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ABSTRACT 

 
The recent U.S. Army TARDEC’s 30-Year Strategy calls for enhancing their skill set in 

the “ilities,” especially reliability, since this factor directly impacts more than 58% of life cycle 
costs, according to a DoD study.  To support this initiative, this paper presents technology 
transfer of Iowa developed Reliability-Based Design Optimization (I-RBDO) software by 
integrating theories and numerical methods that have been developed over a number of years in 
collaboration with the Automotive Research Center (ARC), which is funded by the U.S. Army 
TARDEC.  Both the sensitivity-based and sampling-based methods for reliability analysis and 
design optimization methods are integrated in I-RBDO for broader multidisciplinary applications.  
I-RBDO has very comprehensive capabilities that include modeling of input distributions for both 
independent and correlated variables; a variable screening method for high dimensional RBDO 
problems; statistical analysis; reliability analysis; RBDO; and confidence-based RBDO.  The 
research software I-RBDO has been provided to selected academia, industry, TARDEC HPC and 
Army Research Lab (ARL) Dedicated Support Partition (DSP) for testing its effectiveness by 
applying to various test problems.  The Iowa team will continue working with TARDEC and ARL 
using I-RBDO on HPC and DSP, respectively, for Army applications of I-RBDO.  With successful 
applications of I-RBDO, the Iowa team established a small start-up company to develop a 
commercial Reliability Analysis & Multidisciplinary Design Optimization (RAMDO) software.  
The company was awarded an Army SBIR funding contract in May 2014.  This commercialization 
of the ARC funded I-RBDO software represents a major technology transfer for the benefit of the 
Army. The success of TARDEC led research and development is highlighted by taking a 
significant multi-year project like this and demonstrating a full transition of the technology to the 
commercial marketplace. 

 
1. INTRODUCTION 

It is critical to the US Army to have reliable ground 
vehicles with optimized weights that can be relied on to 
demonstrate consistently high levels of performance for 
survivability, mobility, and durability under a wide range of 
operational conditions without being subject to unanticipated 
premature failure, and with substantially reduced 
maintenance requirements.  In commercial manufacturing 
industries for passenger vehicle, light commercial vehicle, 
heavy truck, bus, aircraft, space vehicle, heavy construction 
equipment, farm equipment, ship, wind energy, etc., 
developing and producing optimized reliable products are 

the primary goals for success of their businesses and to 
reduce warranty costs.  As the computer-aided design (CAD) 
and computer-aided engineering (CAE) tools are advancing, 
the simulation-based design process is often used to obtain 
an optimum design, prior to prototype development, to 
reduce the product development cost.  However, a design 
that is deterministically optimized without inclusion of 
reliability will be most likely around 50% reliable as shown 
in Figure 1. 

For simulation-based design process, there is a need for 
capabilities of Process Integration and Design Optimization 
(PIDO) to support multidisciplinary analysis and reliability-
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based design optimization (RBDO).  For PIDO, two key 
capabilities need to be developed:  (1) Process Integration 
(PI) for seamless integration of diverse CAD/CAE tools for 
multidisciplinary analyses; and (2) Design Optimization 
(DO) for multidisciplinary RBDO.  The first capability is 
focused on integration of CAD/CAE software tools, whereas 
the second capability is focused on computational methods 
to carry out multidisciplinary RBDO as shown in Figure 2.  
There are a number of commercial softwares that have very 
effective Process Integration (PI) capabilities for 
multidisciplinary simulation.  However, computational 
capabilities for multidisciplinary RBDO are not as advanced 
yet in terms of accuracy and efficiency. 

 

 
 
Figure 1. Deterministic Design Optimization (DDO) vs. 

RBDO 
 

 
 

Figure 2. Multidisciplinary Simulation with Input Variability 
 
Basic RBDO theories and numerical methods have been 

developed at the University of Iowa over a number of years 
in collaboration with the U.S. Army TARDEC.  For the 
input distribution model, a weight-based Bayesian method 
with two-step procedure is developed using seven marginal 
probability density functions (PDFs) and nine joint copulas 
with correlation parameters by best fitting the data [1-4].  

For variable screening, the variables that induce larger 
output variances are selected as important variables [5,6].  
For the sensitivity-based RBDO method, the enriched 
performance measure approach (PMA+) is developed using 
the inverse first-order reliability method (FORM) [7,8]; 
whereas a higher-order reliability method is developed using 
the dimension reduction method (DRM) [9-13] for highly 
nonlinear constraints.  For the sampling-based reliability 
analysis and design optimization, surrogate models are used 
[14-16].  For accurate surrogate models, newly enhanced 
accurate dynamic Kriging method (DKG) and efficient 
sequential sampling strategy are used [16].  The DKG 
method optimally selects the best surrogate model out of 21 
candidate surrogate models.  In addition to DKG, for 
efficiency of surrogate models, a hyper-spherical local 
window concept is developed for both independent and 
correlated input variables using the copulas and Rosenblatt 
transformation.  The score functions derived from the 
marginal PDFs and copulas are used to obtain accurate 
stochastic design sensitivity [17,18].  Use of the score 
function provides an interesting option to support user 
generated surrogate models for reliability analysis and 
RBDO.  In addition to the DKG method, for the sampling-
based RBDO, the virtual support vector machine (V-SVM), 
which is a classification method, is developed [19].  For fast 
turn-around of the RBDO process, the proposed sampling-
based RBDO method is mapped to a multiple core 
environment in High Performance Computing (HPC). 
These basic theories and numerical methods are 

