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ABSTRACT 

A framework for generation of reliability-based stochastic off-road mobility 
maps is developed to support the Next Generation NATO Reference Mobility Model 
(NG-NRMM) using full stochastic knowledge of terrain properties and modern 
complex terramechanics modelling and simulation capabilities.  The framework is for 
carrying out uncertainty quantification and reliability assessment for Speed Made 
Good and GO/NO-GO decisions for the ground vehicle based on the input variability 
models of the terrain elevation and soil property parameters.  To generate the 
distribution of the slope at given point, realizations of the elevation raster are 
generated using the normal distribution.  For the soil property parameters, such as 
cohesion, friction and bulk density, the min and max values obtained from 
geotechnical databases for each of the soil types are used to generate the normal 
distribution with a 99% confidence value range.  In the framework, the ranges of 
terramechanics input parameters that will cover the regions of interest are first 
identified.  Within these ranges of terramechanics input parameters, a Dynamic 
Kriging (DKG) surrogate model of the Speed Made Good is generated using NATC 
Wheeled Vehicle Platform complex terramechanics model runs at the design of 
experiment points.  Finally, inverse reliability analysis using Monte Carlo Simulation 
is carried out to generate the reliability-based stochastic mobility maps for Speed 
Made Good and Go/NO-GO decisions.  It is found that the deterministic map of the 
region of interest has probability of only 25% to achieve the indicated speed. 
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1 INTRODUCTION 
For efficient coalition mission planning of 

NATO forces under different terrain scenarios and 
for selection of capable vehicles, reliability-based 
stochastic off-road mobility maps needs to be 
developed using full stochastic knowledge of 
terrain properties and modern terramechanics 
modelling and simulation (M&S) capabilities.  In 
the traditional NATO Reference Mobility Model 
(NRMM), only the nominal deterministic values 
of variables involved in the terrain properties and 
terramechanics simulation models are considered 
in generation of off-road mobility maps.  The 
developed deterministic mobility maps would not 
be reliable and thus cannot be used effectively in 
mission planning of NATO forces under different 
terrain scenarios and for selection of capable next 
generation of combat vehicles.  Thus, it is 
desirable to develop reliability-based stochastic 
mobility maps that can provide with desirable 
reliability levels in determining mobility of 
military vehicles across various terrains.  The 
objective of this study is to develop a framework 
for a stochastic approach for vehicle mobility 
prediction over large regions and demonstrate 
generation of reliability-based stochastic mobility 
maps, such as Speed Made Good and GO/NO-GO 
associated with target reliabilities.  This 
framework is aimed to be part of a suite of Next 
Generation NATO Reference Mobility Model 
(NG-NRMM) tools.  Key variables of off-road 
conditions include those related to terrain 
elevation and soil property data and their 
variabilities as shown in Fig. 1 [1].  The ground 
vehicle parameters and their variabilities could 
also be addressed for a full stochastics treatment, 
but were not considered in this study.  

 
The current NRMM output is given in terms of a 

deterministic mobility map [2, 3].  This map 
shows the means of cross-country speed between 
two points in a given region for a given vehicle.  
As recommended by Refs. 4 and 5, a stochastic 
analysis should be carried out in terms of 

probability densities and reliabilities.  However, 
previous attempts to convert NRMM from a 
deterministic framework to a stochastic one have 
failed in the origin of uncertainties.  No formal 
mathematical reasoning about the uncertainty 
types that need to be introduced in the simulations 
was given in Refs. [4, 5, 6].  Also, the current 
NRMM does not support autonomous mobility 
(this issue was pointed out in Ref. [7]).  While this 
capability is highly desirable in the NG-NRMM 
because current and future defense forces include 
autonomous systems, it was not considered in this 
study. 

 

 
 

Figure 1. NG-NRMM Mobility Map Generation – 
Courtesy of [McCullough, et al., 2016] 

 
The stochastic approach for mobility predictions 

over large regions should be integrated into NG-
NRMM, where both the terrain profile and 
vehicle-terrain interaction play a key role.  The 
following recommendations are made in Ref. [8]. 
• Any extension of NRMM in terms of 

stochastic mobility prediction should allow for 
consideration of uncertainty in elevation as 
well as in soil physical properties.  This is 
addressed in this study. 

