
UNCLASSIFIED: Distribution Statement A. Approved for Public Release
2014 NDIA GROUND VEHICLE SYSTEMS ENGINEERING & TECHNOLOGY SYMPOSIUM

Modeling & Simulation, Testing and Validation (MSTV) Technical Session
August 12-14, 2014 - Novi, Michigan

Simulation of Microgrid and Mobile Power Transfer System

interaction using Distributed Multiobjective Evolutionary

Algorithms

Andrew G. Dunn
Jeremy B. Mange, PhD
Annette G. Skowronska
David J. Gorsich, PhD

US Army TARDEC
Warren, MI

Vijitashwa Pandey, PhD
Zissimos P. Mourelatos, PhD

Mechanical Engineering Department
Oakland University

Rochester, MI

Abstract

Optimization of a microgrid interacting with mobile power transfer systems is a multiobjective problem that grows to
be computationally expensive as components and fidelity are added to the simulation. In previous work [17] we proposed
an optimization strategy relying on evolutionary computing. With an evolutionary computing approach, seeking a well-
distributed set of solutions on the entire optimal frontier necessitates a large population and frequent evaluation of the
aforementioned simulation. With these challenges, and inspiration from Roy et al. [14] distributed pool architecture, we
propose an architecture for distributed pool evolutionary computing that differs from the Roy et al. design. We use this
strategy with a microgrid and mobile power transfer system simulation to optimize for cost and relaibility. We find that
the distributed approach achieves increased performance in raw system execution time, and in some cases converges faster
than a non distributed version of the same evolutionary strategy.

Introduction

Ground systems are achieving greater levels of electrifi-
cation. Conventional systems such as propulsion, protec-
tion, and communications will likely continue to be pri-
mary stakeholders in the increased capability. However,
integration with external systems that use this capabil-
ity is increasing. How ground systems will support ex-
ternal electrical systems will be an important considera-
tion for design and configured deployment. When ground
systems link with other systems to share power sources
and loads a microgrid is formed. Microgrids by nature
can/will operate without a connection to utility. In some
environments, specifically military, the logistics burden of
less than efficient power allocation becomes significantly
large.

In an earlier publication [17], we presented how ground
systems may be thought of as mobile power transfer sys-
tems that can link together and form major components

of a microgrid. This prior work demonstrated that the
theory of repairable systems could be applied, along with
a minimal set of metrics, to a framework that managed
the interaction of a microgrid and mobile power transfer
systems. We will use the mobile power transfer systems
(MPTS) terminology hereon to generally describe ground
systems with source and load capabilities. The MPTS
were dynamically treated as power loads or sources at
different times, and the overall management of those sys-
tems together became a complex optimization problem
trying to minimize cost and maximize reliability. Simu-
lating a microgrid and MPTS interaction becomes com-
putationally expensive as you add complexity and gran-
ularity to the model.

Our model, discussed in greater detail within, is mul-
tiobjective, and as such there is a need to generate an
optimal frontier of solutions. Evolutionary computation
and, more specifically genetic algorithms, provide for a

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

mechanism to explore a population of solutions that, af-
ter many generations can represent the optimal frontier.
In our prior publication [17], we chose to use the Non-
dominated Sorting Genetic Algorithm (NSGA-II) intro-
duced by Deb and Pratap in [7]. The optimization was
implemented in a single threaded fashion and it became
quickly apparent that increased complexity, or fidelity,
of the model would take a great deal of run-time. As
multiprocessing systems are now ubiquitously available,
we searched for distributed strategies for evolutionary
computing. Several models have been proposed, one in
particular by Roy et al. [14] introduced the concept of
distributed evolutionary computations interacting with a
single population pool. The strategy is described as fo-
cused on network deployment, such as a supercomuput-
ing environment, with measures for fault tolerance and
heterogenity between the instances of the evolutionary
computation(s).

We have implemented an intepretation of the Roy et al.
[14] design. The NSGA-II strategy that was used in our
prior work [17] along with reliability metrics from [12] are
all implemented in a microgrid and mobile power transfer
system simulation. We will:

• Describe prerequisite material on Evolutionary Com-
putation, Multiobjective optimization, and NSGA-II
as to provide context for our pool framework design
choices.

• Describe in detail the ground system with microgrid
simualtion that serves as an evaluation function for
our optimization.

• Describe the proposed distributed pool framework
and draw comparisons between our implementation
and the inspiring work of Deb et al. [8] and Roy et
al. [14].