implemented and integrated to develop the Iowa developed 
Reliability-Based Design Optimization (I-RBDO) software 
with a user interface (UI) for technology transfer to industry, 
academia, and Army.  The research software I-RBDO has 
been provided to selected academia, industry, U.S. Army 
TARDEC HPC and Army Research Lab (ARL) Dedicated 
Support Partition (DSP) for testing of its effectiveness by 
applying to various test problems.  The Iowa team will 
continue working with TARDEC and ARL using I-RBDO 
on HPC and DSP, respectively, for Army applications of I-
RBDO.  I-RBDO has been successfully applied to optimize 
designs of a passenger vehicle for noise, vibration, harshness 
(NVH) and safety [20]; durability [21,22]; casting process 
design [23]; ship hydrodynamics; fluid-structure interaction 
[24]; welding design [25]; superconducting magnetic energy 
storage system [26]; electro-thermal polysilicon actuator 
[27]; etc.   
The commercialization of a research software is one of the 

most effective means of technology transfer.  With the 
success of I-RBDO by various users, the Iowa team 
established a small start-up company, RAMDO Solutions, 
LLC, in fall 2013.  Using I-RBDO, the company will 
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develop a commercial software Reliability Analysis & 
Multidisciplinary Design Optimization (RAMDO) and 
continue to support academia, industry, and Army.  The 
company was awarded an Army SBIR funding contract in 
May 2014.  This commercialization of the ARC funded I-
RBDO software represents a major technology transfer for 
the benefit of the Army. The success of TARDEC led 
research and development is highlighted by taking a 
significant multi-year project like this and demonstrating a 
full transition of the technology to the commercial 
marketplace. 
Since detailed description of all RBDO methods that have 

been developed by the Iowa team will make this paper too 
long, in the following sections some selected key RBDO 
methods will be briefly described along with applications of 
I-RBDO by the partners.  Also, the commercialization status 
will be briefly explained. 
 
2. MODELING DISTRIBUTIONS FOR INPUT 

VARIABLES 
For reliability analysis and RBDO, the first capability that 

is needed is modeling the uncertainty for both input design 
variables and parameters such as material properties and/or 
loadings.  For certain design variables or parameters, the 
input distributions may be well known.  However, for many 
design variables or parameters, only limited experimental or 
test data may be available.  Identification of the input 
uncertainty model with a limited data is challenging when 
input variables or parameters are correlated.  Methods for 
modeling input distributions for both independent and 
correlated variables as well as parameters are developed in 
Refs. 1-4 using a Bayesian method, which selects a marginal 
cumulative distribution function (CDF) and/or copula with 
the highest normalized weight among candidates.  Nine 
candidate copulas: Clayton, Ali-Mikhail-Haq (AMH), 
Gumbel, Frank, A12, A14, Farlie-Gumbel-Morgenstern 
(FGM), Gaussian and Independent, are used to model joint 
distributions.  To measure the correlation between two 
random variables, Kendall’s tau [3,4] is used, since unlike 
Pearson’s rho, Kendall’s tau does not assume that the 
relationship between two random variables is linear.  For 
marginal distributions, seven candidate CDFs, Gaussian, 
Weibull, Gamma, Lognormal, Gumbel, Extreme, and 
Extreme Type-II, are used.  If two variables are correlated, 
there are 7×7×9 = 441 possible combinations for the input 
distribution models, making it difficult to clearly identify the 
best model that fits the data.  Thus, an efficient and accurate 
weight-based Bayesian method using a two-step procedure is 
developed for modeling input distributions [4], which 
performs significantly better than the Markov chain Monte 
Carlo (MCMC)-based Bayesian method. 

As an example, Figure 3 shows result of the input 
distribution modeling of the highly correlated fatigue 
material property coupon test data of alloy steel SAE 950X 
using the weight-based Bayesian method and the two-step 
procedure [4].  The marginal PDFs of the fatigue strength 
coefficient σ′f and exponent b follow lognormal and normal 
distributions, respectively; and the fatigue ductility 
coefficient ε′f and exponent c follow lognormal and normal 
distributions, respectively.  As shown in Figure 3, the fatigue 
strength coefficient and exponent are negatively correlated 
and the Gaussian copula best fits the data; whereas fatigue 
ductility coefficient and exponent are negatively correlated 
and the Frank copula best fits the data.  As will be shown in 
Section 3, properly modeling PDFs of these correlated data 
is critically important to obtain lighter RBDO design in the 
ground vehicle application. 
 

 
 
Figure 3. Input Distribution Modeling of Highly Correlated 

Fatigue Properties of Alloy Steel SAE 950X 
 

3. SENSITIVITY-BASED RBDO METHOD 
A general RBDO problem can be formulated as to 
 

minimize   cost (d) 
subject to 

( ) [ ( ( )) 0] 1,...,

, , and
j j

Tar
F j F

L U NDV NRV

P P G P j NC= > ≤ =

≤ ≤ ∈ ∈

d d X

d d d d XR R
 (1) 

 
where d, Gj, ,

j

Tar
FP  NC, NDV, and NRV are the design 

variable vector, jth constraint function, jth target probability 
of failure, numbers of constraints, design variables, and 
random variables, respectively. 
There are two different approaches to perform RBDO: 

using the reliability index approach (RIA) by performing the 
conventional reliability analysis; and performance measure 
approach (PMA) given in Eq. (2) 
 

minimize   cost (d) 
subject to 
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( ( )) 0, 1,...,

,   ,   

j

L U NDV NRV
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≤ ≤ ∈ ∈

d X

d d d d XR R
 (2) 

 
where MPPX  is found by performing inverse reliability 
analysis to find the most probable point (MPP) using the 
first order reliability method (FORM) in the independent 
normalized U-space as [28-31] 
 

maximize ( )
subject to

jt

jG
β=

U
U  (3) 

 
where 

jtβ  is the given target reliability index. 

