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ABSTRACT%

A Non-linear Model Predictive Controller (NMPC) was developed for an 
unmanned ground vehicle (UGV). The NMPC uses a particle swarm pattern search 
algorithm to optimize the control input, which contains a desired steer angle and a 
desired longitudinal velocity. The NMPC is designed to approach a target whilst 
avoiding obstacles that are detected using a light detection and ranging sensor 
(lidar). Since not all obstacles are stationary, an obstacle tracking algorithm is 
employed to track obstacles. Two point cluster detection algorithms were reviewed, 
and a constant velocity Kalman filter-based tracking loop was developed. The 
tracked obstacles’ positions are predicted using a constant velocity model in the 
NMPC; this allows for avoidance of both stationary and dynamic obstacles. 

 
INTRODUCTION%

Unmanned ground vehicles (UGV) are very 
versatile. They may be used for transportation of 
items and/or persons in situations where a driver is 
not available or in situations where the area of 
travel is too dangerous for humans. UGVs also 
allow all passengers to focus on other more 
pressing tasks during travel. 

In many scenarios that require the use of a UGV, 
the UGV is unable to rely on a priori knowledge of 
the terrain and obstacle locations in order to 
navigate and requires a perception-based sensor to 
locate hazards and plan a path around them. 
Nonlinear model predictive control (NMPC) is able 

to perform path planning while implementing 
constraints in order to maintain safe operating 
conditions for the vehicle. 

The task of getting the UGV from point A to point 
B safely while avoiding obstacles has been 
addressed in different ways. Park, et al used a 
parallax-based obstacle avoidance scheme; the 
vehicle assumed a constant velocity and stationary 
obstacles. In Liu, et al, a safe region was 
determined from lidar data, which allowed the 
position of the UGV to be constrained. Again, 
constant speed and stationary obstacles were 
assumed. Abbas, et al compared two obstacle 
avoidance techniques, both requiring a reference 
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trajectory. Jiang, et al used a linear time-varying 
MPC and incorporated a single dimension artificial 
potential field method; it considers a single static or 
dynamic obstacle. Eick’s work is the most similar 
to this work. A pattern search algorithm was used 
for optimization and a hard constraint was placed 
on obstacle avoidance. A single static obstacle was 
considered in this work. 

The approach presented in this work uses a 
particle swarm pattern search optimization routine. 
Also, since in many cases the obstacles are not 
static, the problem of dynamic obstacles is 
addressed by using point cloud data to track 
obstacles and by incorporating constant velocity 
models for the obstacles into the prediction 
equations of the NMPC. 

First, the vehicle model used to design the NMPC 
is discussed. Then, the optimization technique is 
addressed. Next, the obstacle tracking algorithm is 
explained. The simulation environment, setup, and 
results are discussed and are followed by the 
conclusion. 

 
Vehicle'Model'

The vehicle model used in the formulation of the 
NMPC incorporates the lateral dynamic bicycle 
model [6], shown in figure 1 and characterized by 
equations (1-5) and equations (7-8), and the 
Pacejka Magic tire model [7], described in equation 
(6). Unlike the kinematic bicycle model, the lateral 
dynamic bicycle model does not make the zero slip 
angle assumption at the wheels. Another 
assumption of the bicycle model is zero vehicle 
roll, which is not the case; however, rollover is 
assumed to not be an issue in this work. The 
Pacejka Magic tire model is classified as a semi-
empirical tire model. Joining these two models 
provides a sufficient amount of accuracy for the 
NMPC to predict the vehicle’s motion.  

 

 
 

The vehicle state and dynamic equations are  
 ! = # $ % % &'

(
 (1) 

 
 # = )&* cos% − &' sin% (2) 
 
 $ = )&* sin% + &' cos% (3) 
 
 % =

1
344

56'7 cos 8 − 96':  (4) 

 
 &' =

1
; 6'7 cos 8 + 6': − %&* (5) 

 
where #, $ are the global position, %,% are the yaw 
and yaw rate, respectively, and &' is the body-fixed 
lateral speed. As previously mentioned, the lateral 
forces are calculated using the Magic tire model, 
which is 
 6'= = −> sin ? tanBC DE= −

))))))))))))))))))F DE= − tanBC DE=   
(6) 

 
where G is H or I, respectively corresponding to the 
front or rear axles, and E7, E: are the slip angles at 
the wheels defined by 
 E7 = tanBC JKLMN

JO
− 8  (7) 

 

Figure 1: Bicycle model. 
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 E: = tanBC JKBPN
JO

  (8) 
 
The parameters D, ?, >, F in equation (6) 
correspond to the stiffness factor, this determines 
the slope at the origin; the shape factor, this limits 
the range of the sine function; the peak lateral force; 
and the curvature factor, this sets the curvature at 
the peak value and adjusts the horizontal position 
of the peak value, QR. These are illustrated in figure 
2.  
 