• Describe results comparing a non-pool NSGA-II im-
plementation to the distributed pool, as well as dif-
ferent pool parameters and effects of scaling

We do not claim any fundamental breakthroughs in
enhancing the efficiency of a particular evolutionary al-
gorithm via reducing the fundamental complexity. How-
ever, through the pairing of existing, efficient evolution-
ary algorithms with a distributed pool framework, we
can realize a reduced need for simulation evaluations and
speedup in computational cost (through distribution).
This approach is most specifically warranted when the
simulation is computationally costly and one does not
have exclusive access to a distributed computing environ-
ment. The speedup, in turn, allows for a more detailed

and realistic model to bring the results of the simulations
closer to real-world phenomena.

Evolutionary Computation

The origins of evolutionary computation can be traced
as far back as the 1950s ([3], [2]), with a increasing in-
terest through the 1970s ([10], Rechenberg [13]). At first
there were limitations in both methodology and available
computing power, however as these limitations waned, in-
terest in evolutionary computing increased. Evolutionary
computation mimics the process of natural evolution, the
driving process for the emergence of complex and well-
adapted organic structures [1]. Put succinctly and with
strong simplification, evolution is the result of interplay
between creation of new genetic information and its evalu-
ation and selection [1]. The better an individual performs
under evaluation and selection, the greater the chance
for the individual to live longer and generate offspring.
Over the course of evolution, this leads to a penetration
of the population with genetic information of individuals
of above-average evaluation [1]. Evolutionary computing
can be thought of more as a problem solving strategy
than a one-size-fits-all tool [1], [11]. In keeping with the
biological analog, and to support processes such as sur-
vival and reproduction, we need to define the concept of
the individual.

An individual is a representation of a candidate solu-
tion, which in turn is a set of properties that are rep-
resentations of the solution domain. These properties
are selected in a problem-specific manner and are typi-
cally called the genotype of the individual. The genotype
properties, in keeping with the biological analog, can be
mutated or altered by evolutionary operators. As two or
more individuals need to be compared to determine which
is “better”, it is necessary to also have some measure of
“goodness”, which in evolutionary computation literature
is known as the fitness of an individual [1]. The fitness is a
measure of how well one candidate solution solves a prob-
lem. The fitness function maps the individuals genotype
(solution space) into a corresponding phenotype (fitness
space). In evolutionary computing the fitness function is
the representation of the desired problem to be solved,
in this context it is a simulation of mobile power transfer
systems and microgrid interaction (discussed in the next
section).

Once the representation is chosen, the evolutionary op-
erators must be specified. These operators define the
mechanisms of selection, variation, and replacement [1].
Selection determines how candidate solutions are chosen
to participate in the creation of new candidate solutions

UNCLASSIFIED 2 of 11 Distribution Statement A.

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

[9]. Variation determines how new candidate solutions
are created from existing candidate solutions, and how
existing candidate solutions are modified to explore new
areas of the solution space [9]. Replacement determines
how candidate solutions are chosen to remain viable for
selection [9].

It is helpful to view the execution of a genetic algo-
rithm as a two stage process. It starts with the current
population. Selection is applied to the current population
to create an intermediate population. Then variation and
replacement are applied to the intermediate population to
create the next population. The process of going from the
current population to the next population constitutes one
generation in the execution of an evolutionary computa-
tion [19]. Below we use the aforementioned terminology
to defined a general evolutionary computation, where Pt

represents the population at time t.

Algorithm 1 Evolutionary Computation

1: t = 0
2: Initialize(Pt)
3: Evaluate(Pt)
4: while termination condition not met do
5: parents = Selection(Pt)
6: offspring = Variation(Pt)
7: Evaluate(offspring)
8: Pt+1 = Replacement(Pt ∪ offspring)
9: t += 1

10: end while

An important concept to grasp is that the number of
function evaluations is critical when comparing two evo-
lutionary computation algorithms [9]. A function eval-
uation is simply one mapping of individual genotype to
fitness/phenotype. The measure of fitness evaluations is
the typically processing unit in evolutionary computing
literature when discussing the efficiencies of a particular
algorithm, for example [7].

In our terminology above we worked to define concepts
of population, individual, fitness and evolutionary oper-
ators without discussion of termination criteria. In our
example algorithm the generational process is repeated
until a termination condition has been reached. Termina-
tion can be defined in a problem specific manner, however
there are many common termination conditions such as;
discovery of a candidate solution that satisfies minimum
criteria, number of function evaluations, and number of
generations.