Unlike RIA, which yields instability for some problems, 
PMA is shown to be robust and very accurate in identifying 
a probabilistic failure mode in the optimization process.  
While it is accurate, stable and robust, PMA is viewed to be 
expensive since it is a double-loop method.  Thus, an 
enriched performance measure approach (PMA+) was 
developed by using the enhanced hybrid-mean value (HMV) 
method [7] and four computational efficiency strategy to 
substantially improve computational efficiency when applied 
to large-scale design problems [8].  In Ref. 8, PMA+ was 
demonstrated to be more efficient than the single-loop or 
serial methods.  
There are two commonly used reliability analysis methods: 

linear approximation - FORM; and quadratic approximation 
- second order reliability method (SORM), of the 
performance functions.  The reliability analysis using FORM 
may be accurate enough for mildly nonlinear performance 
functions, whereas the reliability analysis using SORM, 
which requires the second order sensitivity analysis, may be 
necessary for highly nonlinear performance functions of 
multi-variables.  However, the second order sensitivity is 
rather complicate and quite expensive to obtain.  Thus, a 
new inverse reliability analysis method [9-12], which can be 
used for multi-dimensional highly nonlinear systems to yield 
accurate failure rate calculation without requiring the second 
order sensitivities, was developed using the univariate 
dimension reduction method (DRM) [32].  Since the FORM-
based reliability index (β) is inaccurate to search the most 
probable point (MPP) for highly nonlinear problems, a three-
step computational process was developed to carry out the 
inverse reliability analysis: (1) constraint shift, (2) reliability 
index update using DRM, and (3) MPP search using the 
updated reliability index.  Using the three steps, the new 
DRM-based MPP is obtained, which estimates the 
probability of failure of the performance function more 
accurately than the FORM-based MPP, while much more 
efficiently than SORM.  The DRM-based MPP is used for 

the next design iteration of RBDO, which yields an accurate 
optimum design even for a highly nonlinear system.  Since 
the DRM-based RBDO requires more function evaluations, 
the enriched performance measure approach (PMA+) with 
new tolerances for constraint activeness and reduced rotation 
matrix was used to reduce the number of function 
evaluations.  It is noted that the DRM-based method 
becomes a FORM-based method if one point integration is 
selected.   

The sensitivity-based RBDO method was extensively 
tested for the weight optimization with constraints on the 
reliability of fatigue constraints for Army ground vehicles 
such as M1A1 tank road-arm [33] Stryker arm [21] and 
HMMWV A-arm [22] components. 

In carrying out RBDO of the ground vehicle components 
for fatigue life, it was found that correctly modeling joint 
distribution for correlated input variables affects the RBDO 
optimum design significantly.  The impact of using the 
correct correlated input distribution is shown in the fatigue 
RBDO of the HMMWV front left a-arm shown in Figure 4 
[22], for which the multibody dynamic analysis is carried 
out at TARDEC using DADS software.  The fatigue RBDO 
for the HMMWV left front A-arm is formulated to 

 

Tar

L U 8 12

minimize  Cost( )
subject to [ ( ) 0] , 1, ,13

, and
jj FP G P j> ≤ =

≤ ≤ ∈ ∈

d
X

d d d d R X R
  (4) 

 
where 
 

Tar
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t

t

F
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=

d
d

d

d  (5) 

 

 
 
Figure 4. HMMWV Dynamics Model and Fatigue Contour 

of Left Front A-Arm 
 
Eight design variables are thicknesses of plates of the A-

arm, which are normally distributed with standard variations 
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taken as 4% of the initial design variables (thicknesses) 
shown in Table 1; and 20 fatigue constraints (hot spots) are 
used.  The target reliability is 2-sigma design, which means 
less than 2.275% probability of failure after 1042 days of 
continuous operation. 

In addition to the eight design variables, four fatigue 
material properties are used as random input variables to 
have the total number of input variables is 12 as shown in 
Eq. 4.  Since the HMMWV A-arm is made of SAE 950X, 
the correlated fatigue material property coupon test data 
shown in Figure 3 are used for the RBDO problem.  These 
pairs of data can be used to simulate the fatigue lives from 
the strain-life relation 

 

( ) ( )2 2
2 2 2

b cp fe
f f fN N

E

ε σε ε
ε

′∆∆ ∆
′= + = +  (6) 

 
where ∆ε/2 is the strain amplitude, E is Young’s modulus 
and 2Nf is the reversals to failure.  For different pairs of 
fatigue material property data, Eq. 6 is drawn as gray 
colored curves in terms of ∆ε and Nf on Figures 5 (a) and 
(b).  The red dots are the fatigue test results obtained from 
the coupon testing.  As shown in Figure 5 (a), the gray 
curves do not match at all with red dots since the data is 
assumed not correlated; while in Figure 5 (b), the gray 
curves and red dots match very well since the simulation 
incorporates correlation.  Thus, it is very important to use 
the correct input distribution models using copulas as shown 
in Figure 3. 

 
 

Figure 5. Fatigue Test Data of Alloy Steel SAE 950X and 
Simulation Results 

 
For the HMMWV A-arm, the RBDO optimum designs are 

shown in Table 1 for the cases of using uncorrelated and 

correlated fatigue material properties.  If the input fatigue 
material properties are correctly modelled to be correlated, 
then the optimum A-arm volume (which is proportional to 
the weight) is 157.52 in3; whereas incorrectly modelled input 
distributions will yield the optimum A-arm volume 227.55 
in3, which is 45% heavier!  The correlated input variable 
modelling using the copula in the I-RBDO software is a 
unique capability. 
 

4. SAMPLING-BASED RBDO METHOD 
While the sensitivity-based RBDO method is very effective 

and robust, there are many engineering design problems for 
which the design sensitivity information cannot be readily 
obtained.  For these design problems, an alternative method 
needs to be developed.  In the sampling-based RBDO, true 
models are approximated by using surrogate models, since 
direct reliability estimation using the Monte Carlo 
Simulation (MCS) requires evaluations at very large sample 
locations and evaluations for true samples are 
computationally expensive in most practical design 
applications.  For this purpose the dynamic Kriging (DKG) 
method [14-16], which is a surrogate modeling method, and 
the virtual support vector machine (V-SVM) [19], which is a 
classification method, are developed by the Iowa team.  

