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ABSTRACT 
Test course characterization has long relied on single-line profile 

measurements which provide elevation as a function of distance.  These profiles 
are analyzed to provide various statistics and metrics.  While these metrics can be 
useful, single-line profiles will always lead to a limited characterization.  A 
vehicle has multiple concurrent inputs from the ground, inducing not just vertical 
excitations but also pitching, rolling, and twisting displacements (amongst 
others).  Improvements in profiling equipment have enabled the ability to sample 
and characterize the entire surface.  This paper identifies two characterization 
methods which take advantage of a full surface scan.  The first uses orthogonal 
transverse modes which could either be extracted with Singular Value 
Decomposition (SVD) or be predefined polynomials.  The second extracts a 
concurrent profile under each wheel for a given vehicle axle spacing and track 
width.  Orthogonal basis vectors are then projected onto the concurrent profiles 
to extract the heave, pitch, roll, and twist inputs from the ground into the vehicle. 

 
INTRODUCTION 

  Single-line elevation profile characterization of vehicle test courses has a long history, starting with rod 
and level staff survey data and progressing toward geometric and inertial based profilers.  These profiles are 
used by different groups such as field testers, vehicle modelers, test course maintainers, and test course 
developers for different reasons.  Procedures exist to describe the equipment and processes by which single-
line profiles are generated and analyzed [1].    However, the metrics typically generated from single-line 
profiling at best describe the plausible input to a single vehicle wheel.  The goal of this paper is to move 
towards establishing metrics which consider the full width of the test course or account for concurrent inputs 
at all wheels of the vehicle. 

  For this paper a single-line profile is defined as a profile intended to describe the elevation of the terrain 
along that line, regardless of source of the profile data.  The need to move beyond single-line profile analysis 
is especially apparent with off-road environments.  A vehicle’s responsiveness to heaving, rolling, pitching, 
twisting and cresting inputs determines its mobility and ride quality performance.  Characterizing full-width 
and concurrent wheel inputs extends characterization and analysis, just as half-car and full-car computer 
models provide advantages over a quarter-car model.  This paper discusses two approaches for characterizing 
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terrain beyond single-line profiling.  The first focuses on transverse profiles projected onto orthogonal basis 
vectors.  The second approach focuses on concurrent vertical inputs from the ground into the vehicle wheels. 

 
  Laser Scanning Test Courses 
  In 2012 Aberdeen Test Center began to regularly measure and characterize its courses with a laser scanner 

profiler system mounted on the back of a High Mobility Multi-purpose Wheeled Vehicle (HMMWV).  The 
system produces a data point cloud covering an area approximately 12 ft wide that extends the entire length 
of the course.  The laser scanner simultaneously samples approximately 4,000 points on the 12-ft wide scan 
line, with a typical scan rate of 1,000 Hz.  The point cloud density is dependent on the traveling speed, which 
typically ranges from 5 to 25 mph (depending on the test course).  A differential GPS-based Inertial 
Navigation System (INS) is mounted on the same platform as the laser scanner and its outputs are recorded 
with the same time basis.  The INS is used to measure the dynamic motions of the platform to rectify the 
relative distance measurements from the laser scanner into absolute ground-height measurements.  
Traditional single-line profiles can be extracted from the point cloud in post processing and analyzed for 
Wave Number Spectra (WNS), root mean square (RMS), higher order statistics, grade, and International 
Roughness Index (IRI) values.  However, as noted earlier, these metrics do not fully describe terrain inputs 
that affect vehicle dynamics and ride. 
 
TRANSVERSE PROFILES AND DERIVED CHARACTERISTICS 

A more complete set of metrics for describing test courses can be produced by including transverse 
profiling.   Two methods of transverse profiling are discussed below, including data projection onto 
orthogonal polynomial basis vectors and Principle Component Analysis (PCA).  In both cases the larger 
point cloud is reduced to a simpler representation of the transverse profiles along the course length.  Both 
methods require a uniform mapping of the laser profiler point cloud data, which in its raw form is 
non-uniform due to curves in test courses and time based data sampling on a platform with varying speed.   
The point cloud data reduction method known as Curved Regular Grid (CRG) [2] provides the uniform 
mapping and is described first. 

