a simulation-specific metadata file that is either gen-
erated or defined by the user. This small metadata
file configures the formatting options (such as reso-
lution, input data format, etc.) and the salient features
of objects in the simulation (geometry, appearance,
etc.). Attaching user-specified Renderman shaders to
the objects enables customization of simulation ob-
ject appearance. Shaders are highly-functional com-
piled bits of code that, at a high-level, programmati-
cally control how a micropolygon is perturbed or col-
ored; the Renderman Shading Language is powerful
and flexible enough to make it possible to define any
visual effect. The user can draw from a library of
shaders (created by our group) or define their own and
assign them in the metadata file, consequently retain-
ing full control over the appearance of their model.
One last feature of the pipeline is the notion of “inject-
ing” simulation data into predefined scenes. Setting
up the aesthetic components of a scene can be a huge
time-investment and typically requires artistic ability
(lighting, cinematography, mise-en-scene); work an
engineer typically does not want to deal with. The
implemented software infrastructure offers a set of di-
rectives that one can insert into existing Renderman
scenes that, when encountered at render time, will be
overridden with the emission of corresponding proce-
dural calls (such as piping the interpreted simulation
data). Thus, the users can specify a scene into which
they want to ”inject” their data, either drawing from a
library of scenes (made available on Euler) or defining
their own. Ultimately, this pipeline abstracts away the
need to deal with commercial graphics applications,
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FIGURE 13: Schematic of the REYES pipeline.

FIGURE 14: Schematic of the customized Renderman pipeline.

thus making it possible to host simulation rendering
as a remote, “controllably-automatic” service for any-
one without a background in graphics.

5 NUMERICAL EXPERIMENTS

5.1 Light Tracked Vehicle Mobility Simulation

This simulation captures the dynamics of a com-
plex system comprised of many bilateral and unilat-
eral constraints. Using a combination of joints and lin-
ear actuators, a tracked vehicle model was created and
then simulated navigating over either flat rigid terrain
or deformable terrain made up of gravel-type granular
material. The vehicle is modeled to represent a small,
lightweight tracked vehicle much like an autonomous
robot that could be sent to another planet or used to
navigate dangerous terrain.

There are two tracks, each with 61 track shoes (see
Fig. 1). Each track shoe is made up of two cylinders
and three rectangular plates and has a mass of .34 kg.
Each shoe is connected to its neighbors using one pin
joint on each side, allowing the tracks to rotate rela-
tive to each other only along one axis. Within each
track there are five rollers, each with a mass of 15
kg, one idler and one sprocket both with a mass of
15 kg. The chassis is modeled as a rectangular box
with a mass of 200 kg and moments of inertia were
computed for all parts using a CAD package. The pur-
pose of the rollers is to keep the tracks separated and
support the weight of the vehicle as it moves forward.
The idler is necessary as it keeps the track tensioned.
It is usually modeled with a linear spring/actuator but
for the purposes of demonstration it was fixed using a
revolute joint, to the vehicle chassis. The sprocket is
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used to drive the vehicle and is attached using a rev-
olute joint to the chassis. Torque is applied to drive
the track, with each track driven independently of the
other. When the sprocket rotates, it comes into con-
tact with the cylinders on the track shoe and turns the
track with a gear like motion.

The track for the vehicle was created by first gen-
erating a ring of connected track shoes. This ring
was dropped onto a sprocket, five rollers, and an idler
which was connected to the chassis using a linear
spring. The idler was pushed with 2000 N of force
until the track was tensioned and the idler had stopped
moving. This pre-tensioned track was then saved to a
data file and loaded for the simulation of the complete
vehicle.

5.2 Simulation Results for Tracked Vehicle
In this simulation scenario, the tracked vehicle

was dropped onto a flat surface and a torque was ap-
plied to the sprocket to drive it forwards; the forces
on several revolute joints connecting the track shoes
were analyzed as they traveled around the sprocket.
Figure 15 shows the forces in one revolute joint after
the track has dropped onto the flat surface. Transient
behavior is observed when the torque is applied to the
sprocket at 1 second and the track shoe connected to
this joint comes into contact with the sprocket at 5
s. The oscillatory behavior of the joint forces can
be attributed to several factors. First, the tension in
the track was very high; there was no spring/linear
actuator attached to the idler, so high tension forces
could not be dampened. Secondly, the combination of
a high pre-tensioning force (2000 N) and lack of a lin-
ear actuator on the idler resulted in high revolute joint
forces.

Figure 16 shows the joint forces for several revo-
lute joints as their associated track shoes go around the
sprocket. This plot shows that the forces in the joint
are highest when the track shoe first comes into con-
tact with the sprocket. As the track shoe moves around
the sprocket, the force decreases as subsequent track
shoes and their revolute joints help distribute the load.
It should be noted that the gearing motion between the

track shoes and the sprocket was not ideal as it was
not very smooth. In a more realistic model, forces be-
tween track shoes would be overlapping so that the
movement of the tracks is more smooth and the forces
experienced by the revolute joints are smaller.

