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ABSTRACT

A Model Predictive Control (MPC) LIDAR-based constant speed local obstacle avoidance algorithm
has been implemented on rigid terrain and granular terrain in Chrono to examine the robustness of
this control method. Provided LIDAR data as well as a target location, a vehicle can route itself
around obstacles as it encounters them and arrive at an end goal via an optimal route. Using Chrono, a
multibody physics API, this controller has been tested on a complex multibody physics HMMWV model
representing the plant in this study. A penalty-based DEM approach is used to model contacts on both
rigid ground and granular terrain. We draw conclusions regarding the MPC algorithm performance
based on its ability to navigate the Chrono HMMWV on rigid and granular terrain.

1 INTRODUCTION

Obstacle avoidance is a crucial capability for Au-
tonomous Ground Vehicles (AGVs) of the future.
This refers to a ground vehicle’s ability to sense its
surrounding environment, develop an optimal path
around the obstacles in the environment, gener-
ate optimal control commands to satisfy that path,
and physically navigate around the obstacles safely
and to a desired endpoint. Safety is defined as
avoiding collisions as well as enforcing limitations

on excessive sideslip or tire lift-off. An ideal control
algorithm is one that is capable of pushing a vehi-
cle to its performance limits by using knowledge of
its dynamic capabilities and surrounding environ-
mental conditions, while still enforcing strict safety
requirements. Although previous work has demon-
strated use of Model Predictive Control (MPC)
algorithms for obstacle avoidance on wheeled ve-
hicles, more work is required to test the fidelity
of these algorithms and determine where improve-
ments are needed. One area in which MPC al-



Proceedings of the 2017 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

gorithms have yet to be tested is their ability to
control a wheeled vehicle on granular terrain. Up
to this point, the terrain has been assumed to be
rigid and flat. Performance of MPC algorithms on
deformable terrain raise additional questions. Do
the current most commonly used vehicle models
perform successfully within an MPC algorithm on
deformable terrain? The present work evaluates,
through numerical simulation, the robustness and
validity of an MPC algorithm with different vehicle
models in an environment more similar to what an
off-road military vehicle would experience in com-
bat.

The goal of this paper is to present the results of
this study to understand how model fidelity of the
controller model affects overall performance of the
obstacle avoidance controller. Simulating a vehicle
on granular terrain in such scenarios introduces ad-
ditional challenges related to the sheer number of
necessary particles required to properly model the
desired terrain patch. This challenge has been ad-
dressed by employing a simulation framework for
granular terrain described later in this paper.

The present study has the following three objec-
tives:

1. Study the performance of the MPC Controller
on granular terrain as compared to that on
rigid terrain.

2. Analyze the impact of fidelity of the internal
controller model on speed and performance of
the obstacle avoidance controller.

3. Showcase the potential of controller testing in
a high fidelity virtual test environment with
Chrono to assist with initial control algorithm
development before physical implementation
for vehicular applications.

The remainder of this paper is organized as
follows. In Section 2 we provide overviews of
the MPC-based local obstacle avoidance algorithm
and the Chrono multiphysics package used as the

test environment. In Section 3 we describe the
Chrono::Vehicle HMMWV vehicle model used in
this study as the plant model to be controlled
and our proposed method for simulating a vehicle
driving on deformable terrain over large distances.
Then, the specific MPC LIDAR-based local ob-
stacle avoidance controller used for this study is
presented. We introduce the different simplified,
lower-fidelity analytical vehicle models used in the
MPC algorithm to predict the Chrono vehicle be-
havior. We also provide descriptions of the test
cases considered for this study and a summary
of the metrics used to compare performance of
the various tested combinations. In Section 4 we
present the results of the tests outlined in the pre-
vious section and provide comparisons when the in-
ternal controller vehicle model is varied and when
the terrain is changed from rigid to granular. Sec-
tion 5 wraps up the paper and presents potential
future work based on the results of this study.

2 BACKGROUND

2.1 MPC Based Local Obstacle Avoidance

The concept of MPC is to use an internal model
of the system one desires to control to predict and
optimize future system behavior from the current
system state and inputs [1]. The system behavior
is predicted over some defined finite time horizon
and the optimal control sequence over the predic-
tion horizon is output. The control sequence is
executed for an execution time smaller than the
prediction horizon, and the whole process is re-
peated. The repetition of this process over time
creates a feedback loop which continually controls
the system, pushing it towards an optimal path.

For this study, the system to be controlled is
an AGV. Consider an AGV located in a level en-
vironment without roads or any other structures
to guide its motion and assume the AGV has a
known global target position. Between the target
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Figure 1: Schematic of MPC LIDAR-Based Constant Speed Local Obstacle Avoidance Controller

position and the current vehicle position there may
or may not be obstacles of unknown size. Using the
MPC formulation outlined in [2], the vehicle can
navigate from the current position to the provided
target position while avoiding obstacles as they are
encountered. Obstacle information is assumed to
be unknown a priori and only obtained through
a planar LIDAR sensor. The MPC schematic is
presented in Fig. 1.

The planar LIDAR sensor, mounted at the front
center location of the vehicle, returns the closest
obstacle boundary in all radial directions of the
sensor at an angular resolution ε. The sensor has a
maximum range past which it cannot sense any ob-
stacles. Therefore, if the closest obstacle boundary
is greater than the LIDAR radius RLIDAR, then the
sensor returns RLIDAR. The LIDAR sensor range
is [0◦, 180◦], with 90◦ being the vehicle heading
direction. Since the AGV considered here is driv-
ing along level ground, whether granular or rigid,
a planar LIDAR sensor is sufficient. The sensor
is assumed to have no delay and zero noise and
can therefore instantaneously generate a safe area
polygon assembled from the returned points from
the LIDAR. An overhead view of the AGV encoun-
tering an obstacle and the generated LIDAR safe
area polygon are presented in Fig. 2.