   
  Curved Regular Grid Data 

  A CRG maps the [X (easting), Y(northing), and Z (elevation)] coordinates of a point cloud into (U,V,Z) 
coordinates, where U is the distance along a curving path, V is the distance perpendicular to that path, and Z 
is the same height value.  An explanatory graphic is provided in Figure 1.  The data is then interpolated onto 
a grid covered by the remapped point cloud.  This grid has a width that is equal to the scan width (12 ft) and 
a length defined by the test course length.  The new rectangular area avoids dealing with the irregular empty 
space apparent in XYZ space.  The organized nature of the gridded data permits the use of established 
analytical techniques such as matrix multiplication, Fast Fourier Transforms (FFT), low-pass and high-pass 
filtering, and cross path analysis tools (covariance (cov) and Cross Spectral Density (CSD)). For this work, a 
CRG is created from a decimated data point cloud to form a LxT grid, where T is the number of gridlines 
across the full scan width (typically 121 gridlines) and L depends on the length of the scan.  The curved path 
is derived from the profiler INS location, though any arbitrary path could be driven through the point cloud.  
For this paper the CRG are detrended along the course length with a high pass Butterworth filter.  Detrending 
is not a necessary step for any analysis described in this paper, but it is helpful for results comparison and 
plotting purposes. 
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Figure 1.  Graphic explaining CRG conversion from XY space to UV space 

 
  Transverse Component Analysis of CRG 
  Once the CRG is established the transverse profiles across the width of the course can be analyzed just as 

easily as the longitudinal profiles along the course length.  Ferris and others [2-3] have explored projecting 
the transverse profiles onto orthogonal basis vectors to create independent resultant vectors.  A set of basis 
vectors can be considered orthogonal when all the vectors are orthogonal to all other vectors in the set.  Two 
vectors are orthogonal when their dot product equals zero.   Legendre and Chebyshev polynomials are often 
recommended as basis vectors.  In this approach the polynomials are projected against the transverse CRG 
grid lines (V).  The first five Chebyshev polynomials are presented in Figure 2. 
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Figure 2.  The first five Chebyshev polynomials 

 
  The equation for a scalar dot product projection is given in Eq. 1, 
 

                                                                       (1) 
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where Zr is the original data from the CRG at row location r along length Ur, P is the unit vector onto which 
it is projected, and Rr is the resultant projection.  This demonstrates that the projection of a CRG onto a set of 
basis vectors can be done with basic matrix multiplication, as shown in Eq. 2.   
 

                                                                          (2) 
 

Each column of the resultant matrix, W, contains the changing projection of a basis vector onto a transverse 
line across the course width, with the basis vectors contained in the columns of B.  W has the same number 
of columns as B and the same number of rows as the CRG, Z. 

  The Legendre and Chebyshev polynomials curves are useful because they can describe aspects of a road 
that are commonly of interest.  For example, the 0th polynomial generally describes the elevation across the 
width, the 1st polynomial describes banking, and the 2nd describes crowning, while the 3rd and 4th describe 
rutting that may form along the length of the road.  (An infinite number of polynomials could be calculated, 
with higher order polynomials consisting of more peaks-valleys and zero crossings.)  To make use of this 
parlance, a relatively flat test course that contains a banked turn halfway along its length would have a 
resultant array, W, with the second column containing near zero values during the flat portions and non-zero 
values during the banked turn.  Similarly an improved gravel road with a built-in crown would have negative 
values on the third column of W to indicate the crown is raised in the middle. 

 
A potential shortcoming of the use of Legendre or Chebyshev polynomials is that the shape of higher order 

polynomials may not provide good fits for existing course features.  For example, the “rutting” positions of 
the 3rd and 4th polynomials are located at 50% and 70% of the distance from the centerline.  A test course 
may have rutting, but if the rutting does not occur at those distances from the centerline the 3rd and 4th 
polynomials will not represent the actual rutting very well. 

  
  Principal Component Analysis of CRG 
  Principal Component Analysis is an alternative means for producing transverse profiling metrics.  

Different methods exist, but a simple and effective technique is to perform a Singular Value Decomposition 
(SVD) of the covariance matrix of CRG, Z, as described in Eq. 3 and Eq. 4, 

                                                            (3) 

 
                                                                          (4) 

 
where Cij is the covariance between the ith and jth column of Z, E[] is the expectation operator, and i is the 
mean of the ith column.  The SVD represented in Eq. 4 describes how C (a square matrix) is decomposed into 
matrices B, S, and A, with * denoting the complex conjugate of A.  The math related to Eq. 3 and Eq. 4 do 
not need to be described here, except to say they can easily be performed in Matlab® with the commands 
C=cov(Z) and [B,S,A] = svd(C).  The important thing to note is that B represents a set of unique orthonormal 
basis vectors while the diagonal values of matrix S, the singular values, represent the relative weightings of 
those vectors.  Specifically, Sii represents the contribution of vector Bi to the variance of the test course.  
Interestingly the sum of all the values in matrix Cij equals the sum of all the singular values in vector Sii. 