• Computation time constitutes a key factor that 
must be considered in the development of the 
new NRMM.  In this sense, any new proposal 
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should focus on efficient algorithms.  This is 
addressed in this study. 

• It is desirable from a stochastics perspective to 
base vehicle-terrain interaction on the Bekker-
Wong model [9, 10], as these models are 
compatible with numerous multi-body 
dynamic simulation codes.  The Bekker-Wong 
model is usually used for simple 
terramechanics models.  As we used a 
complex terramechanics model for vehicle-
terrain interaction, the Bekker-Wong model is 
not used in this study. 

 
The propagation of variability involves 

calculating propagation of variabilities from 
elevation and soil property measurements into to 
mobility, such as Speed Made Good and GO/NO-
GO, using terramechanics simulation models for 
generation of reliability-based stochastic mobility 
map, across the given geographic area.  In this 
paper, we describe a framework that is developed 
for a stochastic approach for vehicle mobility 
prediction over a region of interest [11].  In this 
framework, an input model of the terrain is created 
using geostatistical methods.  The performance of 
a vehicle is then evaluated while considering the 
terrain profile and the vehicle-terrain interaction.  
In order to account for terrain property variability, 
Monte Carlo simulations are performed, leading to 
a statistical analysis. 

 
2 INPUT ELEVATION AND SOIL PROPERTY 
DATA INCLUDING VARIABILITY 

This section describes different types of 
uncertainties and input distribution models for 
terrain elevation and soil property and their 
variabilities. 

2.1 Irreducible and Reducible 
Uncertainties in NG-NRMM 

In developing reliability-based stochastic 
mobility maps, it is necessary to use right types of 
input uncertainties as they will affect the 
reliability-based stochastic mobility map results.  
There are two types of uncertainties: irreducible 

uncertainty (variability) and reducible uncertainty 
(imperfection).  Irreducible uncertainty refers to 
the inherent variability of data such as in terrain 
elevation and soil property variables.  It is often 
expressed through statistical metrics such as 
variance, standard deviation, and interquartile 
ranges that reflect the variability of the data.  The 
variability cannot be reduced, but it can be better 
characterized (i.e., better distribution model).  
Reducible uncertainty refers to imperfections in 
mechanical simulation models or input 
distribution models.  The term imperfection in 
mechanical simulation models is biasness of the 
terramechanics simulation model.  The term 
imperfection in input distribution models is the 
uncertainty caused by the inability to correctly 
predict the input distribution and its parameters 
from limited data – it does not refer to variability.  
Reducible uncertainty can be either qualitative or 
quantitative and can be eliminated or reduced with 
better simulation model and more data.   

 
Based on these definitions, the irreducible and 

irreducible uncertainties in NG-NRMM are as 
followings. 
 Irreducible uncertainty:  
 Terrain property variables (e.g., elevation, 

soil composition, bulk density, temperature, 
moisture content, etc.), including known 
measurement errors. 

 Terramechanics input parameters (e.g., 
slope, soil cohesive strength, soil friction 
coefficient, bulk density, etc.). 

 Reducible uncertainty:  
 Input distribution models obtained using 

limited number of terrain data. 
 The terramechanics simulation models are 

abstractions of the physical system (i.e., 
vehicle) and it is possible that these models 
may not depict the actual physical event 
correctly.  Uncertainty about the model's 
structure, i.e. uncertainty about the cause-
and effect relationships, is often very 
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difficult to quantify.  If so, it should be 
treated as reducible uncertainty. 

 Another situation is, when generating 
response surfaces using design of experiment 
(DOE) samples, if the response surface 
includes error, then we have reducible 
uncertainty.  Thus, the Kriging variance 
(estimation error) should not be treated as 
irreducible uncertainty but as reducible 
uncertainty. 

 
When evaluating reliability, only irreducible 

uncertainty (i.e., variability) should be considered 
as the input since the reliability is not a function of 
reducible uncertainty.  If uncertainty exists due to 
(1) lack of information in input terrain data for 
input distribution modeling, (2) terramechanics 
simulation models do not depict the actual 
physical event correctly, or (3) Kriging surrogate 
model variances are not ignorable, then attempts 
should be made to reduce imperfections in 
mechanical simulation models and/or input 
distribution models instead of using these 
reducible uncertainties as input variabilities.  To 
deal with reducible uncertainty, a confidence 
measure needs to be developed to have confidence 
in the reliability-based stochastic mobility map.  In 
addition, existence of reducible uncertainty calls 
for employment of validation and verification 
(V&V) procedure to ensure the effectiveness of 
the terramechanics models.  In this study, only 
terrain property variabilities are considered for 
development of the reliability-based stochastic 
mobility map. 