For the purpose of these simulations, the only
outputs of the MPC algorithm are the steering sig-

(a) 3D Visualization of LIDAR Encountering Obstacle

(b) LIDAR Sensed Safe Area

Figure 2: Sample obstacle field and LIDAR output
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nals. As shown in Fig. 1, the MPC algorithm is
made up of the internal controller vehicle model,
the cost function and constraints, and the dynamic
optimizer. The internal controller vehicle model
predicts the future states of the AGV for a given
steering sequence. Herein, the internal controller
vehicle model is varied from test to test between a
2-DOF vehicle model and a 14-DOF vehicle model,
as detailed in further sections. Cost functions and
constraints are used to formulate the optimal con-
trol problem using the equations from the vehicle
model, and the resulting optimal control problem
is solved using dynamic optimization.

Since the ability of finding and executing an op-
timal solution, rather than solution speed, is the
primary focus here, an exhaustive search is used to
find the optimal solution to the problem at hand.
With this method, the steering sequence is dis-
cretized and a finite set of path possibilities are
tested and weighed by a cost function.

2.2 Chrono Multibody Physics Package

The physics modeling and simulation capabilities
are provided by the multiphysics open-source pack-
age Chrono [3]. The core functionality of Chrono
provides support for the modeling, simulation, and
visualization of rigid multibody systems, with ad-
ditional capabilities offered through optional mod-
ules. These modules provide support for additional
classes of problems (e.g., finite element analysis
and fluid-solid interaction), for modeling and simu-
lation of specialized systems (such as ground vehi-
cles and granular dynamics problems), or provide
specialized parallel computing algorithms (multi-
core, GPU, and distributed) for large-scale simu-
lations.

2.2.1 Vehicle Modeling

Built as a Chrono extension module,
Chrono::Vehicle [4] is a C++ middleware li-
brary focused on the modeling, simulation, and

visualization of ground vehicles. Chrono::Vehicle
provides a collection of templates for various
topologies of both wheeled and tracked vehicle
subsystems, as well as support for modeling of
rigid, flexible, and granular terrain, support for
closed-loop and interactive driver models, and
run-time and off-line visualization of simulation
results.

Modeling of vehicle systems is done in a mod-
ular fashion, with a vehicle defined as an assem-
bly of instances of various subsystems (suspen-
sion, steering, driveline, etc.). Flexibility in mod-
eling is provided by adopting a template-based de-
sign. In Chrono::Vehicle, templates are parameter-
ized models that define a particular implementa-
tion of a vehicle subsystem. As such, a template
defines the basic modeling elements (bodies, joints,
force elements), imposes the subsystem topology,
prescribes the design parameters, and implements
the common functionality for a given type of sub-
system (e.g., suspension) particularized to a spe-
cific template (e.g., double wishbone). Finally, an
instantiation of such a template is obtained by
specifying the template parameters (hardpoints,
joint directions, inertial properties, contact mate-
rial properties, etc.) for a concrete vehicle (e.g.,
the HMMWV front suspension).

For wheeled vehicle systems, templates are pro-
vided for the following subsystems: suspension
(double wishbone, reduced double wishbone using
distance constraints, multi-link, solid-axle, McP-
hearson strut, semi-trailing arm); steering (Pitman
arm, rack-and-pinion); driveline (2WD and 4WD
shaft-based using specialized Chrono modeling ele-
ments, simplified kinematic driveline); wheel (sim-
ply a carrier for additional mass and inertia ap-
pended to the suspension’s spindle body); brake
(simple model using a constant torque modulated
by the driver braking input).

In addition, Chrono::Vehicle offers a variety of
tire models and associated templates, ranging from
rigid tires, to empirical and semi-empirical models
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(such as Pacejka and Fiala), to fully deformable
tires modeled with finite elements (using either an
Absolute Nodal Coordinate Formulation or a co-
rotational formulation). Driver inputs (steering,
throttle, and braking) are provided from a driver
subsystem with available options in ChronoVehi-
cle including both open-loop (interactive or data-
driven) and closed-loop (e.g., path-following based
on PID controllers).

2.2.2 Granular Mechanics

In this work, the focus is on modeling and simu-
lating the terrain and the tire-terrain interaction
using high-fidelity, fully-resolved granular dynam-
ics simulations, employing the Discrete element
Method (DEM). Meaningful mobility simulations
require large enough terrain patches and small
enough particle dimensions that result in DEM
problems involving frictional contact with millions
of degrees of freedom.

Unlike continuum-based deformable terrain
modeling approaches, DEM treats all component
particles separately, as distinct entities, by main-
taining and advancing in time their states while
taking into account pair-wise interaction forces due
to frictional contact. Broadly speaking, compu-
tational methods for DEM at this scale can be
categorized into two classes: penalty-based (also
known as a compliant-body approach; denoted
here by DEM-P) and complementarity-based (also
known as a rigid-body approach; denoted here by
DEM-C). While differing in the underlying formu-
lation employed for modeling and generating the
normal and tangential forces at the contact inter-
face, and thus leading to different mathematical
models and different problem sizes, both meth-
ods rely crucially on efficient methods for prox-
imity calculation. This common algorithmic step
provides a complete geometric characterization of
the interaction between neighboring bodies, taking
into account the current system state and specifi-

cation of the contact shapes associated with all
interacting bodies.