Bäck et al. [1] states the majority of current evolution-
ary computation implementations come from three differ-

ent, but strongly related, approaches: genetic algorithms,
evolutionary programming, and evolutionary strategies.
We will focus on genetic algorithms with NSGA-II, how-
ever each of the mentioned approaches can be imple-
mented with variations of representation and the evolu-
tionary operators generally introduced above. We will
use these conceptual building blocks to describe the used
evolutionary algorithm and distributed pool framework.

With genetic algorithms in general it is desired to have
the fitness function evaluated relatively fast. As genetic
algorithms work with a population of candidate solutions,
there is an incurred cost for evaluating each member of
the population. Furthermore, the population is replaced
(all or in part) on a generational basis, meaning you incur
this cost at a potentially high frequency [19]. The speed
in which our simulation can be evaluated, or the nature
of how we distribute the evaluation becomes very impor-
tant for bounding what we’re able to explore in terms of
simulation or candidate solution granularity.

Simulation of MPTS with Microgrid

The modeling and simulation portion of this work in-
volves a modeled microgrid and multiple mobile power
transfer systems, with simulated operation over a spec-
ified timeframe. Four main categories of components
are included: generators (power sources), loads (power
draws, both static and dynamic), contactors (control
switches for the power circuits for generators and loads),
and vehicles, which can dynamically act as either power
sources or power loads, depending on their state and the
state of the microgrid as a whole. The reliability of each
instance of each type of these components is characterized
by a mean time between failure (MTBF) value, and sim-
ulations involve Monte Carlo runs over the specified time
period with dynamic control logic and stochastic failures
introduced based on the MTBF values estimated from
a previous physical implementation of the system being
modeled (discussed in [17]).

The control of the microgrid, and particularly of the
addition or removal of vehicle systems as either power
sources or loads, is modeled in terms of four control vari-
ables:

• Source shed - the point above which the relative
power must rise before a power source is removed

• Source replace - the point below which the relative
power must drop before an available power source is
added

• Load shed - the point above which the relative
power must rise before a power load will be removed

UNCLASSIFIED 3 of 11 Distribution Statement A.

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

• Load replace - the point below which the relative
power must drop before an available power load will
be added

Figure 1: MFFP output for a limited range of two input
values

These simulations track three main parameters to char-
acterize the resultant behavior over the simulated time
period: cost, number of failures, and minimum
failure-free period (MFFP) [12]. In this context, a
failure is defined as an instance in which a power load
did not receive the amount of power it required, either
because it was not available or because the dynamic con-
trol strategy did not provide it. The dynamic costs as-
sociated with the operation of different generators at dif-
ferent supplied power loads are also estimated based on
the previous work with this system ([17]). Since these
simulations are Monte Carlo simulations, for a particular
scenario, multiple simulations are run, and the resulting
values are averaged for a more accurate set of character-
istic outputs.

Within the simulation, the interactions between the dy-
namic control strategy parameters and the output values
are very complex. For instance, the figure 1 on page 4
shows the output values for MFFP for a limited set of
input values for just two of the dynamic control param-
eter variables (with the other two held constant). Even
this very limited slice of the domain search space reveals
a complex interaction. This complexity is what necessi-
tates an optimization strategy to successfully find optimal
dynamic control strategy parameters for a given model.

These inputs and outputs, then, define the optimiza-
tion task for the microgrid simulation: find optimal dy-
namic control parameters that minimize cost and number
of failures and maximize MFFP. Because there are mul-
tiple outputs, this is a multi-objective optimization task,
the ultimate result of which is a Pareto frontier with the
number of dimensions equal to the number of objectives;

in this case, three.

Multiple Objectives & NSGA-II

For our simulation, as an optimization problem, there
does not exist a single solution (genotype) that simultane-
ously optimizes each objective (phenotype). In this case
the objective functions (simulation) are said to be con-
flicting and there exists a set of Pareto optimal solutions.
A solution is called non-dominated or Pareto optimal if
none of the objective functions can be improved in value
without degrading some of the other objective values.

The first application of evolutionary computation to
multiobjective optimization was Schaffer’s Vector Evalu-
ated Genetic Algorithm (VEGA) [16], [4], [9]. Since then,
evolutionary multiobjective optimization has been an in-
credibly active area of research [4]. This is due to the nat-
ural union of evolutionary computing and multiobjective
optimization, which stems from the fact that evolutionary
computing algorithms are generally very good optimizers
and they work simultaneously on a set of candidate so-
lutions [4], [9]. As multiobjective optimization problems
require a set of solutions (Pareto Optimal), rather than a
single solution, the final population from an evolutionary
computation algorithm provides just such a set [9].