 
2.2 Input Distribution Model 
Terrain elevation data are usually obtained using 

remote sensory techniques (i.e. radar technology, 
imagery methods, etc.).  Those techniques lead to 
uncertainty in terrain data values as well as the 
spatial position of data points.  Thus, any elevation 
model of the terrain includes uncertainty.  Digital 
Elevation Models (DEMs) produced by the US 
Geological Survey agency are a good example of 

this issue.  Spatial variability of physical terrain 
properties (e.g. soil bulk density, cohesion, 
internal friction angle, etc.) also leads to 
uncertainty in vehicle-terrain interaction models.  
In addition, measurement methods of the soil 
properties are uncertain in nature.  Specifically, 
this framework involves methods for using 
ArcGIS/ENVI data [12] and complex 
terramechanics model, to generate reliability-
based stochastic mobility prediction maps.  It is 
noted that the developed framework in this study 
should allow continuous future improvements, 
which can be repeated when (1) the input 
distribution models are refined with better data 
and (2) the terramechanics models used are 
revised, improved or changed as long as the 
terramechanics models accept the same input 
format from the ArcGIS/ENVI database [12] and 
generate appropriate speed outputs. 

 
While the terrain elevation data can come from 

various sources and take on various formats, in 
our study, the elevation data is provided in a raster 
format.  Common resolutions for the elevation 
data is 30-m and 90-m.  The variability 
information for the elevation data is required to 
take into account the uncertainty of the elevation 
data measurement.  This variability information 
should ideally come in the form of a plus-minus 
tolerance with an associated confidence interval 
with, e.g., ±12 m with 90% confidence.  This can 
then be used to construct a normal (i.e., Gaussian) 
distribution that represents the variability of the 
elevation measurements.  For the prototype 
demonstration presented in this study, the 
Monterey, California, data is used.  The elevation 
data for this location was provided by the Shuttle 
Radar Topography Mission (SRTM) database 
[13].  The website for SRTM provides the 
variability information and states that for the 
30x30 m data the accuracy is ±16 m with accuracy 
being at the 90% confidence level.  Figure 2 
shows how the elevation variability information is 
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used to construct a distribution for the elevation 
for cell of the raster. 

 

 
 
Figure 2. Elevation Variability and Distribution 
 
The slope is calculated by ArcGIS using the 

elevation raster.  Thus, to obtain the variability of 
the slope, the variability of the elevation is needed 
so it can be propagated through the slope 
calculation.  A simple toolbox was created in 
ArcGIS that calculates the slope using the 
elevation raster as shown in Fig. 3.  The toolbox 
loops over all the elevation rasters provided in a 
directory and calculates the slope for each raster.  
To generate the distribution of the slope at given 
point, realizations of the elevation raster have to 
be generated using the normal distribution.  Once 
the elevation raster realizations are generated, the 
slope realizations can be generated using the 
toolbox in ArcGIS.  This then provides the 
variability of the slope. 

 

 
 

Figure 3. ArcGIS Slope Calculation Toolbox 
 
Currently there is very little information 

available on the variability of the soil properties.  
The only information found was from 

Geotechnical Parameters site [14].  This site 
provided two tables, one soil cohesion values and 
the other friction angle values.  These two tables 
provided minimal variabilities, which are all that 
currently available.  For some of the soil types, the 
min and max values of the soil property were 
provided.  For some other soil types, a specific 
values were provided without min and max values.  
Using the min and max values, the distribution 
type was assumed to be a normal distribution with 
a 99% confidence on the min and max value 
range.  Using these two assumptions, the 
distributions for the soil parameters for each of the 
different soil types were constructed.  For the soil 
types that did not have min and max values 
provided, an assumption was made on the min and 
max values based on the specific value and other 
soil types that were similar.  It is acknowledged 
that this may not be accurate, but was the best 
information available at the time.  For the peat soil 
type, the Geotechnical Parameters site [14] did not 
provide a range or a specific value.  For peat, Ref. 
[15] provided min and max values for the 
cohesion of undistributed and reconstituted peat.  
Since there was no other variability information 
provided, these min and max values were used 
with the same assumptions as the other soil types 
to construct the distribution.   