 
Table 1. RBDO Optimum Designs of HMMWV A-Arm 

 

 Initial 
Design 

RBDO Optimum Designs (unit: inch) 
Using Uncorrelated 

Fatigue Property 
Using Correlated 
Fatigue Property 

d1 0.1200 0.2926 0.2423 
d2 0.1200 0.2858 0.1278 
d3 0.1800 0.3418 0.2143 
d4 0.1350 0.3208 0.2584 
d5 0.2500 0.5852 0.4827 
d6 0.1800 0.5000 0.5000 
d7 0.1350 0.3278 0.2437 
d8 0.1800 0.3886 0.1000 

Volume 106.9 in3 227.55 in3 157.52 in3 
 
Regardless whether we use DKG or V-SVM for sampling-

based RBDO, since the RBOD process is computationally 
expensive due to a large number of CAE analyses, for high 
dimensional RBDO problems, it is desirable to reduce the 
dimension of the RBDO problem and thus mitigate the 
curse-of-dimension.  Therefore, it is desirable to develop an 
efficient and effective variable screening method [5,6] to 
identify important variables.  In the RBDO process, the 
variables that induce larger output variances should be 
identified as important variables.  An efficient 
approximation method based on the univariate dimension 
reduction method (DRM) is used to calculate output 
variance efficiently.  To determine important variables, a 
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hypothesis testing is used so that possible errors are 
contained in a user-specified error level.  A required number 
of samples and locations are determined for calculating the 
output variance using the user provided error level.  A 
quadratic interpolation method is used to calculate output 
variance efficiently.   
Effectiveness and efficiency of the variable screening 

method to find important variables is demonstrated quite 
successfully using the Ford Motor Company’s 44-
dimensional multidisciplinary passenger vehicle design 
optimization problem for safety and NVH  by selecting 18 
design variables that provide the RBDO design, which is 
very close to the RBDO design of the 44 design variable 
model.  Significant computational resources are saved by 
using the 18 design variable problem [5,6,20] for RBDO. 
Another decision that we have to make is whether we 

should use the global domain or local window to carry out 
design of experiment (DoE) sampling and building DKG or 
V-SVM surrogate models.  We are using the local window 
as shown in Figure 6 since RBDO requires much more 
accurate surrogate models than the case for DDO.  The size 
of the local window (yellow colored hyper-cube shown in 
Figure 6) will be determined by dispersion (i.e., standard 
deviations) of the given input PDFs as well as the required 
target reliability of the RBDO problem.  If the standard 
deviations of the input PDFs and target reliabilities are lager, 
the size of the local window needs to be larger.  That is, the 
local window size should be big enough to carry out proper 
reliability analysis.  Once the local window is determined, 
we need enough number of DoE samples to obtain accurate 
surrogate models for reliability analysis and stochastic 
design sensitivity analysis using a large number of MCS 
samples.  The rationale of the local window is to mitigate the 
curse-of-dimension.  As shown in Figure 6, for example, if 
we have 2 design variables where the local window size is 
1/5 of the length of each of the design variable bounds, then 
there are 25 (i.e., 5×5) local windows.  However, if we have 
6 design variables, there are 15,625 (i.e., 56) local windows 
in the global domain.  If 10 design variables, 9,765,625 (i.e., 
510) local windows!  Even if we use more than 1,000 DoE 
samples, these samples are spread too thin over the global 
domain to provide accurate surrogate models.  In fact, the 
local window, which contains the optimum design, may not 
even have any sample on it, and the reliability analysis 
results cannot be acceptable.  In our RBDO process, we need 
to generate surrogate models on only on certain selected 
local windows, which are much less than the total number of 
local windows on the global domain. 
On the local window, hyper-sphere is used instead of the 

hyper-cube since too many DoE samples could be wasted in 
unnecessary gray area, as shown in Figure 7 (a) for the 2-D 
problem, for reliability analysis and design optimization for 
high dimensional problems.  That is, the reliability analysis 

requires surrogate models to be accurate on the hyper-
sphere.  While the gray area is 21.3% of the total hyper-cube 
volume for the 2-D problem, for an 8-D problem, the gray 
area is 98.4% and DoE samples only inside the 1.6% hyper-
sphere (white area) would mostly contribute to the accuracy 
of surrogate models.  To avoid extrapolation when the 
surrogate models are generated, the radius R of the hyper-
sphere is selected to be larger (typically 1.2 times) than the 
target reliability index βt as shown in Figure 7 (a).  For best 
utilization of DoE samples, if input variables are correlated, 
DoE samples on the hyper-sphere in Figure 7 (a) should be 
transformed using copulas as shown in Figure 7 (b). 
Among surrogate modeling methods, the Kriging method 

has gained significant interest for its accuracy.  However, in 
traditional Kriging methods, the mean structure is 
constructed using a fixed set of polynomials basis functions, 
correlation function type is fixed, and an optimization 
method is used to obtain the optimal correlation parameter 
which could be a local optimum.  To construct an accurate 
Kriging model, an appropriate form of the Kriging model 
should be selected and the parameters should be estimated 
accurately.   

 
 

Figure 6.  Local Window for DoE Sampling and Surrogate 
Models 

 

 
 

(a) DoE Samples for  (b) DoE Samples for  
 Uncorrelated Variables Correlated Variables 

 
Figure 7.  Hyper-sphere for DoE Sampling and Surrogate 

Models 
 
A new DKG method is developed to fit the true model 

more accurately by using four methods: (1) using genetic 
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algorithm (GA) and generalized pattern search (GPS) 
method for parameter search in maximum likelihood 
estimation (MLE), (2) using penalized MLE (PMLE) for 
small DoE sample size, (3) selecting the correlation model 
using MLE, and (4) selecting the mean structure using cross 
validation (CV) error. 
First, the MLE technique, which is the most widely used, 

requires accurate correlation parameter estimation.  The GPS 
algorithm showed better performance compared with other 
methods [14].  However, the performance of GPS is 
influenced by its initial point and thus, GA is used to provide 
better initial point for GPS.  
Second, MLE usually provides very accurate correlation 

parameter values when the sample size is enough.  However, 
MLE can be inaccurate when the sample size is small and 
the selected spatial correlation length (Kriging parameter) is 
smaller than distances between samples.  In such situations, 
a penalized likelihood function can be used to avoid 
inaccurate result by using the penalty function and CV error.  
The penalty function has additional parameters and it can be 
estimated accurately using GPS.  If the sample size is 
relatively large, the effect of the penalty function is limited.  
Therefore, PMLE is applied only when the sample size is 
small. 
Third, in most applications of the Kriging method, the 