Penalty methods begin with a relaxation of the
rigid body assumption [5]. A regularization ap-
proach, DEM-P assumes local body deformation
at the contact point. Employing the finite element
method to characterize this deformation would in-
cur a stiff computational cost. Instead, an ap-
proximation is employed, using information gen-
erated during the collision detection stage of the
solution, and the local body deformation is related
to the depth of inter-penetration between two oth-
erwise rigid contact shapes. In order to apply re-
sults from Hertz contact theory, valid for sphere-
sphere interactions, the contact shapes are further
approximated by their local radius of curvature at
the contact point [6]. This approach yields a gen-
eral methodology for computing the normal and
tangential forces at the contact point. For granu-
lar dynamics via DEM-P, the equations of motion
need not be changed. Indeed, normal and tan-
gential contact forces are treated as any external
forces and directly factored in the momentum bal-
ance. For details on the specific DEM-P implemen-
tation in Chrono, see [7]. In this work, we employed
the DEM-P capabilities in Chrono, leveraging the
multi-core, OpenMP-based parallelization features
offered by the Chrono::Parallel module.

3 TECHNICAL APPROACH AND
METHODOLOGY

3.1 Full-Vehicle Multibody Model

The model to be controlled (the plant) is a full-
vehicle Chrono::Vehicle model of an HMMWV,
which includes multi-body subsystems for the sus-
pensions, steering, driveline, and powertrain, and
is available in the Chrono package.

This vehicle model (see Fig. 3) has a curb weight
of 2, 550 kg. It includes independent front and
rear double wishbone suspensions and a Pitman
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Figure 3: Full-vehicle HMMWV multibody model.

arm steering mechanism. The shock absorber and
coil spring, mounted between the lower control arm
and the chassis, are modeled with Chrono nonlin-
ear force elements and include the effects of bump
stops.

The AWD driveline is modeled using Chrono
shaft elements and includes three power split-
ting elements (a central differential and front/rear
differentials), as well as conical gears connected
through 1-dimensional shaft elements which carry
rotational inertia. The powertrain is also modeled
using 1-dimensional shaft elements and includes
models for a thermal engine specified through
speed-torque maps for power and engine losses, a
torque converter specified via maps for the capac-
ity factor and the torque ratio, and an automatic
transmission gearbox with three forward gears and
a single reverse gear. The connection between
powertrain and driveline is a force-displacement in-
terface at the driveshaft (with torque applied from
the powertrain and angular velocity provided by
the driveline).

For mobility studies on deformable terrain, pro-
vided that the tire inflation pressure is compara-
ble or larger than the average ground pressure,
according to the postulate by Wong [8] the tire
can be considered in a so-called rigid regime. As

Figure 4: Relocating Granular Patch that follows the
vehicle

such, tire deformation can be ignored and the vehi-
cle’s tires modeled using rigid contact shapes. The
HMMWV tire model used here is thus represented
by a cylinder with a radius of 0.47 m (18.5 in) and
a width of 0.254 m (10 in).

3.2 Relocating Granular Patch

Due to the large-scale nature of the simulations
in this study, generating granular particles dis-
tributed across the entire obstacle field is both
computationally exhausting and unreasonable. In-
stead, we adopt a moving-patch approach. Con-
sider an AGV on a large terrain patch of 100 by 100
meters. Since we are primarily interested in the ve-
hicle behavior and performance and not explicitly
in the terrain behavior, we assume only a small
patch of granular terrain underneath and around
the vehicle is significant. This idea promoted the
development of a relocating granular patch which
enables simulations of a vehicle traversing granular
terrain over a large area, without the need to gen-
erate particles everywhere throughout that area.

This mechanism allows a user to generate gran-
ular particles within a specified distance of the ve-
hicle’s CoG. Figure 4 presents the patch of granu-
lar terrain underneath the Chrono HMMWV that
moves with the vehicel. The particles are con-
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tained within four rigid walls to prevent them from
escaping the desired terrain area. As the vehi-
cle moves across the terrain, this patch maintains
granular material underneath the vehicle by con-
sistently relocating particles that are too far away
from it. When the vehicle location comes within
a certain predefined distance of any of the walls,
a band of particles from the opposite end of the
granular patch are relocated past the closest wall
and all of the walls are shifted in that direction.
Each of these relocation steps keeps the vehicle on
top of granular terrain at all times. Depending
on the vehicle, this granular patch can be resized
for both computational efficiency and to guarantee
the vehicle maintains a reasonable distance from
the walls to prevent any boundary effects. This
newly developed method of simulating granular
terrain for AGV’s is omnidirectional in the ground
plane, allowing the vehicle to move in any direc-
tion while the terrain patch relocates and responds
to that movement, thus enabling simulations over
arbitrarily large areas.

For our simulations, the granular patch was
maintained at a size of roughly 6.6 by 6.6 meters.
This number was assigned as two times the largest
dimension of the vehicle. The dimensions of the
patch are not constant, however, since the patch
expands in the direction of relocation by two times
the largest particle radius every time the advanc-
ing wall is shifted. This is done in order to avoid
particle overlap, since the relocated particles are
moved to a position that is shifted one largest par-
ticle radius ahead of the particles adjacent to the
advancing wall. After relocation, the walls of the
granular patch are given a recovery velocity such
that the granular patch regains its original dimen-
sions in 0.1 seconds. This recovery time should be
small relative to the duration of the simulations,
and in general it will also depend on the velocity
of the vehicle, since the granular patch should com-
pletely recover its dimensions between subsequent
relocations.