 
For the bulk density, a USDA SSURGO Web 

Soil Survey database [16] containing bulk density 
measurements was available.  There were a few 
measurements available for each soil type in the 
database, which were not enough data for fitting a 
distribution.  Therefore, these measurements were 
used to determine the min and max values of the 
bulk density for the different soil types.  These 
min and max values were used with the same 
assumptions to construction the distribution for the 
bulk density for different soil types.  With all of 
these soil variability information gathered, each 
soil type has its own distribution for each of the 
soil properties, cohesion, friction, and bulk 
density.  Figure 4 shows a representative of this 
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variability information: for a given soil 
classification, there is a distribution for the 
cohesion, friction, and bulk density.  It is 
acknowledged that more data on the soil 
properties are required in order to construct 
accurate distributions for each soil type and 
parameter. 

 

 
 

Figure 4. Variability of Soil Properties 
 

3. ADVANCED KRIGING FOR SURROGATE 
MODELLING 

The previous NG-NRMM uncertainty treatment 
effort [11] used simple Kriging (i.e., ordinary 
Kriging) to fit elevation data via the ArcGIS 
Geostatistical extension.  This was used to 
generate a sample of random elevation 
realizations.  They have generated a mobility map 
accounting for two sources of uncertainty, namely 
measurement errors (RMSE of a digital elevation 
model) and interpolation error (Kriging method).  
However, as described in Section 2.1, the 
interpolation error is reducible uncertainty and 
should not be included in generation of stochastic 
mobility prediction.  The slopes from each 
realization were used to make a stochastic 
mobility prediction.  This was overlaid with a soil 
type map and all points with silty soil were 
declared off limits.  The resulting GO/NO-GO 
maps were used for an optimal route planning 
demonstration using ArcGIS functions. 

 
In conventional universal Kriging, the responses 

at design of experiment (DOE) points xi, i = 1,…, 
n, are represented by 

, [ ( ), 1, ..., , 1, ..., ]
n Kk if k K i n
×

= + = = =y Fβ Z F x

where 1K×β  is regression coefficients, ( )k if x  are 
polynomial basis functions, and 

[ ]1 1( ), ..., ( ) T

n nZ Z× =Z x x  are realizations of 
Gaussian random process Z(x) with zero mean and 
covariance ( ) 2( ), ( ) ( , , )i j i jCov Z Z Rσ=x x θ x x .  Here 

( , , )i jR θ x x  is the correlation function of the 
stochastic process, 2σ  is the process variance and 
θ is the process correlation parameter vector. 

 
For the objective of this study, the features 

identified from literatures that are desirable to be 
included in the advanced Kriging method to deal 
with the non-stationary and non-Gaussian 
geostatistical data are as listed below: 
• The first one is a subregion-based Kriging 

model to deal with the common issue of non-
stationary variogram models [11, 17, 18, 19, 
20], since the variogram can be considered 
stationary within the smaller subregion.  In 
addition, the subregion method will allow 
parallel processing in generation of the 
Kriging models and thus achieve faster 
computational time.  Furthermore, this will 
yield smaller dimension of the correlation 
matrices that need to be inverted. 

• The second method to deal with non-stationary 
issue is using the universal Kriging with 
higher order polynomials [17, 21] instead of 
the ordinary Kriging (simple Kriging) that uses 
0th order polynomial for the trend function.  
Combined with the subregion-based Kriging 
model, up to the second order polynomial 
would be sufficient for the trend function.  
However, using one second order polynomial 
as the default trend function for all subregions 
would not provide the best accurate results.  
Thus, a method to select the best polynomial 
order of the trend function for each subregion 
is desirable for accurate Kriging model. 