There are novel ways to implement evolutionary op-
erators on multiobjective Individuals. With single ob-
jective optimization the concept of “better” can be ex-
pressed simply as an inequality. Where as multiobjective
evolutionary operators have, by necessity, more complex
strategies for defining “better”. Our prior optimization
[17] was using an implementation of the NSGA-II algo-
rithm introduced by Deb and Pratap in [7]. The novel
advancement by Deb and Patap was to use a newly pro-
posed fast non-dominated sort, fast crowd distance esti-
mation, and simple crowd comparison which resulted in a
complexity improvment from O(MN3) to O(MN2) and
the elimination of a tuning parameter. Using the ter-
minology introduced in the Evolution Computing section
above we have the context to understand the novel as-
pects of NSGA-II.

In the Algorithm on page 3 we described Evolutionary
Computation in general. In literature this is typically re-
ferred to as the canonical simple genetic algorithm [9],
[18]. The NSGA-II algorithm can primarily be though
of as an implementation of a replacement strategy that
is called on line 9. In the following algorithm we will
make sure of a static function notation that operates on
data within the context, below there is a description cor-
responding to the notation used in [7].

Where Sort corresponds to fast non-dominated sort,

UNCLASSIFIED 4 of 11 Distribution Statement A.

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Algorithm 2 NSGA-II as EC Replacement

Require: Pt, offspring
1: combined = Pt ∪ offspring
2: fronts = Sort(combined)
3: for front in fronts do
4: Distance(front)
5: survivors = survivors + front
6: end for
7: Comparison(survivors)
8: return survivors(0 to Length(Pt))

Distance corresponds to fast crowd distance estimation,
and Comparison corresponds tosimple crowd comparison,
we describe simplified implementation details from [7]:

• Sort - (Line 2) Bins the Individuals into “fronts”
based on how the number of other Individuals are
dominated by the solution.

• Distance - (Line 4) assigns a distance metric to each
Individual based on a composite “distance” for each
objective fitness

• Comparison - (Line 7) Provides a mechanism for
comparing Individuals using both rank and distance
to achieve a more uniformly spread Pareto frontier

We mention the details of this strategy within the con-
text of the Replacement notion mentioned earlier due to
its use in the distributed pool architecture. It is impor-
tant to realize that this replacement strategy is given the
parents and offspring, and returns a set of Individuals to
match the population size of the parents. As the prior
text and algorithm is a significant simplification of the
publication [7], we would encourage independent investi-
gation (specifically the diagrams within [7]).

Distributed Evolutionary Algorithms

The act of optimization requires many evaluations of
candidate solutions and comparisons of their assigned fit-
ness on a potentially grand scale. Deb et al. [8], [6] dicuss
how the number of objectives significantly influences the
dimension of the true Pareto optimial front. We consider
that was we introduce objectives to our simulation, there
will be increased burdon to explore the Pareto frontier.

Furthermore Deb et al. goes on to state that when the
task is to find a well-distributed set of solutions on the
entire Pareto optimal front, the population size of the
evolutionary computation is necessarily large [8]. These
challenges led to proposed models for distributed evolu-
tionary computation. In [8] there is a review of three

models of distributed computing introduced by [5], along
with new suggested methods for distributing multiobjec-
tive evolutionary computation.

One of the three models is interesting in our case. The
master-slave model is a very simple form of adding dis-
tribution to evolutionary computing by having a single
master evolutionary algorithm with many slave proces-
sors that are used exclusively for evaluation. This be-
came a baseline objective for our study, to distribute the
execution of the evaluation function across multiple pro-
cesses or networked nodes. During implementation we
searched for other strategies that may provide a benefit
greater than the simple master-slave model.

Roy et al. in [14] and [15] proposes a novel approach to
distribution where the population pool is shared amongst
several autonomous evolutionary computations. In the
pool architecture there are multiple workers, each running
a copy of the evolutionary computation. For Roy’s imple-
mentation the protocol was designed to support hetero-
geneity between worker capabilities and potential worker
failure modes. As this work served to be significant in-
spiration for our approach we will re-convey the design in
detail to later draw comparisons. For consistency we will
use the term worker instead of the original processor.