Within the granular patch, the granular terrain
was modeled by 55, 931 uniform spherical particles,
with a micro-scale inter-particle sliding friction co-
efficient of µ = 0.8, and particle diameter of 0.1 m.
Previous studies [9] have shown that a randomly
packed assembly of as few as 3, 000 - 30, 000 uni-
form spheres will exhibit macro-scale bulk granular
material yield behavior (due to inter-particle slid-
ing) that closely matches the Lade-Duncan yield
surface, which is a well-established yield criterion
in the field of geomechanics, where the macro-scale
friction angle φ for the bulk granular material can
be determined as a function of the inter-particle
friction coefficient µ.

Referring to Fig. 10 of [9], a randomly packed
assembly of uniform spheres with an inter-particle
friction coefficient of µ = 0.8 will exhibit macro-
scale yield behavior corresponding to a bulk gran-
ular material with a macro-scale friction angle be-
tween roughly 35◦ ≤ φ ≤ 40◦ if particle rotation is
allowed (6 DOF particles), or with a macro-scale
friction angle between roughly 65◦ ≤ φ ≤ 70◦ if
particle rotation is prohibited (3 DOF particles).
Since the granular patch used in our simulations
contains more than 50, 000 uniform spheres, we
can reliably conclude that it is accurately mod-
eling the yield behavior of a true granular mate-
rial on the macro-scale: either with a macro-scale
friction angle of 35◦ − 40◦ if particle rotation is
allowed, which is typical of a wide range of dry
natural and crushed sands [10]; or with a macro-
scale friction angle of 65◦− 70◦ if particle rotation
is prohibited, which is typical of crushed or frag-
mented rock, such as railway track ballast [11].

We note that in the case of the HMMWV, the
vehicle tire width is equal to only approximately
2.5 particle diameters in the granular patch. This
is less than ideal. However, a more suited value of
10 particle diameters per tire width would increase
the number of particles in the granular patch to
more than 3 million, which would result in pro-
hibitively slow simulations, particularly for events
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corresponding to physical time durations on the
order of 10 seconds or more.

3.3 MPC LIDAR-Based Local Obstacle
Avoidance

The MPC controller as formulated in [2] is used
for this study. The cost function and constraints
need to be specified to avoid collisions with obsta-
cles and guarantee vehicle dynamical safety. The
optimal control problem solved at each MPC time
step consists of the following set of equations:

J = sT + wd (1)

ξ̇ = v [ξ (t) , ζ (t)] (2)

ξ (0) = ξ0 (3)

S̃ [x (t) , y (t)] ≤ 0 (4)

|δf (t)| ≤ δ̃f,max (U0) (5)

|ςf (t)| ≤ ςf,max (6)

t ∈ [0, TP ] . (7)

Equation (1) defines the cost function for this
optimal control problem. This equation is a soft
requirement which defines how the separate path
possibilities are weighed against each other and
how to determine which path is actually optimal.
The cost function is comprised of two terms de-
fined as:

sT =

√
[xG − x (TP )]2 + [yG − y (TP )]2 (8)

d =

TG∫
0

|ς (t)| dt . (9)

Here, sT seeks to minimize the distance between
the prediction end-location and the target posi-
tion. A prediction path that guides the vehi-
cle towards the closest location to the target will
have the smaller sT term. The second term, d,
aims to minimize the change in steering angle so

that smoother, straighter paths are preferred over
windy paths. A weighting factor w is used to scale
the influence of d in the total cost.

Equations (2-7) are the constraints for this op-
timal control problem and represent hard require-
ments for vehicle safety and collision avoidance.
Any paths that violate these constraints are not
considered safe paths and are eliminated as po-
tential options in this prediction window. Equa-
tion (2) defines a set of differential equations that
describe the internal controller vehicle model, with
the initial conditions of Eq. (3).

Equation (4) defines a safe area polygon, con-
structed from LIDAR data and including an addi-
tional safety buffer to account for vehicle size and
to prevent collisions of the vehicle corners. All
points along paths found from Eqs. (2)-(3) must
fall inside this safe area polygon.

Equation (5) imposes a maximum limit on the
steering angle, based on vehicle speed. This value
is obtained from a lookup table which can be gen-
erated either experimentally or from simulation.
Equation (6) imposes a maximum limit on steer-
ing rate. Equation (7) defines the time limits over
which this optimal control problem is solved.

As noted above, Eq. (2) refers to an analyti-
cal vehicle model expressed as a set of differen-
tial equations which allow the controller to predict
vehicle performance within the prediction hori-
zon. The accuracy of the internal vehicle controller
model should directly influence the driven vehicle’s
controlled performance. If the internal vehicle con-
troller model poorly predicts a vehicle’s response
to inputs from the driver or the environment, then
these deficiencies will be witnessed when attempt-
ing to control the driven vehicle and result in in-
correct trajectories that may lead to collisions. On
the other hand, a highly complex internal vehi-
cle controller model may provide accurate trajec-
tory and vehicle response predictions, but with an
unacceptable time required to solve the optimal
control problem. An ideal controller should not
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only accurately predict vehicle responses, but also
do it quickly enough to insure vehicle safety. In
this study we consider two separate internal con-
troller vehicle models to approximate the dynamics
of the driven Chrono HMMWV vehicle (described
in Section 3.1). The first controller uses a sim-
ple 2-DOF vehicle model to predict the trajectory
for different series of steering sequences and is pre-
sented in detail in Section 3.4.1. The second con-
troller, described in Section 3.4.2, uses a more com-
plex 14-DOF vehicle model. These two models are
compared in their ability to successfully navigate
the driven HMMWV vehicle through two obsta-
cle fields, on rigid flat terrain and then granular
terrain.