Figure 16 shows the joint forces for one revolute
joint where the tracked vehicle was simulated as it
moved over a bed of 84,000 granular particles. The
particles were modeled as large pieces of gravel with
a radius of .075 m, and a density of 1900 kg/m3. A
torque of 100 N-m was applied to both sets of tracks to
move the vehicle. Note that unlike the case where the
vehicle moves on a flat section of ground, the forces
experienced by the revolute joints are much noisier.
Individual grains move under the tracks as the vehi-
cle moves causing large vibrations to travel through
the shoes. These vibrations would be reduced when
modeling a more complaint terrain material that can
dissipate energy on contact.

5.3 Anchoring in Granular Material
The purpose of this effort is to study the perfor-

mance of different anchor designs and provide a rec-
ommendation on which is better suited to the task of
anchoring. The anchors will be tested against a range
of parameters relating to soil, environment, and an-
chor penetration angles/velocities to better understand
their corresponding performance characteristics.

The anchor was modeled using three types of reg-
ular primitives. The tip of the anchor was modeled
using a sphere, the shaft was modeled using a cylin-
der, and the helix was modeled using 67 thin boxes
swept along a helical spline. This configuration is op-
timal compared to using a triangulated mesh for the
anchor. The triangular mesh requires several thousand
triangles, decreasing the performance of the collision
detection and increasing the memory requirements for
the simulation. Using primitives has an added ben-
efit; modifying the geometry of the anchor becomes
straightforward, thus the pitch of the anchor along
with its diameter and thickness can be varied easily
allowing parametric studies to be completed.

The anchor had several constraints and forces
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FIGURE 15: Magnitude of force experienced by one revolute joint.

FIGURE 16: Magnitude of force experienced by 5 revolute joints.

which were used to control its motion. First, there
was a bilateral constraint restricting the planar motion
of the anchor, forcing it to move straight up or down.
This constraint also prevented the anchor from rotat-
ing in all axes except the vertical axis. A pressing
force was used to press the anchor into the material.
This simulated an actuator which may be attached to
the other end of the anchor, forcing it to penetrate. A

torque was applied to the anchor to cause it to rotate
and screw into the material, and a vertical force was
used to pull the anchor out of the material at the end
of the simulation.

The numerical experiment consisted of a granular
bed made up of spheres of randomly varying radii that
was pre-settled and loaded at the start of each simula-
tion. For each simulation only the parameters associ-
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FIGURE 17: Magnitude of force experienced by one revolute joint on granular terrain.

ated with the anchor were varied. The anchor’s mass
was 10 kg with a radius of 0.5 m. The granular ma-
terial had a mass of 0.005 kg and a radius randomly
varying between 0.025 m and 0.036 m. The granular
material had a friction coefficient of 0.4, and gravity
was set to -9.806 m/s2. The time step was 5×10−4 s,
with 1000 CCP iterations performed per time step.

5.4 Simulation Results for Anchoring System

Several sets of parametric tests were simulated us-
ing the anchor model: the torque applied to the anchor
was varied, and the pullout force applied after anchor-
ing was varied. Fig. 18 shows an anchor with the same
mass that has 4 different torques applied to it. For
each test at the end the pullout force remained con-
stant at 300 N. The plot shows that at 2 seconds, when
the anchoring torque was applied, the anchor with the
highest torque went in the deepest, fastest, which is
as expected. With the constant pulling force that was
applied at 7 seconds, only the anchor with the low-
est anchoring torque, 600 N-m, was pulled upwards,
the mass of the granular material above the three other
anchors was too high for the force to have any effect.

Fig. 19, with a close up in Fig. 20, shows a dif-
ferent set of simulations. Here the anchoring torque

was kept constant, but the pullout force was changed.
The purpose of the test was to gauge the magnitude of
the pullout force required for a given applied torque.
The plot shows that only a force of 2000 N was able to
pullout easily, gaining velocity as it moved upwards.
The pullout force of 1600 N was able to start pulling
out slowly and at a constant velocity.

6 CONCLUSIONS AND FUTURE WORK
This work describes developments that expand

parallel simulation capabilities in multibody dynam-
ics. The many-body dynamics problem of interest
has been modeled as a cone complementarity problem
whose parallel numerical solution scales linearly with
the number of bodies in the system. These develop-
ments have directly resulted in the ability to simulate
complex tracked vehicles operating on granular ter-
rain. The parallel simulation capability was demon-
strated in the context of an application that empha-
sizes the interplay between light-vehicle/track/terrain
dynamics, where the vehicle feature length becomes
comparable with the dimensions associated with the
obstacles expected to be negotiated by the vehicle.
The simulation capability is anticipated to be useful
in gauging vehicle mobility early in the design phase,
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FIGURE 18: Anchor with different applied torques and a constant pullout force of 300 N.

as well as in testing navigation/control strategies de-
fined/learned on the fly by small autonomous vehicles
as they navigate uncharted terrain profiles.

In terms of future work, the convergence issue in-
duced by the multiscale attribute of the vehicle-terrain
interaction problem remains to be addressed. Addi-
tionally, technical effort will focus on extending the
entire algorithm to run on a cluster of GPU-enabled
machines, further increasing the size of tractable prob-
lems. The modeling approach remains to be aug-
mented with a dual discrete/continuum representation
of the terrain to accommodate large scale simulations
for which an exclusively discrete terrain model would
unnecessarily burden the numerical solution.
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