• Kriging produces an interpolation function 
based on a covariance (i.e., variogram) model 
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derived from the data rather than an a priori 
model of the interpolating function.  For this, 
the Gaussian correlation model is widely used.  
To improve accuracy for the non-stationary 
and non-Gaussian data, a standard approach is 
finding some non-linear transformation that 
enables the use of Gaussian models [18].  
However, as the models grow more complex, 
for example by introducing non-stationary 
covariance functions; spatially varying 
measurement errors; or covariates for the 
mean, the effects of the transformation 
methods become less transparent and more 
stale [22].  In these situations, one would like 
to use latent non-Gaussian models without 
resorting to transformations.  Or seven 
correlation functions (exponential, general 
exponential, Gaussian, linear, spherical, cubic, 
spline) could be used to model the covariance.  
Like the trend function, the best correlation 
function needs to be selected for each 
subregion depending on the data in the 
subregion. 

• A method for selection of a combination from 
three trend functions and seven correlation 
functions for each subregion to yield the best 
accuracy of the Kriging model would be 
desirable. 

• Need to find the global optimal correlation 
parameters θ of the covariance function that 
maximizes the likelihood function based on all 
observations.  It is desirable that the method 
provides the global optimal correlation 
parameter θ. 

• Desirable to have a sub-sampling method for 
reduced-order representation of the DEM 
points for Kriging model that minimizes the 
Kriging variance (and thus reduce 
uncertainty).  Also, the sub-sampling method 
would help in reducing the computational time 
as well as inverting the correlation matrix in 
Kriging model by avoiding close data points 
(i.e., singularity) when inverting. 

 

In this study, the Dynamic Kriging (DKG) 
method developed by RAMDO Solutions is used 
as the advanced Kriging for terrain modelling.  
The uniqueness of the DKG method include: 
• Select best trend function from 0th, 1st, and 2nd 

order polynomials using cross validation (CV) 
error.  

• Select best correlation function R(θ, xi, xj) 
from 7 candidates using maximum likelihood 
estimation (MLE). 

• Automatically select best DKG model from 
7×3 = 21 different options for surrogate 
models. 

• Search global optimal correlation parameter θ 
using MLE and the Global Pattern Search 
(GPS) algorithm [23]. 

• Adaptive sequential DOE point to minimize 
the variance of the Kriging results in between 
DOE sample points. 

The DKG method [20, 24, 25] is identified as one 
of the most accurate surrogate modeling methods 
in Ref. [26]. 

 
4. PROPAGATION OF UNCERTAINTY FOR 
RELIABILITY ASSESSMENT OF MOBILITY 

For the objective of this study, the capability that 
needs to be developed is uncertainty quantification 
(UQ) and reliability assessment for Speed Made 
Good and GO/NO-GO decisions based on the 
input distribution models of the terrain elevation 
and soil property parameters.  For this, the DKG 
surrogate model of the vehicle Speed Made Good 
with respect to four parameters (slope, bulk 
density, soil adhesive strength and soil friction 
coefficient) needs to be generated using the 
complex terramechanics model (i.e., the vehicle) 
runs at the DOE points as shown in Fig. 5.  Using 
the DKG surrogate model of the Speed Made 
Good; input distribution models of the four 
parameters; and the ArcGIS/ENVI data of the 
region of interest; the inverse reliability analysis is 
carried out to obtain reliability-based stochastic 
mobility map for Speed Made Good and GO/NO-
GO decision. 
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The developed framework for propagation of 

uncertainty is as following (refer to Fig. 5). 
Step 1. Identify Ranges of Terramechanics Input 
Parameters That Will Cover the Regions of 
Interest: 

Use the ranges (lower and upper bounds) of four 
terramechanics input parameters over the 
regions of interest to construct 4-D Dynamic 
Kriging (DKG) surrogate model of the Speed 
Made Good using the complex terramechanics 
model.   

Step 2. Design of Experiment (DOE) Samples of 
Speed Made Good for DKG:   

a. Generate initial DOE points within the lower 
and upper bounds of four parameters using a 
modified Transformations Gibbs Sampling 
(TGS) algorithm. 

b. Evaluate Speed Made Good (i.e., steady-state 
speed) at the selected DOE points by running 
the complex terramechanics model on the 
Army DSRC High Performance Computing 
(HPC) systems (parallel runs). 

c. Add additional multiple DOE points using an 
adaptive sequential DOE sampling method at 
locations where the DKG surrogate model has 
largest amounts of the Kriging (DKG) 
variances. 

d. The sequential sampling process is iterative 
and continues until the accuracy tolerance of 
the convergence MSE of the DKG surrogate 
model is achieved. 