As mentioned previously, exhaustive search
space [2] is used to solve the optimal control prob-
lem at each time step. The steering space is dis-
cretized into five possible steering angles, while the
prediction horizon is split into four intervals. This
results in 625 different steering sequence possibil-
ities and therefore 625 different path possibilities
that are weighed by the controller to determine
the optimal steering sequence and resulting for-
ward path. A sample visualization of the differ-
ent predicted trajectories from the 2-DOF model
is presented in Fig. 5 where, for visualization pur-
poses, only three steering angles over three inter-
vals were considered. A point in polygon algorithm
is used to determine which trajectories remain in-
side of the safe area polygon visualized in Fig. 2
and therefore should be compared to the other pos-
sibilities using Eq. (1).

3.4 Internal Controller Vehicle Models

The vehicle models embedded in the MPC are sim-
plifications of the full, multi-body based, Chrono
wheeled vehicle model which is being controlled.
We consider two such models, providing different
levels of fidelity, as described below.

Figure 5: Potential Paths predicted by 2-DOF Inter-
nal Vehicle Controller Model

3.4.1 2-DOF Vehicle Model

The standard vehicle model used in recently de-
veloped MPC obstacle avoidance algorithms such
as [2] is the 2-DOF yaw plane vehicle model. These
models normally either assume constant cornering
stiffness or the nonlinear Pacejka Magic Formula
Tire Model [12] to predict the ground tire inter-
action forces. For this study, the Pacejka Magic
Formula is used to predict tire forces in the vehicle
models.

A visual representation of the 2-DOF yaw plane
vehicle model can be found in Fig. 6. The 2-DOF
model is described by the following first-order or-
dinary differential equations:

V̇ = (Fy,f + Fy,r) /M − U0r (10)

ṙ = (Fy,f − Fy,r) /Izz (11)

ψ̇ = r (12)

ẋ = U0 cosψ − (V + Lfr) sinψ (13)

ẏ = U0 sinψ + (V + Lfr) cosψ , (14)

where Fy,f and Fy,r are the lateral tire forces at
the front and rear axles, respectively. U0 and V
are the longitudinal speed and lateral speed of the
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Figure 6: 2-DOF Vehicle Model

vehicle in the vehicle’s coordinate frame. ψ is the
yaw angle and r is the yaw rate. (x, y) represent
the front center location of the vehicle expressed
in global coordinates. M is vehicle mass, Izz is the
moment of inertia of the vehicle, Lf is the distance
from the front axle to the vehicle CoG, and Lr

is the distance from the rear axle to the vehicle
CoG. For this study, the model is constrained to
a constant longitudinal speed. Then the planar
3-DOF body with one constraint results in the 2-
DOF model used for this study.

3.4.2 14-DOF Vehicle Model

A 14-DOF model is often used in studies such as
these to test the obstacle avoidance controller with
a higher fidelity vehicle model [2, 13]. A bene-
fit of using the 14-DOF in the controller is the
model’s ability to predict tire liftoff and account
for dynamic effects from suspension systems. For
this paper, it is appropriate to also compare per-
formance of the local obstacle avoidance controller
running an internal 14-DOF on rigid terrain versus
granular terrain.

The 14-DOF vehicle model consists of one
sprung mass connected above four unsprung

masses [14]. The sprung mass is allowed to roll,
pitch, and yaw while also displacing laterally, ver-
tically, and longitudinally. This sprung mass con-
tributes six DOF to the model. Each of the four
wheels are allowed to bounce vertically and ro-
tate about the wheel horizontal axis. The front
two wheels are also free to steer. Each wheel then
contributes two DOF to the fourteen DOF model.
The model is constrained at a constant longitudi-
nal speed of 8.1 m/s. The equations used for this
model, as well as their derivation can be found
in [14].

3.5 Evaluation Metrics

Five evaluation metrics will be used to compare
one test performance to the other. First, all test
runs will be compared based on the time to reach
the target, Ttarget to determine which controller
leads the vehicle to the target point quickest. Sec-
ond, the closest distance the vehicle reaches to any
obstacle, dmin, will be measured. Third, the con-
trol effort will be calculated and compared between
test cases. The better test case will have a lower
controller effort value. Finally, the maximum and
average lateral accelerations will be calculated and
compared. The accelerations are calculated at the
driver’s position in the chassis. Using the DEM-P
method of simulation results in noisy acceleration
data. To address this, acceleration data is filtered
to remove noise. These five evaluation metrics pro-
vide a consistent methodology for comparing one
test case with another, regardless of the terrain
type and underlying analytical controller model.

3.6 Numerical Simulation Setup

Simulations on both rigid and granular terrain
were compared to understand how the controller
performs on non-ideal surfaces. The two inter-
nal controller vehicle models studied in these tests
were the previously described 2-DOF and 14-DOF
vehicle models. All other controller parameters
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Test Terrain Controller Vehicle
Number Type Model

1 Rigid 2-DOF
2 Rigid 14-DOF
3 Granular 2-DOF
4 Granular 14-DOF

Table 1: Individual Simulation Test Information

(a) Field 1 (b) Field 2

Figure 7: Obstacle fields.

were kept unchanged over all tests. Referring to
Table 1, the effect of model fidelity on controller
performance was gauged by comparing test 1 with
2 and test 3 with 4, for rigid flat and granular ter-
rain, respectively. Similarly, comparing test 1 with
3 and test 2 and 4 allowed evaluating the perfor-
mance of each internal vehicle model on rigid and
granular terrain.