There are p ≥ 1 participating workers. Each
participating worker runs a sequential evolution-
ary computation with a population of size u.
There is a common pool P of individuals of size
n > u. Each individual in the pool is stored in
a shared data structure, which can be accessed
concurrently by multiple processors. In more
detail, P is partitioned into P1, . . . ,Pp. Each
partition Pk(1 ≤ k ≤ p) is a collection of single-
writer (written by processor k) shared variables
where each shared variable holds an individual
of the evolutionary computation.

There are two basic operations performed on
P by any participating processor: ReadIn and
WriteOut. The ReadIn operations performed
on P by processor k picks u individuals uni-
formly at random from P and copies them into
k’s local data structure Pk. The WriteOut oper-
ation performed on P by processor k writes back
the individuals in Pk to the portion of P that is
allotted to k. Here, in order to ensure conver-
gence of the evolutionary computation, an ele-
ment of elitism is applied, i.e. the individual i
in Pk replaces an individual j in Pk only if i is
fitter than j.

UNCLASSIFIED 5 of 11 Distribution Statement A.

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

In [14] the worker is only running a single generation
in between ReadIn and WriteOut. Our next section will
outline our proposed framework in detail and enumerate
differences in design choice.

Distributed Pool Architecure

Using the work of Deb et al. [7], [8] and Roy et al.
[14] as inspiration we constructed a network distributed
implementation of the NSGA-II evolutionary algorithm.
We defined our framework in terms of Pool and Workers,
where the is a single Pool and n participating Workers.

Although we use the same basic ReadIn procedure de-
scribed in Roy et al. [14], there are a few distinctions
between their approach and ours. First, our pool P is
not partitioned into the P, ...,Pp sub-structures. Rather,
when the u individuals are uniformly randomly chosen
during the ReadIn (or, in our terminology, Pick) pro-
cedure, the indices in P corresponding to these chosen
individuals are recorded as k1, k2, ..., ku. Then, during
the WriteOut (or, in our terminology, Replace) opera-
tion, the new individuals produced by the genetic oper-
ations run by processor k are re-written to these same
k1, k2, ..., ku locations within P, utilizing the NSGA-II
replacement strategy.

We implemented a “credit” based protocol between
the Pool and Workers where, upon request, a Worker
is granted “credit” to perform a task. Worker nodes
connect to the pool through a request/reply messaging
scheme. The request/reply communication is blocking
for both the Worker and the Pool. This ensures that the
Worker process will block upon placing a request into the
Pool, waiting for a reply. The protocol shared between
Worker and Pool is based on the following messages:

• init - The initial connection of a Worker to the Pool.
At this time the Worker will have no task payload
to deliver. At this time the Pool will perform a Pick
and hand back to the worker a set of Individuals
as well as their respective population indices to be
operated upon.

• task - The Worker delivers back a task payload to
the Pool, this is comprised of the evolved population
with the respective indicies. From this the Pool ex-
ecutes a Replace, then a subsequent Pick to hand
the Worke another task.

• termination - At each time a Worker submits a
task to the Pool, the internal termination criteria
is checked. If met, the Pool returns a termination
message to the Worker (instead of a task payload),
then waits for a period of time for potential Workers

to deliver the termination news (however eventually
terminating itself, stranding workers who have been
away for too long)

Figure 2: Messaging Topology (Utilizing ØMQ)

The two functions of the Pool are:

• Pick(size) - Selects a parametrized number of Indi-
viduals from the Pool population. This selection is
done in a uniformly random fashion. The response
message is both the instance of the Individuals se-
lected, and their respective indices.

• Replace(indices, offspring) - Builds up the current
instances of the parent population from the supplied
indices, then does an NSGA-II style Replacement be-
tween the parents (existing Pool Individuals) and the
offspring.

Above we mention only one implementation of Pick
and Replace. The Roy implementation chose to use a
uniformly random selection for Pick, which we also im-
plement. There are many potential implementations for
Replace that will affect the Pool population. For exam-
ple:

• simple worker domination strategy - when the textit-
Worker submits its evolved population to the textit-
Pool, the evolved population always dominates the
picked indices (No comparison is made).

• partitioned worker domination strategy - mimics the
design by [14] by partitioning the Pool up initially
by the expected amount of Workers. When the
Worker submits its evolved population to the pool it
is copied over the partition allocated for the respec-
tive Worker.

• NSGA-II replacement strategy - uses an NSGA-II
style of replacement using the indices of the Pool
population as parents and the Worker evolved pop-
ulation as offspring.

UNCLASSIFIED 6 of 11 Distribution Statement A.