 

 
The $-axis is the lateral force, 6', at the tire, and 
the #-axis is the slip angle, E, at the tire. The offsets 
SJ and ST are due to conicity and ply-steer effects 
[7].  

The vehicle states are measured from the outputs 
of a 6 degree of freedom, loosely-coupled, 
GPS/INS extended Kalman filter (EKF). The EKF 
outputs the measurements in the ENU navigation 
frame. One combination of real sensors used to test 
the EKF is a u-blox EVK-M8T with a single 
antenna and a Crossbow IMU440. An Animatics 
Smart Motor SM3430D-PLS2 attached to the 
steering column of the vehicle is used for the 
measurement of the steering wheel angle. At the 
beginning of each run, the steering angle is set to 
zero. The steer angle at the tires is found by 
dividing the steering wheel angle by the steer ratio. 

 

NMPC'Algorithm'
The control inputs of the NMPC algorithm are the 

desired steer angle, 8, and the desired longitudinal 
velocity, &*. The steer angle is projected over the 
prediction horizon using a parabolic model. 
 

8 U = VW + VC
U
UX

+ VY
U
UX

Y
 (9) 

 
where VW, VC, VY are the control parameters to be 
optimized, UX is the prediction horizon in seconds, 
and U = 0, ∆U, 2∆U, … , UX. From this model, the 
predicted vehicle model trajectory is also parabolic. 
The model may be of a higher order if a different 
form of predicted path is desired; however, this 
type of path is sufficient for a control rate of 10 Hz. 
Using a model of this nature also reduces the 
number of optimization parameters, whereas a 
typical prediction strategy is to compute a steer 
angle or desired curvature at each time step. 
Therefore, the control input vector is 
 ^ = VW VC VY &*,_`a ( (10) 

 
The control input vector is optimized using a 
particle swarm pattern search approach. Since the 
dynamic equations are nonlinear, there is no closed 
form solution; therefore, the equations are 
numerically integrated using Runge-Kutta 4th order 
integration. 

 
Particle)Swarm)Pattern)Search)
The particle swarm pattern search algorithm [8] 

minimizes the objective function 
 

b =
1
2 cdeY + f

1
min dh,=

Y

+ ijkh:RY  
(11) 

 
subject to: 
 8 U ≤ 8RM* (12) 

 
 ∆8 U ≤ ∆8RM* (13) 

 

Figure 2: General tire curve. 



UNCLASSIFIED: Proceedings of the 2017 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

UNCLASSIFIED: Robust Vehicle Stability Based on Non-Linear Model Predictive Control…, Stamenov, et al. 
 

Page 4 of 15 

 0 ≤ &*,_`a ≤ &*,RM* (14) 
 
where de is the distance to the target, c is the weight 
on de, dh,= is the distance from the vehicle to each 
obstacle G, f is the weight on the inverse of the 
minimum distance to an obstacle, jkh:R is the 
normal error of the vehicle calculated from a 
straight line between the starting point and the 
target point, i is the weight on the normal error, 
8RM* is the maximum allowable steer angle, ∆8RM* 
is the maximum allowable steer rate, and &*,RM* is 
the maximum longitudinal speed. 

The pattern search portion of the algorithm 
performs an element by element adjustment on the 
control vector. The pattern search matrix is the 
matrix along which the search is performed. It is of 
size ;× 2; + 1 , where ; is the number of 
control inputs. The search is performed along the 
columns of the matrix. For the control vector in 
equation (10), the pattern search matrix is 
 n = o 4×4 )))− o 4×4 ))))q 4×1  (16) 