Each of the above four tests consisted of runs
on two fields with different obstacle distributions.
The first one, depicted in Fig. 7a, contains a sin-
gle large circular obstacle located along the initial

x y Radius
(m) (m) (m)

Field 1
Target Location 200.0 0.0 -

Obstacle 1 100.0 0.0 15.0

Field 2
Target Location 550.0 0.0 -

Obstacle 1 100.0 0.0 15.0
Obstacle 2 200.0 -50.0 30.0
Obstacle 3 300.0 55.0 30.0
Obstacle 4 425.0 0.0 50.0

Table 2: Obstacle Field Parameters

heading of the vehicle, with the target location at
a large distance behind the obstacle. The second
obstacle field (see Fig. 7b) consists of four circu-
lar obstacles of varying sizes placed in the vehicle’s
initial heading direction, and provides a more real-
istic obstacle-avoidance scenario. Table 2 summa-
rizes the obstacle locations and dimensions, as well
as the target location for the above two scenarios.

The following vehicle parameters are maintained
throughout all of the executed tests. A PID speed
controller is used to maintain a near constant speed
of 8.1 m/s longitudinally for the simulated plant
Chrono wheeled vehicle. This constant speed is also
enforced in the analytical models internal to the
MPC controller. The LIDAR sensor has a max-
imum range RLIDAR = 129.6 m and is sampled
instantaneously at increments of 2.5◦. The vehicle
is limited to a maximum steering angle of 10◦, with
a maximum steering rate of 70◦/s.

4 SIMULATION RESULTS

This section summarizes the results of the four
tests listed in Table 1.

The trajectories for the four performed tests are
presented in Figs. 8a and 9a, for obstacle fields 1

Performance analysis of obstacle avoidance algorithm on granular terrain
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Test Number 1 2 3 4
Controller Model 2-DOF 14-DOF 2-DOF 14-DOF
Terrain Rigid Rigid Granular Granular
Time to Target (s) 26.67 26.15 28.32 28.03
Minimum Obstacle Distance (m) 0.897 5.462 3.491 4.721
Controller Effort 0.0340 0.0340 0.0340 0.0306
Max. Lateral Acceleration (m/s2) 2.78 1.57 2.47 2.33
Avg. Lateral Acceleration (m/s2) 0.54 0.51 0.55 0.46

Table 3: Test Evaluation Metrics Summary on Obstacle Field 1

Test Number 1 2 3 4
Controller Model 2-DOF 14-DOF 2-DOF 14-DOF
Terrain Rigid Rigid Granular Granular
Time to Target (s) 73.85 71.55 76.64 74.70
Minimum Obstacle Distance (m) 0.331 2.599 1.083 1.152
Controller Effort 0.0510 0.0680 0.0714 0.0612
Max. Lateral Acceleration (m/s2) 2.92 2.51 2.55 2.45
Avg. Lateral Acceleration (m/s2) 0.41 0.43 0.53 0.58

Table 4: Test Evaluation Metrics Summary on Obstacle Field 2.

and 2, respectively. The associated steering com-
mands generated by the controller are presented in
Figs. 8b and 9b. The evaluation metrics for each
test, as defined in Section 3.5, are tabulated for
each obstacle field in Tables 3 and 4.

4.1 Influence of model fidelity

Assessing the effect of internal vehicle model fi-
delity on controller performance when the vehicle
navigates on rigid terrain (comparison of tests 1
and 2), we make the following observations:

• the 14-DOF model leads to marginally faster
travel to the target location;

• the 2-DOF model leads to trajectories with
lower obstacle clearance;

• the two models result in the same controller
effort on the first obstacle course; however, the

higher-fidelity 14-DOF model requires 33%
more controller effort on the second obstacle
course, a consequence of its decision of per-
forming a course change to negotiate the last
obstacle;

• the two models result in approximately the
same number of command changes on both
obstacle courses;

• the 14-DOF model results in lower maximum
lateral accelerations.

Overall, while the higher-fidelity internal model
leads to marginally better performance, the 2-DOF
model is perfectly suitable for use in MPC-based
local obstacle avoidance on rigid terrain at non-
extreme speeds, as it can safely navigate the ve-
hicle to its end goal. These results support the
findings and conclusions in [2] even though a dif-
ferent AGV is considered here.

Performance analysis of obstacle avoidance algorithm on granular terrain
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(a) Vehicle trajectories.

(b) Steering commands.

Figure 8: Test results on obstacle field 1.

(a) Vehicle trajectories.

(b) Steering commands.

Figure 9: Test results on obstacle field 2.
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A similar comparison can be made for the case of
obstacle avoidance on granular terrain (tests 3 and
4). As on rigid terrain, the higher fidelity model
leads to faster travel to the end goal, larger clear-
ances to the obstacles, and lower maximum lat-
eral accelerations. However, on granular terrain,
the controller effort required by using the 14-DOF
model is always lower than that required by the
2-DOF model. We again conclude that using a
higher-fidelity internal controller model leads to
overall marginally better performance.