  The matrix B can be used to analyze changes in transverse content along the length, just as the Chebyshev 
polynomial vectors were used in the previous section.  To illustrate this, the PCA of a test course was 
performed.  A rendering of a test course section is presented in Figure 3, with its first four principal 
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components in Figure 4.  The singular values for the first 20 components is presented in Figure 5.  The 
projections of the first and third PCA components along the length of the course are presented in Figure 6. 
The second component essentially represents the elevation changing uniformly across the course width, 
which is greatly influenced by long wavelength content. There is some similarity between these components 
and the Chebyshev polynomials.  Unlike polynomials, basis vectors from PCA are specific to the terrain 
being characterized.  Features particular to that terrain can be captured by PCA and poorly represented by 
polynomials.   

  

 
Figure 3. A rendering of a test course section and the first several principal components 

 

 
Figure 4. The first four principal components from the PCA of a test course 
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Figure 5. The singular values from the first 20 components 
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Figure 6. Projections of two components along course length 

 
IDENTIFYING MULTIAXIAL INPUTS WITH WHEEL-BASED BASIS VECTORS 

    Even though the transverse profile metrics improve upon traditional single-line metrics, they do not 
describe how the terrain and vehicle interact.  The remainder of the paper introduces a new method to 
generate metrics that characterize terrain-induced mode shapes associated with a test vehicles wheel base and 
track width.  The method proposed provides insight on how test course and vehicle properties interact to 
excite fundamental motions of a test vehicle. 

   This approach starts with an arbitrary path driven through the point cloud following a reference point on a 
vehicle.  For convenience the laser profiler INS path is often assigned as the arbitrary path.  A candidate test 
vehicle is then selected with known wheel base and track width dimensions.  The center of a simple 
geometric model of the candidate vehicle follows the path, where the ground height under each wheel is 
determined from the point cloud data.  Each ground height is sampled based on the distance traveled along 
the path of the candidate vehicle reference point, leading to a simultaneous sampling of the input to each 
wheel.  This means the sampling distance along each individual wheel path can be irregular, such as in 
curving sections where the outer wheels will have a larger sample spacing than the inner wheels.  But from 
the vehicle reference path perspective the sampling is regular.  This profiling method with irregular spacing 
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of wheel inputs is referred to as a Curved Regular Profile (CRP), in contrast to the CRG mapping described 
earlier. 

  A CRP may be useful to a vehicle modeler who is using advanced modeling software.  But terrain analysis 
is usually done without access to vehicle modeling software.  Simple models do exist that take terrain 
profiles as inputs.  The IRI, a quarter car mathematical model, has been extended to half car (HRI) [4-6] and 
full car (FRI) [4-6] representations to take into account multiple profiles.  These all make assumptions about 
the vehicle speed and characteristics for mass, weight, stiffness’s and dampening, and distances between 
wheels.  These models characterize the terrain by characterizing the expected response from a particular 
vehicle type.  In contrast, this paper details how to describe inputs to a vehicle when all that is known about 
the vehicle is the distances between the wheels.  Specifically the goal is to characterize the CRP inputs that 
could induce heave, pitch, roll, and twist responses in a two axle vehicle, as well as crest and double twist 
responses in a three axle vehicle.  The process is described in such a way that the inputs for any number of 
axles can be identified. 

   
  Wheel-Based Basis Vectors 
  Basis vectors are once again used to transform a data set into an alternative representation.  For this 

method, the data set is the wheel position elevation data from the CRP and the alternative representations are 
Heave, Roll, Pitch, Twist, Crest and other content.  For a proper transformation that yields independent 
outputs, the basis vectors must be orthogonal to each other.  The ordering of the wheel locations in the vector 
must be defined ahead of time, and the sign convention must remain consistent when verifying orthogonality.  
The basis vectors can be rescaled to convert the output into preferable units. 

  The Heave and Roll basis vectors are identified through simple inspection.  Heave is defined as all 
elevations traveling up simultaneously.  For a three axle vehicle this is represented by the non-normalized 
vector of [1, 1, 1, 1, 1, 1] to represent the [L1, R1, L2, R2, L3, R3] ground elevations, where L and R 
represents left and right, respectively, while 1,2, and 3 represent each axle counting from the vehicle front to 
back.  Similarly, the Roll vector is identified as rolling about the center line of the vehicle, with left up and 
right down, or being represented as [W1,-W1,W2,-W2,W3,-W3].  Wn is defined as half the track width for the 
nth axle. 