Gaussian correlation function is commonly used as the 
spatial correlation function (SCF) since it provides a 
relatively smooth and infinitely differentiable surface.  
However, there could be many different input data structures 
where a fixed correlation model may not be adequate enough 
to describe the data well.  For problems with the same mean 
structure, MLE or PMLE can be applied to find a better 
correlation model. 
Finally, it was shown that the accuracy of the Kriging 

method can be enhanced by selecting appropriate basis 
functions [14].  However, DKG using the process variance 
tends to choose the model with full basis functions, which 
may not be the best in terms of accuracy.  In our research, 
leave-one-out CV is used instead of the process variance to 
find better mean structure. 
For sampling-based RBDO, stochastic design sensitivity 

analysis needs to be carried out to compute the sensitivities 
of probabilistic constraints with respect to independent or 
correlated random variables and parameters [17,18].  The 
analytical reliability analysis involves calculation of the 
probability of failure, which is defined using a multi-
dimensional integral as 
 

( ) [ ] ( ) ( ; )

          ( )

N
j j Fj

Fj

F FP P I f d

E I

Ω

Ω

≡ ∈Ω =

=  
 

∫ XR
μ X x x μ x

X
 (7)   (7)  

 
where the mean value µ is used as the design variable d; 

{ }: ( ) 0
jF jGΩ ≡ >x x  is the failure set; [ ]P   represents a 

probability measure;
 

( ; )fX x μ  is a joint PDF of the input 

variable X; [ ]E   represents the expectation operator; and 

)(
Fj

I
Ω

x  is an indicator function and defined as 1 if 
jF∈Ωx

and 0 otherwise. 
The analytical stochastic design sensitivity of the 

probability of failure in Eq. (7) with respect to the design 
variable µi is 
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The partial derivative of the log function of the joint PDF in 
Eq. (8) with respect to iµ  is known as the first-order score 

function for iµ .  Note that the score function involves 
derivatives of the marginal distributions and copula that is 
used for input uncertainty modeling of the correlated input 
random variables. 
Using the DKG surrogate models, the score function 

method calculates the probability of failure and their 
sensitivities by applying MCS, which can be carried out 
efficiently using the surrogate models.  It is important to 
note that the score function method does not require the 
gradients of the surrogate models, which are known to be 
erroneous since the surrogate model is an approximation.  
This behavior is similar to the fact that the stress results are 
not accurate while displacement results in finite element 
analysis (FEA) are accurate since the stresses are derivatives 
of approximated displacement results.  Also, it is not 
necessary to use the transformation from X-space to the 
independent normalized U-space for the reliability analysis 
as in the case of the sensitivity-based RBDO.  Since no 
transformation is required and the reliability is calculated in 
X-space, there is no approximation or restriction in 
calculating the design sensitivities of the reliability.  Using 
the score function method, I-RBDO will allow user 
generated surrogate models for reliability analysis, stochastic 
design sensitivity analysis and RBDO, which could be a 
very attractive feature to some users. 
It is important to note that the support vector machine 

(SVM) cannot provide design sensitivity of the response and 
thus is not useful for deterministic design optimization 
(DDO).  On the other hand, according to Eqs. (7) and (8), 
the score function method requires only the classification 
information – a success or a failure – for MCS.  Thus, SVM, 
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which is a classification method, can be used for RBDO by 
integrating with the score function method for stochastic 
design sensitivity analysis.  Moreover, since the SVM 
method provides explicit limit state functions for the design 
constraints, it will be very efficient to estimate MCS 
samples, unlike the Kriging method, which is an implicit 
method and thus requires some computational time to 
estimate a very large number of MSC samples.  The newly 
developed virtual support vector machine (V-SVM) [19] will 
be integrated with the score function method for RBDO in I-
RBDO. 
In V-SVM, virtual samples are generated near the limit 

state function by using an approximation method.  The 
function values are then used for approximations of virtual 
samples to improve accuracy of the resulting V-SVM 
decision function.  By introducing the virtual samples, V-
SVM can overcome the deficiency in existing classification 
methods where only classification information is used as the 
input.  The DKG surrogate model is used to obtain virtual 
samples to improve the accuracy of the decision function for 
highly nonlinear problems.  It is demonstrated in Ref. 19 that 
the adaptive V-SVM is significantly more efficient in 
evaluation at MCS points with a very large number of test 
samples while maintaining a very similar level of accuracy 
compared to the DKG method, especially for high-
dimensional problems. 
For the sequential DoE sampling process, the improved 

constraint boundary sampling (ICBS) method is developed 
to insert new sequential samples near the limit state function.  
ICBS considers not only the distance to the limit state 
function but also the distance to the existing DoE samples to 
improve the efficiency of the sampling strategy.  For parallel 
computation using High Performance Computing (HPC), 
multiple samples can be selected at once, which makes the 
sequential DoE sampling process more efficient. 
In some existing commercial softwares, a large number of 

options for surrogate modeling methods are provided for 
RBDO, which is not necessarily beneficial to users unless 
the software informs the user which surrogate model is the 
best for the problem the user is solving.  It is desirable to 
provide a flagship surrogate modeling or classification 
method that is adaptive, robust, accurate for RBDO and easy 
to use.  As for the flagship surrogate modeling method, I-
RBDO uses our DKG surrogate models, where 21 different 
Kriging models (3 basis functions and 7 correlation models, 
plus optimum correlation parameters determined) are 
implemented, and I-RBDO selects the best Kriging model 
systematically for user’s RBDO problem.  It is very well 
possible that different Kriging models may be selected at 
different local windows during RBDO iterations.  Between 
Kriging and V-SVM, I-RBDO provides plenty options for 
surrogate models for RBDO. 