The 2-DOF and 14-DOF internal vehicle mod-
els were derived using rigid ground assumptions,
yet they are still capable of successfully and safely
navigating the simulated vehicle through an ob-
stacle field on granular terrain. The monitored
metrics indicate a slight drop in controller per-
formance when using the 2-DOF model. How-
ever, these gains are outweighed by the benefits,
in terms of required computational effort, offered
by implementing the lower-fidelity 2-DOF model.

4.2 Influence of terrain type

Turning next to evaluating the 14-DOF internal
controller model when navigating on rigid versus
granular terrain (comparison of tests 2 and 4), we
draw the following conclusions:

• on both obstacle courses, the target can be
reached faster when navigating on rigid ter-
rain;

• the resulting trajectories are slightly closer to
the obstacles when navigating on granular ter-
rain;

• the required controller effort is lower when
navigating on granular terrain;

• the maximum lateral accelerations are similar
on both types of terrain.

A similar analysis can be performed on the 2-
DOF model when used to control a vehicle on ei-
ther rigid or granular terrain (comparison of tests
1 and 3). Unlike the 14-DOF model, the simpler
2-DOF model does a better job of approaching the
obstacles more closely when controlling a vehicle
on rigid rather than on granular terrain. Related
to this, the controller effort on rigid terrain (test
1) is lower than that required on granular terrain
(test 3).

The forces the vehicle experiences from driving
on granular terrain can be much different than
forces on simple rigid ground. Examining Figs. 8a
and 9a, the vehicle navigating on granular terrain
does not turn as sharply for a given steering com-
mand as the vehicle does on rigid ground terrain.
To understand the different behavior between a ve-
hicle driving on rigid and granular terrain, a para-
metric study should be performed analyzing the
vehicle driving on a variety of granular terrains
with different granular parameters.

Tests 3 and 4 were performed on granular ter-
rain modeled as randomly packed uniform spheres
with an inter-particle friction coefficient of µ = 0.8,
diameter of 0.1m, and a macro-scale friction an-
gle roughly in the range 65◦ ≤ φ ≤ 70◦, with
particle rotation prohibited. This granular mate-
rial resembles railway track ballast. These same
tests were attempted on the the same randomly
packed uniform spheres with particle rotation al-
lowed resulting in a macro-scale friction angle be-
tween 35◦ ≤ φ ≤ 40◦. This granular material re-
sembles a dry sand. The results of this second set
of tests on dry sand are not plotted or tabulated
because the vehicle failed to move from the ini-
tial position. Instead, the vehicle spins its wheels
in place at its initial location, making no progress
forward as the wheels slowly dig themselves down
into the granular terrain. However, this may be
due to the too large diameter spheres used for this
study for computational reasons. Generally the
MPC LIDAR-based constant speed local obstacle
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avoidance controller used in this study is not ap-
propriate for use on all granular terrains. There
are situations where a combined speed and steer-
ing controller similar to that described in [15], or
even some new speed and steering controller which
accounts for terrain parameters and mobility infor-
mation to better predict vehicle movement, would
be required. Neither of the models used in the
present study, the rigid ground 2-DOF yaw plane
model nor the rigid ground 14-DOF vehicle mod-
els, were appropriate for predicting vehicle behav-
ior and performance on dry sand.

5 CONCLUSIONS

In this study, using the multibody physics package
Chrono, we developed a simulation of a HMMWV
driving through a user-specified obstacle field to-
wards a defined target location. Within this simu-
lation, an MPC LIDAR-based local obstacle avoid-
ance controller was implemented to navigate the
vehicle around obstacles as it encounters them.
The controller uses a simplified analytical vehi-
cle model to predict the controlled vehicle states
within a finite prediction horizon in order to de-
termine the optimal path and steering sequence,
forward from the current vehicle state. Two MPC
algorithms were developed, one that uses an un-
derlying 2-DOF vehicle model to predict vehicle
states and a second one based on a higher-fidelity
14-DOF model. These two controllers were used
to navigate a Chrono HMMWV through two ob-
stacle courses, on both rigid and granular terrain.
The results were compared to understand the influ-
ence of internal vehicle model fidelity on the con-
troller performance and to identify improvements
that need to be made to the MPC LIDAR-based
local obstacle avoidance controller to successfully
control a vehicle on granular terrain.

The controller using the 14-DOF internal vehi-
cle model performs marginally better than the one
based on the 2-DOF vehicle model in all situa-

tions, confirming the findings reported in [2]. How-
ever, tests with the 2-DOF controller prove that
this controller can still successfully navigate a ve-
hicle through an obstacle field when the vehicle is
moving at non-extreme speeds. Using the 2-DOF
controller also allows for faster calculation of op-
timal steering sequences, hence better suited for
a possible physical implementation with real-time
requirements. As expected, both controllers per-
form worse on granular terrain than on rigid ter-
rain. This study also highlights the complexities
introduced to vehicle control when the terrain is
no longer rigid. Examining the vehicle trajecto-
ries and lateral accelerations on granular terrain,
there are clear differences in tire–ground interac-
tions. The granular material parameters affect the
turning characteristics of the vehicle, its accelera-
tion abilities, and overall vehicle dynamic perfor-
mance which is not control predictive with the cur-
rently used 2-DOF and 14-DOF analytical vehicle
models. For consistency with the approach used
in [2], the internal controller models used in the
present study relied on a Pacejka tire model re-
volving on rigid flat terrain. Based on the findings
of this study, it becomes clear that future devel-
opments should include in the internal controller
model an approximation for the deformable ter-
rain to more accurately predict the tire – granular
terrain interaction.