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

For our implementation we chose to use an NSGA-II
replacement strategy to facilitate dynamic allocation of
participating Workers with the Pool instance. With a
partitioned worker domination strategy the Pool would
need a more complex protocol for interaction, or have a
fixed set of initial participating Workers.

The termination criteria for the Pool currently are lim-
ited to number of evaluations or number of generations.
The number of generations is a fractional calculation due
to the Worker being limited through the Pick parameter
to a subset of the overall population.

Just as in the work of Roy et al. [14], we are able to
be fault tolerant to Worker failure. The Pool has no ex-
pectations that a Worker will return from being assigned
a task. Failure of a Worker in this sense is seamlessly
tolerated as the Pool only increments and checks the ter-
mination criteria when a Worker returns a completed
task. This would allows for the Pool to embrace hetero-
geneous (speed/physical architecture) Workers, without
need to manage synchronization of any kind. Further-
more, the “credit” based protocol provides flexibility for
changing the number of Workers during the simulation.
This would be particularly useful in a time-shared en-
vironment where computational resources may become
more or less plentiful during the entirety of the simula-
tion.

In a time-shared supercomputing environment one
would typically rely on message passing through the MPI
standard, we choose to use ØMQ (ZeroMQ) asynchronous
messaging library due to its adoption in modern Linux
distributions and extensive use in elastic hardware en-
vironments. Through ØMQ and the Python language
bindings we are able to serialize python objects directly,
which is how we’re passing all messages within the sys-
tem. In our implementation we currently have the evo-
lutionary algorithm declared within the Worker object,
however, pending the complexity of its serialization we
ideally would like to implement the evolutionary algo-
rithm at the Pool level, which reduces the Worker imple-
mentation complexity significantly. This technique would
also facilitate tuning of the individual evolutionary algo-
rithm parameters dynamically during a simulation.

Finally, we want to introduce the available configura-
tion parameters for both the Pool and Worker as they
are used to tune performance in the following section:

Pool single instance
uri network location
population Pool population size
pick Worker Pick parameter
termination # of evaluations or generations
Worker n instances
uri network location of Pool
termination # of evaluations or generations

Approach & Results

We implemented the distributed pool architecture
along with the microgrid and MPTS simulation, seeking
to optimize for cost, number of failures, and minimum
failure-free period (MFFP). We used an implementation
of NSGA-II that, aside from the replacement strategy
outlined above, used a tournament style selection along
with mutation and crossover. We established a reference
implementation of the Non Pool NSGA-II that was single
threaded and, optionally, multi-threaded.

Overall, the distributed optimization algorithm showed
vast improvement over the previous algorithm in terms
of simulation speed, and some additional improvement in
terms of optimal parameter convergence, both of which
are explored in detail in the following sections. These
improvements are of significant importance for future re-
search in this area, both for the actual calculation of dy-
namic power control parameters for systems of this type,
and for detailed modeling and simulation of more complex
microgrid systems, including the types of multi-context
vehicle-grid interactions modeled by the current simula-
tion.

Execution Speed

The most immediate improvement of the distributed
algorithm described in this paper is the vastly lower ex-
ecution speed for equivalent simulation work. This im-
provement holds when comparing the numbers of simu-
lations run or the time required to reach a specific value
for any of the output objectives. Figure 3 shows a typi-
cal example of this phenomenon, with the time required
to reach various minimum levels of cost shown, compar-
ing the non-distributed algorithm to the distributed pool
algorithm. The distributed pool speedup is shown with
only 8 processors, however, the flexibility in the design
and network protocol allows for an arbitrary number of
processors and thus even greater speedups.

This improvement is perhaps the most significant for
the overall objectives of this project, because the vast
speed improvement allows for more complex and granular
simulations of both the microgrid environment and the

UNCLASSIFIED 7 of 11 Distribution Statement A.

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

mobile power transfer systems of interest. These more
advanced models and simulations were some of the main
motivating goals of this work.

Figure 3: 5000 Evaluations, System time with Population
minimum cost

Figure 4: 5000 Evaluations, all multiprocessor implementa-
tions

We have fixed the population size to be 100 and the
termination criteria to be 5000 evaluations for both the
distributed pool algorithm and the non distributed al-
gorithm. Both Pool(s) are configured with a Pick size
of 5, where in one we use a have the Worker process 5
generations, and the other we have the Worker process
20 generations. Below we show the same graph, however
we’ve removed the non multi-threaded results to display
more clearly the evaluation time.