Step 3. DKG Surrogate Model of Speed Made 
Good:   

Generate the DKG surrogate of the Speed Made 
Good as a function of the four terramechanics 
parameters.  Steps 2 and 3 are the most compute 
intensive process.  However, the surrogate 
model can be reused for other regions of interest 
to generate reliability-based stochastic mobility 
map, which is the map for the same 
terramechanics model (i.e., the same vehicle). 

Step 4. Input Distribution Models 

Obtain input distribution models of the four 
terramechanics parameters (slope, soil cohesive 
strength, soil friction coefficient and bulk 
density) for the region of interest as described in 
Section 2.2. 

Step 5. Inverse Reliability Analysis of Speed 
Made Good:   

Carry out inverse reliability analysis to predict 
the Speed Made Good for reliability-based 
stochastic mobility map of the region of interest.  
A number of Monte Carlo Simulation (MCS) 
samples at each location of the pixels to generate 
reliability-based stochastic mobility map.  Using 
the DKG surrogate of the Speed Made Good 
previously generated, this process can be carried 
out efficiently.  This will allow quicker 
generation of the stochastic mobility map.  If 
necessary, then repeat Steps 4 and 5 to generate 
new stochastic mobility map for another region 
of interest.  
 

 
 

Figure 5. Generation of Reliability-Based 
Stochastic Mobility Map 

 
The simulation-based uncertainty quantification 

of the mobility map is accurate assuming: (1) 
accurate input distribution models, (2) accurate 
terramechanics simulation models and (3) accurate 
surrogate model.  However, in reality, as we have 
seen in this study, only limited numbers of input 
data for terramechanics parameters are available 
for modelling input distributions.  Thus, the 
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estimated input distribution models are uncertain.  
Also, the terramechanics simulation model could 
possibly be biased due to assumptions and 
idealizations used in the modelling process.  In 
addition, the surrogate model could be inaccurate.  
For validation of the Speed Made Good 
prediction, only a limited number of physical 
vehicle driving test data can be obtained in 
practical applications.  As a result, target output 
distributions for the vehicle speed, against which 
the terramechanics simulation model can be 
validated are uncertain and the corresponding 
reliability become uncertain as well.  To assess 
conservative reliability of the vehicle speed 
properly under these reducible uncertainties due to 
limited numbers of both input and output test data 
and a biased terramechanics simulation model, a 
confidence-based reliability assessment method 
[27] would be desirable to be developed in the 
future. 
 
5. PROTOTYPE DEMONSTRATION 

This section presents the prototype 
demonstration of generation of the reliability-
based stochastic mobility maps.  For the prototype 
demonstration, Monterey, California is selected as 
the region of interest.  For the complex 
terramechanics model, NATC Wheeled Vehicle 
Platform shown in Fig. 6 is used.  The complex 
terramechanics model was developed by 
Advanced Science and Automation Corporation 
[28, 29]. 

 
Figure 7 shows the concept of how the 

variability of terrain and soil properties are used 
with a UQ tool [30] together with the 
terramechanics simulation model to generate the 
reliability-based stochastic mobility maps.  The 
deterministic soil type data is provided as a 
GeoTIFF as shown in Fig. 7.  The provided soil 
type is assumed to be correct, i.e., no variability in 
the soil type (e.g., sand, clay, etc.) is assumed.  
Variability in the soil comes from the variability in 

the soil parameters (bulk density, soil adhesive 
strength and soil friction coefficient). 