The sampling-based RBDO part of I-RBDO is shown in 
Figure 8.  This software can be integrated with any CAE 
softwares as black box tools as shown in Figure 8.  The 
interface can be simple ASCII data. 
 
5. COLLABORATIVE EVALUATION OF I-RBDO 

SOFTWARE 
The research software I-RBDO has been provided to 

selected academia, industry, TARDEC HPC and ARL DSP 
for evaluation of its effectiveness by applying to various test 
problems.  The collaborating teams integrated I-RBDO with 
their CAE simulation softwares for applications.  I-RBDO 
has been successfully applied to optimize designs of 
passenger vehicles for safety and NVH [20]; durability 
[21,22]; casting process design [23]; ship hydrodynamics; 
fluid-structure interaction [24]; welding design [25]; 
superconducting magnetic energy storage system [26]; 
electro-thermal polysilicon actuator [27]; etc.  Interested 
readers are referred to above cited papers for detailed 
information on successful applications of I-RBDO. 
 

 
 
Figure 8. Sampling-Based RBDO with Simulation Softwares 

as Black-Boxes 
 
In this paper, an application of I-RBDO to the Ford 

passenger vehicle for safety and NVH [5,6,20] is presented.  
The problem includes passenger safety under full frontal and 
40% offset frontal impacts; as well as NVH as design 
constraints.  There are a total of 11 performance measures: 
nine safety and two NVH measures as shown in Table 2. 
The 44 random variables shown in Table 3 represent 

thicknesses of the vehicle body.  All statistically independent 
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random variables follow normal distribution.  The design 
variable vector d (given at the baseline design values in mm 
in Table 3) is the mean vector of the 44 random variables, 
and there is no random parameter in this problem.  Among 
those random variables, six random variables (X1 to X5 and 
X8) are common variables for both the safety and NVH 
measures, two (X6 and X7) are variables only for the safety 
measures, and the other 36 random variables are only for the 
NVH measures. 
This problem requires 3.5 hours for the impact dynamic 

analysis for safety and the modal analysis for NVH.  Thus, 
actual analyses would take too long to carry out various 
testing of the proposed method thoroughly.  Ford Motor 
Company provided 44-D surrogate models on the global 
domain between the lower bound dL and upper bound dU. 
The purpose of this study is to demonstrate three key 

capabilities of the I-RBDO software: (1) robustness and 
efficiency of the RBDO algorithm using the Ford 44-D 
surrogate models, (2) accuracy of DKG surrogate models for 
RBDO, and (3) effectiveness of the variable screening 
method.  The RBDO is formulated to  

minimize Weight (d) 

subject to 
[ ]( ) Baseline 10%, 1, ,11

, , and
i i

L U NDV NRV

P G i> ≤ =

≤ ≤ ∈ ∈

X

d d d d X



 
 (9) 

 
Table 2. Performance Measures 

 

Mode Function Value Feasibility 
Decision 

Safety 

Full 
Frontal 
Impact 

G1 Chest G 

≤ Baselinei 

G2 
Crush 

Displacement 

40% 
Offset 
Impact 

G3 Brake Pedal 
G4 Footrest 
G5 Left Toepan 
G6 Center Toepan 
G7 Right Toepan 
G8 Left IP 
G9 Right IP 

NVH 
G10 Torsion Mode 

G11 
Vertical 

Bending mode 
 

For the first capability testing, the RBDO problem is 
solved using the Ford 44-D surrogate models (i.e., NDV = 

NRV = 44).  Table 4 shows the baseline design, DDO and 
RBDO optimum designs obtained using I-RBDO and 
NSGA-II software.  Column 1 shows 11 constraints.  
Columns 2-4 show the weights at the baseline design, DDO 
design obtained using I-RBDO, and deterministic design 
obtained using NSGA-II after 100 iterations, respectively.  A 
number of constraints at these three designs yield around 
50% probability of failures.  Columns 5-7 show RBDO 
designs obtained using I-RBDO starting at three designs 

shown at columns 2-4, respectively.  It is interesting to note 
that, starting from the three different initial designs, three 
RBDO optimum processes converged practically to the same 
design (weight) with very close reliabilities for 11 design 
constraints.  This demonstrates robustness and efficiency of 
the RBDO algorithm in I-RBDO due the accurate stochastic 
design sensitivity analysis using the score functions.  So if 
the user has accurate surrogate models, I-RBDO will provide 
good optimum designs. 
 

