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ABSTRACT

We present the results of an exploratory investigation of applying a hybrid quantum-classical archi-
tecture to an off-road vehicle mobility problem, namely the generation of GO/NO-GO maps posed as a
machine learning problem.

The premise of this work rests on two observations. First, quantum computing allows in principle
for algorithms that provide a speedup over the best known classical counterparts. However, as it is to
be expected of such novel and complex tools (both hardware and algorithmic) at this early develop-
mental stage, current quantum algorithms do not always perform well on real-world problems. Second,
complex physics-based vehicle and terramechanics models and simulations, currently advocated for
high-fidelity high-accuracy ground vehicle-terrain interaction analyses, pose significant computational
burden, especially when applied to mobility studies which may require numerous simulation runs.

We describe the Quantum-Assisted Helmholtz Machine formulation, suitable to be implemented
on a quantum annealer such as the D-Wave 2000Q machine, discuss the high-performance classical
computing framework used to generate through simulation the training and test sets, and provide the
results of our investigations and analysis into the performance of the machine learning model and its
predictive capabilities for generating GO/NO-GO mobility maps.

This work represents a contribution to an ongoing effort of exploring the applicability of the emerging
field of quantum computing to challenging engineering and scientific problems.
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1 INTRODUCTION

The work presented in this paper is anchored in
two main observations. First, quantum comput-
ing allows for algorithms that provide a speedup
over the best known classical algorithms for the
same task. However, current implementations of
quantum algorithms do not always perform well
on real-world-scale problems, as is to be expected
of novel and complex tools at such an early stage of
development. Demonstrating the implementation
and applicability of quantum-assisted algorithms
on problems of engineering and scientific interest
and scale serves two purposes: (i) guiding the de-
velopment of the hardware; and (ii) establishing
areas of application for future devices. While pre-
dictions from various experts vary, it is expected
that over the next decade quantum computers will
be at a stage where hybrid architectures (classi-
cal algorithms with quantum-accelerated subrou-
tines) will be useful in a variety of real-world prob-
lems. Machine Learning (ML) is a particular area
in computational science that is likely to benefit
from these developments.

The second remark relates to high-fidelity mod-
eling and simulation of ground vehicle — terrain
interaction. Multibody system dynamics is nowa-
days a mature and well-established field, widely
adopted for predictive simulations of mechanical
systems in general and ground vehicles on hard
surface in particular. Simultaneously, terrain and
soil mechanics is at a stage where complex vehicle—
terrain interactions can be resolved at high-fidelity
and increasing accuracy. This resulted in a re-
newed push to adopt these simulation techniques
and include them in operational tools for assessing
mobility of off-road ground vehicles. As an exam-
ple, we mention the efforts for the development
of an updated NATO Reference Mobility Model
(NRMM) [1]; namely the Next Generation NRMM
(NG-NRMM), which will rely on full 3-D multi-
body vehicle models and physics-based terrame-

chanics models, while drawing on more powerful
and varied computer architectures [2].

The goal of this work was therefore an ex-
ploratory investigation on the applicability of
quantum-assisted computing to the generation of
GO/NO-GO maps, cast as a machine learning prob-
lem. Concretely, we investigate the applicability
of Quantum Machine Learning (QML), using an
algorithm possible to be implemented on a par-
ticular instance of quantum computing hardware
(quantum annealing as implemented on the D-
Wave 2000Q platform [3]), to a problem of sig-
nificant engineering and operational interest: off-
road ground vehicle mobility. The definition of the
particular problem considered here and the overall
solution approach is delineated next. The ML ap-
proach, the simulation infrastructure, and results
are described in the subsequent sections, with fur-
ther details available in [4].

While there is no general agreement on the exact
definition of ground vehicle mobility, the consen-
sus is that the maximal speed-made-good is a good
measure for mobility [1]. Herein, speed-made-good
is defined as the ratio of the straight-line distance
between two points and the time required to travel
between them, regardless of the actual path. This
measure of mobility depends in a highly-nonlinear
fashion on many parameters, among which we
mention: terrain topology, profile, and roughness;
soil type, properties, and moisture content; me-
teorological conditions; and, finally, vehicle type,
configuration, and characteristics.

Under the definition adopted here, a GO/NO-GO
map can thus be obtained by color-coding a par-
ticular geographical area as function of the cor-
responding mobility measure (either a continuous
variable such as the speed-made-good or a binary
output indicating whether or not the destination
point can be reached). Since terrain variability
and heterogeneity can be very large even for rel-
atively confined geographical regions, a pragmatic
approach consists of discretizing the area in a grid,
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not necessarily uniform, such that input parame-
ters (e.g., terrain characteristics and soil proper-
ties) can be considered constant within a grid cell.
Then, the GO/NO-GO map is obtained by estimat-
ing a mobility measure for each cell and appropri-
ately color-coding the grid.