  The Pitch and Twist vectors are not identified so easily.  In general, positive Pitch is defined as the vehicle 
front-down and rear-up, following “SAE-Z up” convention [7].  A pure Pitch action is an angled straight line 
running from front to rear through each axle.  Twist is described as the vehicle left side having positive Pitch 
and the right side having negative Pitch.  But what is not clear is the proper location of the Pitch axis, which 
is also being defined as the Twist axis in this convention.  For a two axle vehicle the Pitch axis is simply the 
midpoint between the front and rear axle.  When a third axle (or fourth, or 5th) exists the weightings given in 
the basis vector depend on the axle spacing.  Algebraic solutions or search algorithms are used to identify 
vectors which minimize the Pitch vector dot product against Heave and Roll.  A Modified Gram-Schmidt 
(MGS) algorithm is later used to ensure all final basis vectors are orthogonal to each other.  The Graham-
Schmidt process is a method to orthonormalize a set of vectors [8-9], and can be easily implemented with a 
Matlab® function.  The initial guesses for Pitch and Twist vectors do not need to be perfectly orthogonal to 
Heave and Roll because the MGS algorithm will find the proper solution. 

  The other basis vectors for vehicles with three or more axles are also dependent on the axle spacing for 
their relative weightings.  The number of possible basis vectors is twice the number of axles.  Imagining ten 
basis vectors for a five axle vehicle is overwhelming.  For this reason it is useful to adopt a rule for how the 
basis vectors should be shaped, with some guidance coming from modal analysis of free-free beams.  



Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

“Practical Features Extracted From Full Surface Terrain Scans”, Approved for public release; distribution unlimited.   
 

Page 8 of 12 

Consider the axle locations on one side of the vehicle to be points on a free-free beam.  Each mode shape has 
a point of no amplitude change called a node, with a characteristic length BnL determined by the free-free 
boundary conditions.  The units of Bn is the inverse of the unit in lengths L and x so that the term inside the 
trigonometric and hyperbolic functions are dimensionless.  The free-free beam approach is only a tool to 
generate a set of orthogonal mode shapes that generally have a useful form.  The MGS algorithm will 
slightly alter these shapes when they are included in the initial matrix with the lower order basis vectors 
(Heave, Roll, Pitch and Twist).  An initial matrix could be created by appending random vectors to the lower 
order basis vectors, but the output from the MGS algorithm will appear random rather than have identifiable 
features such as Crest or Double Twist.  The mode shape equations for a free-free beam and the 
characteristic length for each mode order are provided in Eqs. 5 and 6, with corresponding values provided in 
Table 1.  The mode shape, wn, is a function of position x, where x = 0 represents one end of the beam having 
a total length L. 

 

                (5) 
 

                                                            (6) 
 

Table 1.  Basis Vector Characteristics 
 

Min. 
Number 
of Axles 

Basis Vector Name Number 
of 

nodes 

Free-Free 
Beam Mode 

order, n 

nL 
Symmetric Asymmetric 

1 Heave Roll 0 NA NA 
2 Pitch Twist 1 0 0 
3 Crest Double Twist 2 1 4.73 
4 Double 

Crest 
Asym. 

Double Crest 
3 2 7.85 

5 Unnamed Unnamed 4 3 11.00 
 

  Wheel-Based Basis Vectors Example 
  An example set of basis vectors are developed below for a three-axle vehicle with a track width of 80 in. 

and an axle spacing of 210 in. from axle 1 to axle 3, and 130 in. from axle 1 to axle 2.  The initial vectors are 
not normalized for convenience, since the MGS algorithm in the final step produces normalized outputs.  
The vector indices order the wheel locations as [L1, R1, L2, R2, L3, R3], with the distances in front of the 
vehicle mid-point being positive and rearward of the midpoint being negative. 

  Heave and Roll are identified through inspection and the SAE Z-up convention: 
 

Heave, Hi = [1, 1, 1, 1, 1, 1] 
Roll, Ri = [40, -40, 40, -40, 40, -40] 

 

 ( ) = sin( ) + sinh( ) -  

 -1 = 0 
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  The initial estimates for the Pitch and Twist vectors are determined from a straight line passing through 
each axle and the midpoint on one side of the vehicle.  The slope of this line is not relevant because it is a 
scaling that will be removed when the vectors are normalized. 