Table 3. Input Random Variables and Baseline Design 
 

RVs Dist. Type d STDV dL dU 
X1 Normal 1.9 0.05 1.5 2.3 
X2 Normal 1.91 0.05 1.5 2.3 
X3 Normal 2.51 0.06 2.0 3.0 
X4 Normal 2.4 0.06 1.9 2.9 
X5 Normal 2.55 0.06 2.0 3.1 
X6 Normal 2.25 0.06 1.8 2.7 
X7 Normal 2.25 0.06 1.8 2.7 
X8 Normal 1.5 0.03 1.2 1.8 
X10 Normal 1.28 0.03 0.9 1.6 
X11 Normal 1.4 0.03 1.0 1.8 
X12 Normal 1.1 0.03 0.8 1.4 
X13 Normal 2.2 0.06 1.7 2.7 
X14 Normal 1.5 0.03 1.2 1.8 
X15 Normal 1.25 0.03 0.9 1.6 
X16 Normal 2.5 0.06 2.0 3.0 
X17 Normal 2.0 0.05 1.5 2.5 
X18 Normal 1.4 0.03 1.1 1.7 
X20 Normal 1.22 0.03 0.9 1.5 
X23 Normal 0.75 0.03 0.6 1.0 
X24 Normal 1.9 0.05 1.5 2.3 
X25 Normal 0.65 0.03 0.5 0.8 
X26 Normal 0.85 0.03 0.6 1.1 
X27 Normal 0.85 0.03 0.6 1.1 
XN1 Normal 0.9 0.03 0.7 1.1 
XN2 Normal 1.1 0.03 0.8 1.4 
XN3 Normal 1.55 0.05 1.2 1.9 
XN4 Normal 0.9 0.03 0.7 1.1 
XN5 Normal 1.5 0.03 1.2 1.8 
XN6 Normal 1.2 0.03 0.9 1.5 
XN7 Normal 1.1 0.03 0.8 1.4 
XN8 Normal 1.52 0.05 1.2 1.9 
XN9 Normal 0.8 0.03 0.6 1.0 
XN10 Normal 0.8 0.03 0.6 1.0 
XN11 Normal 1.2 0.03 0.9 1.5 
XN12 Normal 0.75 0.03 0.6 0.9 
XN13 Normal 0.75 0.03 0.6 0.9 
XN14 Normal 0.75 0.03 0.6 0.9 
XN15 Normal 1.0 0.03 0.8 1.2 
XN16 Normal 1.14 0.03 0.9 1.4 
XN17 Normal 1.2 0.03 0.9 1.5 
XN18 Normal 1.4 0.03 1.1 1.7 
XN19 Normal 1.2 0.03 0.9 1.5 
XN20 Normal 1.4 0.03 1.1 1.7 
XN21 Normal 2.13 0.06 1.7 2.6 

 
The last column of Table 4 shows the optimum design 

obtained using NSGA-II RBDO after it took more than 100 
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hours to run with 60,000 DoE simulations as NSGA-II uses 
a genetic algorithm.  All reliability analysis results in this 
table are obtained by carrying out MCS using the Ford 44-D 
surrogate models. 
Even though I-RBDO can very effectively find the RBDO 

optimum design using Ford 44-D surrogate models as shown 
in Table 4, the optimum design may not be useful for design 
guidance in practical automotive application since the 44-D 
surrogate models are not accurate enough, especially for 
assessment of reliability of the optimum design.  In fact, 44 
design variables are too many to obtain accurate surrogate 
models due to the curse-of-dimension, especially on the 
global domain, no matter what surrogate modeling methods 
are used.  To be useful, it is necessary to have an accurate 
surrogate modeling capability that can be confidently used 
for design guidance in practical applications.  For this, as 
described before, we propose to use the local window 
concept.  Even then, 44-D surrogate models are not easy to 
obtain accurately.  That is the reason I-RBDO is providing 
the variable screening method. 
 

Table 4. Robustness of I-RBDO for the 44-D Problem 
 

 
To demonstrate the second and third capabilities of I-

RBDO described above, from now on, we will refer the Ford 
44-D surrogate models as the “benchmark” models.  In this 
way, even though we are not using the actual DoE samples 
with impact dynamic analysis for safety and the modal 
analysis for NVH, we can verify I-RBDO capabilities 
thoroughly. 
For the second study, a reduced number of design variables 

(NDV = NRV = 14) are selected to obtain accurate DKG 
surrogate models and compare it with the Ford 44-D 
benchmark models.  The 14 design variables, X1, X2, X3, X4, 
X5, X6, X7, X8, X10, X20, X23, X25, X26, and XN1, are selected 
using the variable screening method.  These design variables 
are selected based on their contributions to the outcome 
variances of the 11 design constraints.  For this study, the 

DKG surrogate models are generated using I-RBDO where 
the DoE samples are obtained from the Ford 44-D 
benchmark models.  Using the DKG surrogate models and 
starting from the initial baseline design, the RBDO optimum 
design is obtained as shown in column 3 in Table 5.  To 
validate accuracy of the DKG surrogate models, RBDO is 
carried out using the Ford 44-D benchmark models, but 
using only selected 14 design variables, as shown in column 
4 in Table 5.  These two RBDO optimum designs have 
identical weights (259.83) and reliability constraint results 
are practically the same.  This demonstrates accuracy of the 
DKG surrogate models.  Further, two RBDO optimum 
designs shown in Table 6 are the same.  This clearly 
demonstrates accuracy of the DKG surrogate models. 
 

Table 5. 14-D RBDO Optimum Costs and Constraint 
Reliabilities Using I-RBDO and Ford Benchmark 

 

Performance 
Measure 

Baseline 
Design 

Using I-RBDO 
DKG 

Using Ford 
Benchmark 

Weight 269.47 259.83 259.83 
G1 48.22% 9.94% 9.94% 
G2 51.48% 10.11% 10.02% 
G3 54.15% 0.00% 0.00% 
G4 55.57% 0.11% 0.12% 
G5 58.96% 1.95% 1.91% 
G6 59.71% 10.01% 10.02% 
G7 59.92% 9.93% 10.03% 
G8 53.19% 9.98% 9.97% 
G9 51.17% 9.99% 9.98% 
G10 49.05% 0.00% 0.00% 
G11 52.46% 9.97% 10.02% 

No. of Des. Iter.  30 17 
 
Table 6. 14-D RBDO Optimum Designs Using I-RBDO and 

Ford Benchmark 
 

Design 
Variables 

Using  
I-RBDO DKG 

Using Ford 
Benchmark 

X1 1.8366 1.8359 
X2 2.1804 2.1807 
X3 2.8561 2.8576 
X4 1.9810 1.9851 
X5 2.7228 2.7233 
X6 2.2497 2.2501 
X7 2.3185 2.3169 
X8 1.7966 1.7985 
X10 0.9 0.9 
X20 0.9 0.9 
X23 0.6 0.6 
X25 0.5429 0.5424 
X26 1.1 1.1 
XN1 0.7 0.7 