The initial assignment of values for the population can-
didate selection is random, however we have seeded the
pseudo random number generator with the same key for
each of the four compared simulations. We were excited
to realize that the execution time of the pool, on a very
low latency network, was less than the multiprocessing
counterpart. This excitement is tempered with knowl-
edge that any meta-heuristic type search algorithm that
has random components in its underlying operation needs
statistics based performance comparison before difinitive
claims can be made.

Convergence

The rate of optimization algorithm convergence is typ-
ically measured by the number of objective function eval-
uations necessary to reach a particular value for one or
many of the outputs (objectives). As mentioned previ-
ously, for this microgrid control optimization task, an
evaluation of the objective function involves specifying
dynamic control strategy parameters, performing many
Monte Carlo simulation runs over a specified time period,
and averaging the results of these runs for final values of
cost, number of failures, and minimum free failure period
(MFFP).

Although the results in this area are somewhat com-
plex because of the many possible parameter sets for the
distributed pool itself, in most cases the new distributed
algorithm showed increased convergence speed for all of
the outputs with some set or sets of parameters. The fig-
ures below show the results of a comparison between the
original NSGA-II algorithm and the new distributed pool
algorithm (with various parameter sets) with respect to
each of the three outputs.

Figure 5: Comparison of algorithms with respect to cost

UNCLASSIFIED 8 of 11 Distribution Statement A.

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Figure 5 displays these results with respect to cost,
showing the current-best value for each algorithm as the
number of objective function evaluations increases.

Figure 6: Comparison of algorithms with respect to number
of failures

Figure 6 displays these results with respect to number
of failures, again showing the current-best value for each
algorithm as the number of objective function evaluations
increases.

Figure 7: Comparison of algorithms with respect to MFFP

Figure 7 displays these results with respect to MFFP,
once again showing the current-best value for each algo-
rithm as the number of objective function evaluations in-
creases. Note that because MFFP is a maximization pa-
rameter, for the sake of consistency, the inverse of MFFP

is minimized. In this parameter the most significant con-
vergence advantage can be seen, as both of the displayed
distributed pool algorithms calculated better MFFP val-
ues for almost all numbers of evaluations. This, to re-
emphasize, is in addition to the vast speed gains already
discussed.

Pareto Frontier

Figure 8 shows an output Pareto frontier for two of the
objectives, number of failures and cost. Two of the points,
p1 and p2, are highlighted on the figure to illustrate the
trade-off inherent in the Pareto frontier, and to clarify
how the optimization algorithm and results thereof are
tied back to the microgrid simulation.

Figure 8: Pareto Frontier

p1 has a total cost of 807602 with 20.2419 associ-
ated failures, whereas p2 has a total cost of 554386 with
375.161 associated failures. The tradeoff between these is
straightforward, and Pareto frontiers are generally used
by decision-makers who asses the relative risks and val-
ues of each objective. In this case, if deciding between
these two specific options, a decision-maker might choose
whether cost or number failures was a more significant
objective, and choose p2 or p1, respectively. Once this se-
lection was made on the basis of the objectives involved,
the dynamic control parameters that produced those ob-
jective values could be used for the control of the actual
microgrid.

Note that there are actually three output objective pa-
rameters involved in this simulation. However, for the
sake of simplicity of demonstration, only two are shown
in the figure. The actual tradeoff analysis for the real-life
problem being modeled would involve all of these objec-

UNCLASSIFIED 9 of 11 Distribution Statement A.

REFERENCES Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

tive aspects.

Conclusions and Future Work

As discussed in the Results section, the selection of
parameters within the distributed pool itself in this dis-
tributed architecture has a significant impact on the re-
sults of the optimization. Although a complete examina-
tion of ideal parameter selection is outside the scope of
this work, it is a future area of research that could yield
even more valuable results.

A key motivation of this research effort was the de-
sire for the ability to simulate more complex microgrid
and mobile power transfer system interactions, as well as
to increase the fidelity and simulated time length. For
this to be possible, a significant increase was necessary
in the speed of the optimization routine. This work has
provided that increase, and paved the way forward for
complex, detailed modeling and simulation of these intri-
cate power systems and control strategies for managing
them.

We plan to implement the distributed pool strategy on
a time-shares supercomputing environment where it will
be possible to investigate a much larger populations size,
hundreds of workers, and collections of multiprocessing
simulations for each worker. Our reported results are cur-
rently based on a limited number of simulations run. We
plan to pursue a much more comprehensive study investi-
gating the Pool parameters and performing a statistically
described benchmark of the results.