 

 
 

Figure 6. Complex Terramechanics Model of 
NATC Wheeled Vehicle Platform 

 

 
 
Figure 7. Propagation of Variability to Generate 

Reliability-Based Stochastic Mobility Maps 
 
RAMDO [30] is used to create the DKG model 

of the complex terramechanics simulation model 
(i.e., the vehicle) of the NATC Wheeled Vehicle 
Platform.  To create the DKG model 32 DOE 
points were created for the four-dimensional 
problem. The four variables used were slope, 
cohesion, friction angle, and bulk density of the 
soil.  The 32 complex terramechanics simulation 
models were created.  The 32 runs were carried 
out using 32 cores for each job and running all 32 
jobs in parallel.  Each run took between 5-7 days 
to complete.  The response of interest from the 
simulation was the speed made good.  Once the 
DKG model is created, it is used together with the 
UQ tool for the variability propagation by carrying 
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out inverse reliability analysis to predict the Speed 
Made Good for reliability-based stochastic 
mobility map of the region of interest.  For the 
inverse reliability analysis, we need more than 
1,000 of Monte Carlo Simulation (MCS) samples 
at each location of 3,6012 = 12,967,201 pixels for 
Monterey, California to generate reliability-based 
stochastic mobility map.  However, using the 
DKG surrogate of the Speed Made Good 
previously generated, this process can be carried 
out efficiently.  This will allow quicker generation 
of the stochastic mobility map without requiring to 
use HPC.  Using the UQ tool the distribution of 
the Speed Made Good at cell of the raster is 
obtained as shown in Fig. 8.  These distributions 
can then be used to create the reliability-based 
stochastic mobility maps as shown in Fig. 8.  The 
90% Speed Made Good map means that there is 
90% probability that the maximum obtainable 
speed is greater than or equal to the value shown 
on the map as shown in Fig. 8.  If speed is mission 
critical, e.g., delivering supplies urgently needed, 
then using a higher probability map would be 
desirable.  If speed is not mission critical then 
using a lower probability map could be acceptable. 

 

 
 
Figure 8. Distribution of Speed Made Good for 

each Cell of Raster 
 
The propagation of the variability of the terrain 

and soil properties was successfully demonstrated 
in creating the reliability-based stochastic mobility 
maps shown in Fig. 9 for Monterey, California.  If 
variability is not taken into consideration when 

generating the Speed Made Good maps, then a 
deterministic map is generated as shown in the last 
figure in Fig. 9.  It is seen that the deterministic 
map appears to be somewhere between the 20% 
and 30% reliability maps, meaning the 
deterministic map only has probability of 
approximately 25% to achieve the indicated speed 
just from visual comparison.  This demonstrates 
the need for taking into account the variability so 
that accurate Speed Made Good maps can be 
generated and have a given reliability or 
confidence attached to them, in order to provide 
more information to the decision maker. 

 
It is interesting to note that these reliability-

based stochastic mobility maps are like “FEMA 
Flood Map.”  For example, the 100-year flood 
map is referred to as the 1% annual exceedance 
probability of flood, since it is a flood that has a 
1% chance of being equaled or exceeded in any 
single year (i.e., 99% reliability). 

 
The same DKG model of the terramechanics 

simulation model (i.e., the vehicle) in Fig. 7 is 
used for the variability propagation by carrying 
out inverse reliability analysis to predict the 
GO/NO-GO region.  The UQ tool that is used to 
obtain reliability-based Speed Made Good at cell 
of the raster shown in Fig. 8 is used to create the 
reliability-based GO/NO-GO maps for Monterey, 

California as shown in Fig. 10.  For GO/NO-GO 
maps, the cut-off speed used is 5 miles/hour.  In 
this map, the green color means GO, the red color 
means NO-GO and the blue color means water.  
Thus, the green color in 90% GO/NO-GO map 
means that there is 90% probability that the 
vehicle can move with at least 5 miles/hour speed.  
Note that for up to 40% reliability, the NO-GO 
region does not seem to be significantly showing.  
However, starting at 50% reliability, the NO-GO 
region is beginning to show up clearly. 
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Figure 9. Reliability-Based Stochastic & Deterministic Speed Made Good Mobility Maps 
 

 
 

Figure 10: Reliability-Based GO/NO-GO Decision Maps 
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6. GAPS AND PATH FORWARD 
This section breaks down the gaps that need to 

be filled for continuous future improvement of the 
framework for a stochastic approach for vehicle 
mobility prediction over large regions and 
generation of accurate reliability-based stochastic 
mobility maps for Speed Made Good and GO/NO-
GO decision. 

 
6.1. Raster Data 
For the area of interest all the raster data should 

be the same size.  This is because the uncertainty 
propagation is done cell-by-cell in the raster.  
Converting the data to the same raster size may 
introduce additional approximations or errors.  A 
standard method for how to handle this should be 
developed in the future. 