 
where o is the identity matrix and q is the zero 
vector. Based on equation (16), the pattern search 
increases VW, then VC, and so on. The step size each 
parameter is adjusted by is initialized by the user. 
After adjusting the input vector, the cost is 
calculated along the trajectory; constraints are also 
evaluated along the trajectory. If the calculated 
input generates a trajectory that satisfies the 
constraints and successfully lowers the cost, the 
input is updated as the calculated input; otherwise, 
the step size is decreased. The process is continued 
until the step size is below a tolerance value set by 
the user. If, during the process, a set of control 
inputs results in a constraint violation, the cost for 
that set of control inputs is set to infinity; this is to 
reassure the user that the set of control inputs will 
not be selected as an optimal solution. The pattern 
search algorithm is outlined in algorithm 1, where 
r is the step size and s  is the reduction factor, a 
value between 0 and 1. The pattern search 
algorithm alone returns a local minimum;  however, 

when partnered with the particle swarm algorithm, 
a global minimization may be produced. 
 
While rt > rehv 
  While w ≤ 2; + 1 
))))Calculate)cost)and)evaluate)constraints 
    If b Vt + rtn : , w < b Vt  & 0 constr. viol. 
      VtLC = Vt + rtn : , w ;      
      w = 2;; 
      search = true; (success) 
    else 
      VtLC = Vt; 
    end 
  end 
  If search == true 
        rtLC = srt; 
  end 
end 

 
 

The particle swarm algorithm allows the user to 
make multiple initial guesses, whereas the pattern 
search alone uses only one initial guess. Each 
particle is fed through the pattern search algorithm, 
then the particle with the minimum cost is accepted 
as the final solution. Each particle is initialized 
randomly from a uniform distribution. Given 
equation (16), the first particle was set to zeros, and 
the second particle had zeros for the first 3 control 
inputs and &RM* for the final input; however, if 
these initializations violated a constraint, they 
would be initialized randomly like the rest of the 
particles. In order to promote convergence, the 
particles are continually initialized until the 
initialization does not break a constraint.  

Each particle has a position (the control input 
values) and a velocity associated with it. At the end 
of a particle’s optimization, the particle position 
and velocity are updated by 
 V= U + 1 = V= U + Ö= U + 1  (17) 

 
 

Algorithm 1: Pattern search pseudocode. 
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   Ö= U + 1 = Ü U Ö= U  
+áàC U â= U − V= U  

+äàY U â U − V= U ))  
(18) 

 
where Ö= U + 1  is the velocity of particle G, Ü U  is 
known as the inertial weighting factor, á is the 
cognition parameter, ä is the social parameter, 
àC U  and àY U  are random numbers drawn from 
the 0,1  uniform distribution, â= U  is the best 
position of particle G, and â U  is the best position 
among all the particles ã. 
 

 
 

The particle swarm pattern search combined 
algorithm is described in algorithm 2. Computation 
time may become burdensome for a large number 
of particles; for the NMPC, 8 particles produced a 
sufficiently global solution while still maintaining 
a low computation time. 

 

Multi4Target'Detection'and'Tracking'
Detection and tracking of multiple moving targets 

has been a widely studied topic for many years. 
Modern applications include video surveillance [9], 
robot navigation, and aircraft traffic control. Since 
Bar-Shalom’s introduction of the probabilistic data 
association filter [10] in the 1990s numerous 
solutions of the tracking problem have been 
proposed for use with a continuously expanding 
field of perception equipment, including radar, 
laser scanners and cameras. Every sensing system 
brings its own set of strengths as well as caveats to 
the tracking problem.  

For this work, the Velodyne VLP-16 laser scanner 
atop the vehicle in figure 13 is used to provide 
spatial data about the environment, including both 
static and dynamic objects, surrounding a UGV. 
The sensor provides sixteen vertical channels of 
360-degree range measurements with sub-
centimeter accuracy at scan speeds up to twenty 
hertz, making the device well-suited for capturing 
moving objects from the scale of a human to the 
scale of a large building. Utilizing this heap of data 
to quickly and efficiently decipher the spatial 
dynamics of the surroundings can be partitioned 
into three tasks: segmentation, data association, and 
target estimation. These three tasks are the focus of 
the discussion in the following sections. 
)
Segmentation)

To extract meaningful information from the range 
and angle measurements returned by a single laser 
scan, the data must be segmented into spatially 
significant subsets. Often these subsets take the 
form of primitive surfaces such as planes or 
cylinders, but a more common initial approach to 
dividing the data is clustering regions of points that 
appear geometrically consistent by some user-
defined criteria. For example, two vehicles inside 
an empty parking lot could be described as two 
locally dense masses of points from observation of 
the scanner output. Of course, scanners with 
different configurations will provide data sets of 
differing qualities, but the methodology to 