Acknowledgement

The work of Aaron Lee Garrett [9] (ECsPy and in-
spyred) and the inspyred community was used for imple-
mentation of the evolutionary algorithm. The ØMQ (Ze-
roMQ) messaging library was used for implementation of
the distributed pool, along with pyzmq python bindings.
Significant inspiration for the distributed pool design has
come from Roy et al. [14].

Disclaimer

The opinions of the authors expressed herein do not
necessarily state or reflect those of the Department of
Defense (DoD), the Department of the Army (DoA), and
shall not be used for advertising or product endorsement
purposes.

References

[1] T Back, Ulrich Hammel, and HP Schwefel. Evolu-
tionary computation: Comments on the history and
current state. Evol. Comput. . . . , (April):3–17, 1997.

[2] George EP Box. Evolutionary operation: A method
for increasing industrial productivity. Applied Statis-
tics, pages 81–101, 1957.

[3] Hans J Bremermann. Optimization through evo-
lution and recombination. Self-organizing systems,
pages 93–106, 1962.

[4] Carlos A Coello Coello. Recent trends in evolu-
tionary multiobjective optimization. In Evolutionary
Multiobjective Optimization, pages 7–32. Springer,
2005.

[5] Carlos A Coello Coello, David A Van Veldhuizen,
and Gary B Lamont. Evolutionary algorithms
for solving multi-objective problems, volume 242.
Springer, 2002.

[6] Kalyanmoy Deb et al. Multi-objective optimization
using evolutionary algorithms, volume 2012. John
Wiley & Sons Chichester, 2001.

[7] Kalyanmoy Deb and Amrit Pratap. A fast and eli-
tist multiobjective genetic algorithm: NSGA-II. . . . ,
IEEE Trans., 6(2):182–197, 2002.

[8] Kalyanmoy Deb, Pawan Zope, and Abhishek Jain.
Distributed computing of pareto-optimal solutions
with evolutionary algorithms. Evol. Multi-criterion
Optim., pages 534–549, 2003.

[9] Aaron Garrett. Neural Enhancement for Multiobjec-
tive Optimization. PhD thesis, Auburn University,
2008.

[10] John H Holland. Outline for a logical theory of
adaptive systems. Journal of the ACM (JACM),
9(3):297–314, 1962.

[11] Zbigniew Michalewicz and David B Fogel. How to
solve it: modern heuristics. Springer, 2004.

[12] Vijitashwa Pandey, Annette G Skowronska, Zissi-
mos P Mourelatos, David Gorsich, and Matthew
Castanier. Reliability and functionality of repairable
systems using a minimal set of metrics: Design
and maintenance of a smart charging microgrid. In
ASME 2013 International Design Engineering Tech-
nical Conferences and Computers and Information

UNCLASSIFIED 10 of 11 Distribution Statement A.

REFERENCES Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

in Engineering Conference. American Society of Me-
chanical Engineers, 2013.

[13] Ingo Rechenberg. Cybernetic solution path of an
experimental problem. 1965.

[14] Gautam Roy, Hyunyoung Lee, Jennifer L Welch,
Yuan Zhao, Vijitashwa Pandey, and Deborah
Thurston. A distributed pool architecture for ge-
netic algorithms. In Evolutionary Computation,
2009. CEC’09. IEEE Congress on, pages 1177–1184.
IEEE, 2009.

[15] Gautam Samarendra N. Roy. A Distributed Pool Ar-
chitecture for Genetic Algorithms. Master’s thesis,
Texas A&M, 2009.

[16] J David Schaffer. Multiple objective optimization
with vector evaluated genetic algorithms. In Pro-
ceedings of the 1st international Conference on Ge-
netic Algorithms, pages 93–100. L. Erlbaum Asso-
ciates Inc., 1985.

[17] Annette Skowronska, David Gorsich, Jeremy Mange,
Andrew G. Dunn, Vijitashwa Pandey, and Zissimos
Mourelatos. Global Strategies for Optimizing the
Reliability and Performance of U.S. Army Mobile
Power Transfer Systems. In NDIA Gr. Veh. Syst.
Eng. Technol. Symp., 2013.

[18] Michael D Vose. The simple genetic algorithm: foun-
dations and theory, volume 12. MIT press, 1999.

[19] Darrell Whitley. A genetic algorithm tutorial. Stat.
Comput., 1994.

UNCLASSIFIED 11 of 11 Distribution Statement A.