The results of this study are promising, as it
indicates that a controller based on a simplified 2-
DOF internal vehicle model is sufficient for predict-
ing vehicle behavior and performance well enough,
even when the controlled vehicle navigates on de-
formable, granular terrain, as long as the granular
material characteristics are close to that of rail-
road ballast. At the same time, these results also
emphasize the need for future research relating to
vehicle control and simulation on granular terrain,
and for further parametric studies on a compre-
hensive set of deformable terrains, with different
granular material characteristics. From there, new
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internal analytical model should be investigated
and developed, models that are ideally not more
complex than the 14-DOF model used here, but
that also take into account granular parameters
such as the friction angle. From simulations on
railway track ballast and dry sand, this study also
emphasizes the need for a speed and steering con-
troller which uses information about the current
terrain and powertrain to better predict vehicle
performance on a wider variety of terrains.

Acknowledgments

Chrono development was supported in part by U.S.
Army TARDEC Rapid Innovation Fund grant No.
W911NF-13-R-0011, Topic No. 6a, “Maneuver-
ability Prediction”. Support for the development
of Chrono::Vehicle was provided by U.S. Army
TARDEC grant W56HZV-08-C-0236.

REFERENCES

[1] F. Allgower and R. Findeisen. An introduc-
tion to nonlinear model predictive control. In
21st Benelux Meeting on Systems and Con-
trol, 2002.

[2] J. Liu, P. Jayakumar, J. L. Stein, and T. Er-
sal. A study on model fidelity for model
predictive control-based obstacle avoidance in
high-speed autonomous ground vehicles. Ve-
hicle System Dynamics, 2016.

[3] A. Tasora, R. Serban, H. Mazhar, A. Pa-
zouki, D. Melanz, J. Fleischmann, M. Tay-
lor, H. Sugiyama, and D. Negrut. Chrono:
An open source multi-physics dynamics en-
gine. In T. Kozubek, editor, High Perfor-
mance Computing in Science and Engineering
– Lecture Notes in Computer Science, pages
19–49. Springer, 2016.

[4] R. Serban, A. Tasora, and D. Negrut.
Chrono::Vehicle – Template-Based Ground
Vehicle Modeling and Simulation. Intl. J. Ve-
hicle Performance, submitted, 2017.

[5] P. Cundall. A computer model for simulat-
ing progressive large-scale movements in block
rock mechanics. In Proceedings of the Interna-
tional Symposium on Rock Mechanics. Nancy,
France, 1971.

[6] K.L. Johnson. Contact mechanics. Cambridge
University Press, 1987.

[7] J. A. Fleischmann, R. Serban, D. Negrut, and
P. Jayakumar. On the importance of dis-
placement history in soft-body contact mod-
els. Journal of Computational and Nonlinear
Dynamics, 11(4):044502–1–5, 2016.

[8] J. Y. Wong. Theory of ground vehicles. J.
Wiley, New York, N.Y., 2nd edition, 1993.

[9] J. A. Fleischmann, M. E. Plesha, and W. J.
Drugan. Determination of yield surfaces for
isotropic non-cohesive particulate materials
by the discrete element method. Geotechnical
and Geological Engineering, 32(4):1081–1100,
2014.

[10] G.-C. Cho, J. Dodds, and J. C. Santama-
rina. Particle shape effects on packing density,
stiffness, and strength: Natural and crushed
sands. Journal of Geotechnical and Geoenvi-
ronmental Engineering, 132(5):591–602, 2006.

[11] B. Indraratna, D. Ionescu, and H. D.
Christie. Shear behavior of railway ballast
based on large-scale triaxial tests. Journal
of Geotechnical and Geoenvironmental Engi-
neering, 124(5):439–449, 1998.

[12] H. B. Pacejka and I. J. M. Besselink. Magic
formula tyre model with transient properties.

Performance analysis of obstacle avoidance algorithm on granular terrain
Page 16 of 17



Proceedings of the 2017 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Vehicle System Dynamics, 27(sup001):234–
249, 1997.

[13] J. Liu, P. Jayakumar, J. L. Stein, T. Ersal,
and J. L. Overholt. The role of model fi-
delity in model predictive control based haz-
ard avoidance in unmanned ground vehicles
using LIDAR sensors. Dynamic Systems and
Control Conference, 2013.

[14] T. Shim and C. Ghike. Understanding the
limitations of different vehicle models for roll
dynamics studies. Vehicle System Dynamics,
2007.

[15] J. Liu, P. Jayakumar, J. L. Stein, and T. Er-
sal. An MPC algorithm with combined speed
and steering control for obstacle avoidance in
autonomous ground vehicles. In Proceedings
of ASME 2015 Dynamic Systems and Control
Conference, 2015.

Performance analysis of obstacle avoidance algorithm on granular terrain
Page 17 of 17


	INTRODUCTION
	BACKGROUND
	MPC Based Local Obstacle Avoidance 
	Chrono Multibody Physics Package
	Vehicle Modeling
	Granular Mechanics


	TECHNICAL APPROACH AND METHODOLOGY
	Full-Vehicle Multibody Model
	Relocating Granular Patch 
	MPC LIDAR-Based Local Obstacle Avoidance
	Internal Controller Vehicle Models
	2-DOF Vehicle Model
	14-DOF Vehicle Model

	Evaluation Metrics
	Numerical Simulation Setup 

	SIMULATION RESULTS
	Influence of model fidelity
	Influence of terrain type

	CONCLUSIONS