Initialize particles to satisfy constraints. Select 
minimum to represent initial best input. 
While rt > rehv 
  For G = 1: ã (number of particles)  
))))Perform)Pattern)Search (VèMe) 
    If b VèMe < b âta  & 0 constr. viol. 
      âta = VèMe;      
      If b VèMe < b â  
      ))â = VèMe; 
      end 
    end 
    Update)particles)with)equations)(17-18) 
  end 
  If search == true 
        rtLC = srt; 
  end 
end 

Algorithm 2: Particle swarm pattern search 
pseudocode. 
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segmenting laser scanner data is easily generalized 
to most range-bearing sensing devices.  

In this work two different segmentation 
approaches are taken to separate the points 
belonging to different physical bodies captured by 
the VLP-16. The first approach is based on a 2.5D 
grid projection of the data points that is easy to 
work with. Each measurement produced by the 
scanner consists of a range, a horizontal angle and 
a vertical angle that locate a single point in 3D 
space. When a complete scan arrives from the 
sensor, the points are transformed from polar to 
Cartesian coordinates and binned into a grid of cells 
with user-defined grid dimensions and cell widths. 
Next, for each grid cell containing points the height 
difference between the minimum and maximum 
points within the cell is calculated and compared 
with a threshold value. Cells which exceed this 
threshold are marked as occupied, while the 
remaining cells are marked as free. For vehicle 
navigation it is useful to set the height difference 
threshold to a physical constrain of the vehicle such 
as the maximum height of a traversable obstacle.  

Two important navigation products of the grid 
arrangement are discretized knowledge of occupied 
space around the UGV and an image, formed by the 
occupied cells, of a top-down view of the vehicle’s 
surroundings as shown in figure 3a. If the motion 
of the UGV and any dynamic objects around it is 
assumed to be planar, then the 2D image can be 
segmented into local clusters representing potential 
moving and trackable targets. Tools from image 
processing can be applied here, including k-means 
clustering and tree search structures. For simplicity 
and robustness, every group of connected cells in 
the grid is assumed to represent a single physical 
entity, and an N8 neighborhood search is 
propagated through the grid to find these groups. 
An N8 neighborhood consists of the eight cells 
surrounding a cell that is not located on the grid 
edge. To take into account the possible connections 
of branching elements that were missed in the 
vertical gaps of the scanner data, small clusters 
within a threshold proximity to larger clusters are 

integrated into the larger clusters. In figure 3b 
clusters are identified by their geometric centers, 
the detection information later sent to the tracking 
algorithm. 

 

 

 
 

 

 
 
The second segmentation approach is adopted 

from Stachniss and Bogoslavskyi’s method for 
segmenting sparse point clouds [11]. An advantage 

Figure 3a: Height map with occupied cells (red) 
corresponding to tree locations. 

Figure 3b: Cluster centers found with height 
map method. 
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of their algorithm over the previous is that it works 
directly with a depth image formed by inserting the 
data points into an array with number of rows 
matching the vertical channels of the scanner and 
number of columns matching the desired horizontal 
resolution of the scan. Avoiding transformations 
from polar to Cartesian coordinates can produce 
significant performance gains considering the 
typically large number of points found in a single 
scan. To prevent interference from ground points 
with the remainder of the segmentation process, all 
likely ground points are separated from the data. 
Figure 4 shows the angular threshold ! used to 
check the gradient disparity between vertical 
channels of the Velodyne sensor. Once the ground 
is removed, a second angular threshold " is applied 
in both the row and column directions of the depth 
image to find gaps between point clusters. The 
method assumes that most physical surfaces in the 
scene are representable by relatively large " values, 
and small values indicate large spatial gaps 
between points as shown in figure 5. Horizontal and 
vertical searches for cluster groups are performed 
with N4 neighborhoods.  