 
Initial Pitch, Pi = [-105, -105, 25, 25, 105, 105] 

Initial Twist, Ti = [-105, 105, 25, -25, 105, -105] 
 

  The Crest and Double Twist initial estimates are identified using the free-free beam model, with the 
recognition that to fit the form of Eq. 5 the axle spacings are normalized by the L1-to-L3 distance and shifted 
so the rearmost axle is set to position 0. 

 
Initial Crest, Ci = [-2.036, -2.036, 0.986, 0.986, -2.036, -2.036] 

Initial Double Twist, Di = [-2.036, 2.036, 0.986, -0.986, -2.036, 2.036] 
 

The vectors Hi and Ri are orthogonal, and Ci and Di are orthogonal.  But the other initial vector estimates 
are not necessarily orthogonal.  For this reason the MGS is used with the following implementation: 

 
Bi = [Hi, Ri, Pi, Ti, Ci, Di] 

B = mgs(Bi) 
 

where the input matrix Bi contains the initial vector estimates in column form.  B is the output matrix of the 
MGS algorithm containing the adjusted and normalized basis vectors in the matching column arrangement.  
For our example the labeled output of B is presented in Table 2.  As can be seen, the general characteristics 
of the initial estimates are retained - Heave has all wheels elevating the same amount; Roll has left rising 
while right descends; Pitch and Twist have straight lines through the axle positions (with the height at the 
midpoint no longer being 0); Crest and Double Twist have the middle axle out of phase with the front and 
rearmost. 

 
Table 2.  Basis Vectors for Example Wheel Base 

 
 

Heave Roll Pitch Twist Crest 
Double 
Twist 

L1 0.408 0.408 -0.535 -0.535 -0.218 -0.218 
R1 0.408 -0.408 -0.535 0.535 -0.218 0.218 
L2 0.408 0.408 0.079 0.079 0.572 0.572 
R2 0.408 -0.408 0.079 -0.079 0.572 -0.572 
L3 0.408 0.408 0.456 0.456 -0.354 -0.354 
R3 0.408 -0.408 0.456 -0.456 -0.354 0.354 

 
  Applying Basis Vectors 
  If the individual wheel profiles of the CRP are arranged as a matrix, P, with columns ordered as they are 

for the indices in basis vectors in B, then the multiaxial inputs as a function of distance can be calculated 
through simple matrix multiplication, as in Eq. 7, 
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M = PB                                                                            (7) 
 

where each column of M contains the unscaled response to the corresponding basis vector column in B.  
Some representative plots of wheel path elevation profiles are presented in Figure 7, with some 
corresponding basis vector projections presented in Figure 8.   
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Figure 7. Example wheel path elevations 

 

 
Figure 8. Projection resultants from example basis vectors applied to profiles 

 
  The content in Figure 7 shows elevation peaks approximately 200 ft apart.  As can be expected the Heave 

resultant follows the long wavelength content as the vehicle rises and falls with the peaks.  A negative Pitch 
results from the vehicle rising up the peak followed by a positive Pitch as the vehicle proceeds down the 
peak.  A one-sided spike in the Crest occurs when the top of the peak is between the front and rear axles.  
These plots show the significance of the symmetric inputs (Heave, Pitch and Crest) and the lesser 
significance of the asymmetric inputs (Roll, Twist, and Double Twist).  The projection resultants could be 
scaled to place values in meaningful units (such as feet or degrees.) 

  The unscaled projections from another test course are presented in Figure 9.  For this course the Roll and 
Pitch projections have longer wavelength content while the Twist, Crest, and Double Twist content can be 
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seen to have higher frequency content.  Decomposing the content into these projections provides insight to 
the stressors on the suspension and the source of the sprung mass dynamics. 

 

  
Figure 9. Projection resultants from example basis vectors applied to profiles 

 
SUMMARY AND CONCLUSIONS 

  Two different approaches for expanding beyond traditional single-line profiles were presented.  The first 
approach, which has been described in prior literature, characterizes transverse profiles from a full-width 
scan to assess how those transverse profiles change along the length of the course.  The second approach 
uses the wheelbase and track width of a specific vehicle to assess the elevation inputs in terms of dynamics 
which could be induced in that vehicle, such as heaving, rolling, pitching, etc.  Both approaches have their 
benefits and limitations, with each resulting in a transformed set of profiles which could be analyzed to 
derive beneficial metrics that speak to the content under consideration (such as a WNS or RMS relevant to 
rolling dynamics).  The first approach characterizes the full course width, which may benefit some users, but 
can fail to describe the inputs that influence a specific vehicle.  The second approach describes the inputs to a 
specific vehicle, which may benefit some users, but those inputs may not be appropriate for a vehicle with a 
different wheelbase (or axle count).  
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