 
6.2 Terramechanics Simulation Model 
There are several features needed for the 

terramechanics simulation model to be robust and 
fully automated for effective and seamless 
development of DKG surrogate models and 
integration with UQ Tools for a non-
terramechanics expert to be able to use it.  First, 
the model should have an auto steering capability 
to keep the vehicle on the track during the 
simulation.  It is very much desirable that the 
model input be the raw soil parameter data as 
variabilities of these raw soil parameter data will 
be used for input distributions for the reliability-
based stochastic mobility map.  The 
terramechanics simulation model should take 
these raw soil parameter data values and convert 
them to the input values needed/used in the 
terramechanics simulation.  A time step 
determination and adjustment capability should be 
available so that models will run successfully and 
need to be rerun with a different time step if they 
fail due to an incorrect time step.  An automatic 
result extraction capability is needed so that the 
responses can be easily extracted.  Currently it is 
carried out by a manual process of looking at the 
history file and averaging the time history results.  

A method to automatically determine if steady-
state speed has been reached is needed.  This is so 
that terramechanics simulations do not continue to 
run if steady-state is reached. 

 
6.3 Soil Parameter Data 
As mentioned throughout the paper, there is little 

to no soil parameter data available and little to no 
variability information on the soil parameters.  
This data is required for each soil type in order to 
generate accurate reliability-based stochastic 
mobility maps.  The most ideal data would be data 
on the raw soil parameters for the area of interest.  
If this is not possible, then a general database for 
different soil types should be put together so that it 
can be used for a given area of interest.  This may 
result in some inaccuracies as the variability and 
parameter values for a given soil type might be 
different from the actual properties in the area of 
interest; however, this could probably be the best 
obtainable result. 

 
7. SUMMARY AND CONCLUSION 

A framework for propagation of the variability of 
the terrain and soil properties was successfully 
demonstrated in creating the reliability-based 
stochastic off-road mobility maps for Speed Made 
Good and GO/NO-GO decisions to support the 
NG-NRMM using full stochastic knowledge of 
terrain properties and modern terramechanics 
modelling and simulation capabilities.  To 
generate the distribution of the slope at given 
point, realizations of the elevation raster are 
generated using the normal distribution.   

For the soil property parameters, such as 
cohesion, friction and bulk density, the min and 
max values obtained from geotechnical databases 
for each of the soil types are used to generate the 
normal distribution with a 99% confidence value 
range.  In the framework, the ranges of 
terramechanics input parameters (i.e., slope, 
cohesion, friction and bulk density) that will cover 
the regions of interest are first identified.  Within 
these ranges of terramechanics input parameters, a 
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Dynamic Kriging (DKG) surrogate model of the 
Speed Made Good is generated using a complex 
terramechanics model runs at the design of 
experiment points.  This is the most compute 
intensive process in the framework that may 
require HPC.  

Once the DKG surrogate model is generated for 
the selected ground vehicle, then inverse 
reliability analysis using Monte Carlo Simulation 
can be carried out to generate the reliability-based 
stochastic Speed Made Good and GO/NO-GO 
maps of the region of interest.  Using the 
generated DKG surrogate of the Speed Made 
Good, this process can be carried out efficiently.  
This will allow quicker generation of the 
stochastic mobility map without requiring to use 
HPC.  For a prototype demonstration of the 
developed framework, Monterey, California is 
selected as the region of interest.  For the complex 
terramechanics model, NATC Wheeled Vehicle 
Platform is used.  It is found that the deterministic 
map appears to have probability of approximately 
only 25% to achieve the indicated speed.  This 
demonstrates the need for taking into account the 
variability so that accurate Speed Made Good 
maps can be generated and have a given reliability 
or confidence associated with them, in order to 
provide reliable information to the decision maker.   

The variability information of the terrain and soil 
parameters was discussed and it was found that 
currently there is a gap in the available 
information for the soil parameters.  It was also 
noted how there is little to no variability 
information available for the soil properties and 
that more information is required in order to 
generate accurate reliability-based stochastic 
mobility maps.  This is one of the bigger gaps that 
needs to be addressed near future.  There are 
additional gaps with the raster data and 
terramechanics simulation model that were 
discussed as well. 
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