 

 

 
 
One disadvantage of this segmentation method is 

that planar surfaces at sharp angles to the scanner 
may be detected as multiple separate objects. 
Unlike the depth image ground removal strategy, 
the ground in the height map is removed implicitly 
during the cell classification stage; however, while 
the height map segmentation approach is dependent 
on a discretized 2D image of the original scan 

space, the depth map operates on the complete 
scanner data. Performance of the height map is 
heavily dependent on user settings of the grid 
dimensions and cell width. Another inherent 
difference between the two algorithms is the effect 
of extremely sparse points, such as those 
encountered in foliage and ground vegetation, on 
target detection. The height map can be made 
resistant to such noise by tuning the grid cell widths 
to blend the sparse data into connected chains, but 
the depth map is not so easily adjusted due to the 
radial divergence of the laser beams as distance 
from the sensor increases. In other words, 
introducing bins in the depth image by inflating the 
image columns could significantly reduce 
segmentation detail at long distances.  

 

 

 
 

The authors of the depth clustering algorithm 
kindly provide open source C++ code with their 
implementation written for the Robot Operating 
System (ROS) [11]. After several test data sets and 
a few modifications to the software package, the 
segmentation preforms well and requires minimal 
computing resources to function. Figure 6 shows 
the software’s ability to detect trees inside a small 
park. Because depth image clustering allows for the 
dedication of more resources to the next component 
of the target tracking system, it was the detection 
algorithm of choice for the UGV in this work.  

 

Figure 4: Ground points removal threshold angle 
[11]. 

Figure 5: Point clustering threshold angle  [11]. 
The points connected by a red line are in two 

different clusters. 
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Trimming)of)Detected)Objects'
A few simple filters are applied to the output of 

the segmentation algorithm to limit the scope of the 
target tracking as well as attenuate much of the 
detection noise from experimentally determined 
noisy detection regions. First, an effective radius 
around the UGV truncates object detection 
measurements, which leave the detection stage as 
3D object centers.  Next, a height threshold is 
applied to the center measurements given 
assumptions of the operating environment. For 
instance, tree canopies tend to produce erratic 
detections due to the absence of a closed surface, so 
cropping detections approximately above a wooded 
area’s canopy line can drastically reduce false 
detection clutter. Finally, if a priori knowledge of 
target size is available, geometric dimensions of the 
detected objects can be restricted to a user-defined 
range.  

 
The)Kalman)Filter)and)Gating'

Detection sources could be a number of different 
reflective surfaces, including ground personnel, 
moving vehicles, and even static objects such as 
lamp posts and fire hydrants. For a simple and 
general tracking framework that works with a 
variety of unclassified objects, the constant velocity 
kinematic Kalman filter (19) was chosen as the 
object motion estimator. Estimation can be 

improved with knowledge about the model being 
tracked if an object classification scheme is 
implemented alongside the position measurements 
of each detected object. In the case of a moving 
vehicle, a bicycle car model such as the one in 
figure 1 and equations (1-5) could be adopted 
instead.  
 

 

 
 
 
(19) 

 
The main mechanism behind pairing of incoming 

measurements to tracking channels engaged in 
estimating the positions and velocities of detected 
objects is the validation gate. A simple form of a 
validation gate is the Euclidean distance between a 
current estimated position and current 
measurement. In this work a statistical approach is 
taken to gating two-dimensional measurements by 
using a confidence level ! [12], the expectation that 
! percent of measurements will lie outside of the 
validation gate, and the innovation covariance in 
equation (20) to define an ellipse around an object’s 
estimated position. The confidence level is used to 
calculate a threshold îY-distributed value # that 
represents the scale of an ellipse and is compared to 
the Mahalanobis distance [12] between the 
measurement and estimated object position as 
shown in equation (21) to determine the validity of 
a measurement-tracker pair. If the position and 
velocity states of an object are assumed to be 
uncorrelated, then this ellipse is a circle. Valid 
measurement-tracker pairs lie inside the # threshold 
and are found in the next stage of the tracking 
problem, data association. 
 

 
(20) 

  (21) 

 

Figure 6: Objects (trees) detected by depth 
image clustering method. 
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Data)Association'
Finding valid measurement-tracker pairs can be a 

non-trivial assignment problem, especially in cases 
of high measurement clutter where multiple 
measurements may fall within the validation gate 
of a single active tracking channel. Here a tracking 
channel refers to a single instant of the previously 
mentioned constant velocity Kalman filter 
initialized with the measurement of a detected 
object and estimating the position and velocity of 
that object. Figure 7 is a representative outline of 
the data association routine developed for this 
work.  