 
On the other hand, as shown in Table 5, the optimum 

weights of the 14-D models (259.83) are higher than the 
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optimum weights of the Ford 44-D benchmark models 
obtained in Table 4 (225.68, 225.66, and 225.67) since the 
design space is smaller with only 14 design variables.  Also, 
the selected 14 design variables are entirely based on the 11 
design constraints and without consideration of the cost 
function (i.e., weight).  Thus, four additional design 
variables, XN4, XN9, XN10, and XN11, are selected from 
remaining 30 design variables based on the highest 
sensitivity for the cost function.  The 18-D RBDO optimum 
design is shown in Table 7.  As shown in Table 7, the 
optimum weight is reduce significantly to 244.17, while the 
reliability constraints are satisfied.  Two RBDO optimum 
designs have identical weights (244.17, 244.18) and 
reliability constraint results are practically the same.  The 
RBDO optimum designs are shown in Table 8, which shows 
that they are the same design.  Again, this clearly 
demonstrates accuracy of the DKG surrogate models, even 
though RBDO requires much more accurate surrogate 
models than the DDO application. 

 
Table 7. 18-D RBDO Optimum Costs and Constraint 

Reliabilities Using I-RBDO and Ford Benchmark 
 

Performance 
Measure 

Baseline 
Design 

Using I-RBDO 
DKG 

Using Ford 
Benchmark 

Cost 269.47 244.17 244.18 
G1 48.22% 9.96% 10.01% 
G2 51.48% 10.04% 10.02% 
G3 54.15% 0.00% 0.00% 
G4 55.57% 0.09% 0.11% 
G5 58.96% 2.04% 1.85% 
G6 59.71% 10.02% 9.97% 
G7 59.92% 9.95% 9.94% 
G8 53.19% 9.91% 10.00% 
G9 51.17% 9.87% 10.01% 
G10 49.05% 0.00% 0.00% 
G11 52.46% 9.93% 9.97% 

No. of Des. Iter.  20 20 
 
While the reliability constraints are very well satisfied by 

the 14-D and 18-D RBDO optimum designs as shown in 
Tables 5 and 7, respectively, these reliability analyses were 
carried out using 14-D and 18-D DKG surrogate models or 
14-design and 18-design variables in the Ford 44-D 
benchmark models, respectively.  However, the design 
variables that were not selected for RBDO are random 
variables and they are fixed at their mean values at the 
baseline design point.  This raises a question that whether 
the variable screening method selected proper variables so 
that 14-D or 18-D RBDO optimum designs satisfy the 
reliability constraints when we consider all 44 variables to 
be random, which is the real situation.  Table 9 shows the 
reliability analysis results of these optimum designs using 
the Ford full 44-D benchmark models.  The results in Table 

9 are quite close to the results in Tables 5 and 7, 
respectively, except for the constraint G11.  Thus, the 
variable screening method is effective to control all 
constraints to satisfy the target reliability of 10%, except for 
the constraint G11, which are slightly off.  Note that the 
reliability assessments (11.23% and 11.27%) for both RBDO 
optimum designs in Table 9 are true as they are calculated 
using the Ford 44-D benchmark models.  Comparing the 
results for G11 in Table 9 and the corresponding results in 
Tables 5 and 7, respectively, the reliability differences are 
11.23−9.97=1.26% and 11.17−9.93=1.24%, which can be 
reduced by selecting more variables in the variable screening 
method.  This will be a trade-off issue between the computer 
resources and desired accuracy.  Thus, effectiveness and 
efficiency of the variable screening method is demonstrated 
quite successfully.  The local window method and variable 
screening method in I-RBDO are the most viable option to 
overcome the curse-of-dimension. 
 
Table 8. 18-D RBDO Optimum Designs Using I-RBDO and 

Ford Benchmark 
 

Design 
Variables 

Using  
I-RBDO DKG 

Using Ford 
Benchmark 

X1 1.8336 1.8425 
X2 2.1806 2.1771 
X3 2.8540 2.8654 
X4 1.9856 1.9525 
X5 2.7261 2.7209 
X6 2.2558 2.2464 
X7 2.3207 2.3265 
X8 1.786 1.8 
X10 0.9 0.9 
X20 0.9 0.9 
X23 0.6 0.6 
X25 0.5871 0.5826 
X26 1.1 1.1 
XN1 0.7 0.7 
XN4 0.7 0.7 
XN9 0.6 0.6 
XN10 0.6 0.6 
XN11 0.9 0.9 

 
6. COMMERCIALIZATION PLAN 
With successful applications of I-RBDO, the Iowa team 

established a small start-up company RAMDO Solutions, 
LLC to develop a commercial software Reliability Analysis 
& Multidisciplinary Design Optimization (RAMDO).  For 
this purpose, the research software I-RBDO was delivered to 
RAMDO Solutions, LLC.  For commercialization, the 
company was awarded Iowa GAP funding and successfully 
obtained Iowa State LAUNCH Loan in 2014.  In May, 2014, 
the company was awarded an Army SBIR Phase I funding.  
This commercialization of the ARC funded I-RBDO 
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software represents a major technology transfer for the 
benefit of the Army. The success of TARDEC led research 
and development is highlighted by taking a significant multi-
year project like this and demonstrating a full transition of 
the technology to the commercial marketplace.  Since 
RAMDO is a computational software for Multidisciplinary 
RBDO, it will be integrated with PIDO systems.  RAMDO 
Solutions, LLC needs to work major PIDO software 
companies to develop partnership. 
 

Table 9. Reliability Analysis Results Using Ford 44-D 
Benchmark Models 

 

Performance 
Measure 

Variable Screening 
14-D 

Variable Screening 
18-D 

Cost 259.83 244.17 
G1 9.96% 10.00% 
G2 10.11% 10.04% 
G3 0.00% 0.00% 
G4 0.12% 0.09% 
G5 1.93% 1.98% 
G6 10.05% 10.05% 
G7 10.04% 9.91% 
G8 10.03% 9.97% 
G9 9.96% 9.96% 
G10 0.00% 0.00% 
G11 11.23% 11.17% 
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