The routine has a hierarchal structure, where 
active trackers and measurements are conditioned 
prior to association to combat ill-formulated 
assignment problems arising from undesirable 
scenarios and to increase the efficiency of the 
association stage. Before any further explanation of 
the association stage, a description of the 
mechanics behind the tracking channels is due. For 
the first set of measurements received by the 
association stage of the multi-target tracking 
system, a tracking channel is initialized for each 
measurement. At this point there are the same 
number of active tracking channels as there are 
measurements. A tracking channel, or tracker, may 
be either ACTIVE or INACTIVE. For every 
subsequent set of measurements, each 
measurement must either be matched to an active 
tracker or used to activate a new tracker. Trackers 
that are paired with an incoming measurement 
receive a tick in their ASSOCIATION counter. 
Unpaired trackers receive a DISSOCIATION tick. 
If a tracker is not matched with a measurement for 
a user-defined threshold of consecutive 
measurement updates, that tracker is deactivated. In 
addition, trackers that are matched consecutively 
less than a user-defined number of update cycles 
can be deactivated more easily than a tracker with 
a longer continuous history. 

 

 

 
 

As shown in figure 7 the first step of the hierarchal 
association stage is computation of the 
Mahalanobis distances between all measurements 
and all active trackers. Distance data can be 

Figure 7: Data association routine.  
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visualized as a matrix where rows represent 
measurements and columns represent active 
trackers. All trackers that do not hold at least one 
distance score less than or equal to # in their 
respective columns are removed from the current 
round of matching. Similarly, all measurements 
without a score less than or equal to # in their 
respective rows are removed from the matching 
process as well. Next, a naïve assignment is 
attempted between remaining trackers and 
measurements by assigning each tracker to the 
corresponding measurement of that tracker’s 
minimum distance score. If this pairing is unique 
for all trackers, then the association stage is 
complete. Otherwise, the association task is handed 
to a Munkres assignment process [13].  

The Munkres algorithm applies a series of 
sequential modifications to the elements of a 2D 
matrix with arbitrary numbers of rows and columns 
until the elements of the smaller dimension are 
matched uniquely with the same number of 
elements in the larger dimension, and the sum of 
the values at the intersections of these row-column 
pairs is the minimum possible sum. For the matrix 
of scores, each element in the smaller dimension is 
paired with a unique element in the larger 
dimension, and the sum of the scores of these 
measurement-tracker pairs is a global minimum. If 
nine measurements and eleven trackers are passed 
to this algorithm, nine unique measurement-tracker 
assignments are created. These assignments are 
identified by the zeros in figure 8. Two of the 
trackers do not have zeros in their columns and are 
not paired with any measurements. 

Pre-conditioning of the measurements and 
trackers at the beginning of the association stage 
helps avoid scenarios where a tracker that has lost 
its target joins in the Munkres assignment phase 
trackers whose targets are still providing 
measurements. If this tracker in question is in the 
dissociation process but still active, and if it has lost 
its target, then its distance scores to the remaining 
measurements will likely be relatively high. The 
Munkres algorithm will choose a globally lowest 

score for each tracker if the number of trackers is 
equal to or less than the number of measurements. 
In the event that the dissociating tracker is paired 
with another currently active tracker’s 
measurement for the sake of reducing the sum of 
distance scores, then the other tracker will be 
assigned to a different measurement. Assignments 
are followed by a final validation check. Pairs that 
pass are considered associated, and the 
corresponding measurement update is applied to 
those measurement-tracker pairs. On the other 
hand, pairs that do not pass do not receive a 
measurement and enter the dissociation phase. This 
example demonstrates a tracker being kicked out of 
its valid pair by a dissociating tracker, hence the 
need for preconditioning the trackers and 
measurements prior to assignment.  

 

 

 
 

Figure 9 shows the tracking algorithm developed 
for ROS during the course of this work. The scene 
is a small park with tall trees and uneven terrain. 
Although the ground is not planar here, the depth 
clustering algorithm effectively removes the 
ground points from the scanner data and detects the 
trees. Red spheres represent the detected point 
clusters, while the blue ellipses around the spheres 
are centered on the target position estimates and 
represent the #-threshold gating regions for new 
measurements.  

 

Figure 8: Munkres assignment algorithm. Zeros 
represent assignment of nine measurements to nine 

unique trackers.   
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SIMULATION'
Gazebo, a simulation engine from the Open 

Source Robotics Foundation, is used to combine 
and test the developed obstacle tracking and 
avoidance algorithms inside a safe and controlled 
environment. A 2004 Infiniti G35 sedan was 
chosen for the vehicle model, with close 
approximations of the real vehicle’s geometric, 
kinematic, inertial, and performance properties 
acquired from the lab’s existing G35 data collection 
platform. The Robot Operating System (ROS) is 
used to interface the vehicle model inside the 
simulation environment with sensors, controllers, 
and the obstacle avoidance software. Controllers 
are abstracted to mimic a vehicle interface that can 
be replaced with a real vehicle in the future without 
modifying the navigation software. Sensors, 
including a VLP-16 lidar, GPS, and 9-DOF IMU, 
are virtual, but their software sockets are easily 
replaceable with real hardware.  

 

 

 

 
 

Two obstacle avoidance scenarios are simulated 
in Gazebo. One scenario requires the vehicle to 
pass around a static obstacle placed between the 
vehicle’s start and target positions. In the second 
scenario, the static obstacle is replaced with a 
dynamic one moving perpendicular to the vehicle’s 
desired path. Because both the position and velocity 
of the obstacle are provided by the tracker, the 
NMPC can predict the future state of the moving 
obstacle and produce a trajectory that avoids 
collision. The simulation parameters are listed in 
table 1, where each parameter value is listed in 
brackets beside the parameter’s name.  

 

Figure 9: Multi-target tracking. Tree point clusters 
(red) and estimates of position (blue centers) with 

tracker IDs are shown. 

Figure 10: Gazebo environment (top) with red 
rectangles representing the start and goal positions of 
the vehicle. Multi-target tracking (bottom) in Rviz, 

where tree point clusters (red) and estimates of 
position (blue centers) with tracker IDs are shown. 
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Mass ;  1728.15)kg 
Front axle to c.g. 5  1.3675)m 
Rear axle to c.g. 9  1.4815)m 

Yaw inertia 344  2400)kg)mY 
Magic parameter D  9.55 
Magic parameter ?  1.3 
Magic parameter >  6920 
Magic parameter F  0 

Max steer angle 
8RM*  

35° 

Max steer change 
∆8RM*  

5° 

Initial step size r  1 
Reduction factor s  0.5 
Number of particles 

ã  
8 

Tolerance rehv  0.01 
Control frequency 

1 ∆U  
10)Hz 

Prediction horizon 
UX  

5)s 

Initial state vector 0 0 90° 0 0 ( 
Weight on distance 

to target c  5 

Weight on inverse of 
min. obstacle 
distance f  

225000 

Weight on normal 
error i  17 

Maximum Velocity 
&*,RM*  5)m/s) 

Final time U7  19.87)s 

 
 

   Figure 10 shows a hybrid scenario that includes 
both a static and dynamic obstacle. The static 
obstacle is composed of eight construction barrels 
blocking the vehicle’s lane, while the dynamic 
obstacle is in the form of a large truck backing 
into the lane from the occluded region behind the 
barrels. Figures 11 and 12 show that the controller, 

aided by the obstacle tracker, is able to guide the 
vehicle around both obstacles. 
 

 

 
 

 

 
 
CONCLUSIONS'

A NMPC for avoidance of static and dynamic 
obstacles was presented. It incorporates a particle 
swarm pattern search algorithm for solving the 
constrained optimization problem. Point cloud data 
from lidar was used by a detection algorithm to find 
clusters of points likely belonging to unique 
objects, and a bank of constant velocity Kalman 
filters was used to track these clusters and provide 

Table 1: Simulation parameters. 

Figure 11: Static obstacle avoidance in Gazebo. 

Figure 12: Dynamic obstacle avoidance in Gazebo. 
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obstacle position and velocity information to the 
NMPC. Gazebo simulation results were presented 
showing successful obstacle avoidance by the 
virtual vehicle in real time.  
'
FUTURE'WORK'

After further simulation validation of the NMPC 
and tracking algorithms, the software will be loaded 
onto the Prowler RTV off-road vehicle shown in 
figure 13. This vehicle is equipped with a complete 
drive-by-wire automation system interfaced with 
ROS. Actuators are operated by a microcontroller 
and control throttle, braking, and steering. The 
software of the virtual Infiniti G35 is being 
modified to accommodate the Prowler along with a 
model of its actuation system. A simulated system 
with a ROS interface identical to the one on the real 
vehicle is the goal and will allow quick and easy 
interchange between evaluating changes on the 
simulated vehicle and evaluating them on the real 
vehicle. 
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