Generation of such a GO/NO-GO map can be
based on empirical data or on simulation results
of varying fidelity. On the one hand, empirical
data alone will lack accuracy and predictive power.
On the other hand, a simulation-based approach
can be prohibitively intensive in terms of com-
putational cost depending on the level of fidelity
adopted for modeling soil and/or vehicles, render-
ing this approach unfeasible for operational pur-
poses.

The machine learning aspect. A solution to
the potentially prohibitive computational cost of
mobility analysis based on simulations involving
high-fidelity vehicle multibody systems and com-
plex terramechanics is framing the generation of
GO/NO-GO maps as a machine learning problem.
This can take the form of either a classification
problem; i.e., the problem of deciding to which la-
bel — GO or NO-GO — a given set of observations
(input data; e.g., terrain profile, soil properties,
vehicle type) belongs, or even more generally, as
an unsupervised learning problem, where the goal
is to infer/learn correlations among all variables
involved, including both input data and labels.

The quantum computing aspect. Quantum
computers are designed to manipulate vectors and
tensor products in high-dimensional spaces. As
a consequence, algorithms for QML can poten-
tially provide exponential speed-ups for a wide
range of machine learning tasks [5]. Much of the
record-breaking performance of classical machine-
learning algorithms regularly reported in the lit-
erature pertains to task-specific supervised learn-
ing algorithms. On the other hand, unsupervised
learning algorithms are more general and more

‘human-like’, but their development has been lag-
ging behind due to their intractability. This in-
tractability may come from the combinatorial na-
ture of the problem (e.g. in clustering), or it may
come from the need to sample complex probabil-
ity distributions (e.g. the Boltzmann distribution).
Quantum annealing holds the potential to sam-
ple more efficiently than classical Markov Chain
Monte Carlo methods, and this could in turn sig-
nificantly advance the field of unsupervised learn-
ing.

The hybrid computing aspect. The overall
methodology envisioned and adopted for explo-
ration herein was therefore a hybrid approach in
which quantum computing was used to train a
machine learning model using classical computing-
based simulation to generate the training and test
data.

This paper is organized as follows. In Section 2 we
provide an overview of the machine learning model
used in this study, namely the Quantum-Assisted
Helmholtz Machine. Section 3 provides a brief de-
scription of the vehicle, terrain, and vehicle-ground
interaction models and simulation setup. Various
algorithmic investigations, focusing on the charac-
teristics of the problem at hand and their impact
on model performance and predictive capabilities
are discussed in section 4. We conclude the paper
with final remarks and suggestions for future work
in section 5.

2 QUANTUM-ASSISTED
LEARNING

MACHINE

The Quantum-Assisted Helmholtz Machine
(QAHM) [6] is a concrete proposal that can
exploit the sampling power of quantum annealing
to learn a complex probability distribution over
continuous variables.
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2.1 Model and learning algorithm

Consider a dataset S ={v! ..., v¢} with
empirical distribution Qs(v). We seek a
generative model P(v) =) P(u,v), where
P(u,v) = P(v|u)Pyc(u). The prior distribution
Poc(u) = (ulpju) describes samples obtained
from a quantum device, and we assume it can
be described by a quantum Gibbs distribution
p=e"/Z where H is the Hamiltonian im-
plemented in quantum hardware and Z is the
partition function. In the particular case of
quantum annealing hardware, we have

H=> JiZ:Z +th +FZX“ (1)

1<J

where Z and )A(Z denote Pauli matrices in the z and
x direction, respectively, while J;;, h;, and I' are
controllable parameters. The conditional distribu-
tion P(v|u) stochastically translates samples from
the quantum computer into samples on the domain
of the data. Because v is sampled indirectly from
hardware, it can be any type of data. In our case,
it corresponds to a vector of continuous variables.

Ideally, an unsupervised learning algorithm for
this generative model would maximize the average
log-likelihood of the data £ = ) Qs(v)In P(v),
with respect to the controllable parameters. Un-
fortunately this quantity is intractable because it
requires computation of the posterior P(u|v) for
all possible u. The Helmholtz machine overcomes
this by introducing a lower bound

ZQS )In P(v) >
ZQS Q(ulv)In

where Q(u|v) is an auxiliary model that approx-
imates the intractable true posterior P(u|v). In
practice, the newly introduced @ (u|v) and the con-
ditional P(v|u) are implemented by classical arti-

P(v[u)Poc(u) ()

Y

Q(ulv)

ficial neural networks. From now on, we call prob-
ability distribution P the generator network, and
probability distribution @ the recognition network.

Note that Pye(u) = In(u|p|u) is intractable due
to the projection of the Gibbs distribution on the
states |u). However, this term can be further
bounded as

In(ufplu) = (ufInpfu.) (3)

Combining Egs. (2) and (3), we get a tractable
lower bound for the generator to maximize

G0, 0qc) =
> Qs(v)>_ Qulv) [n P(v[u) + (u|lnplu)],

(4)

where 0 and 0o denote the parameters of gener-
ator network P and quantum state p, respectively,
and where. In Eq. (4) we neglected terms that do
not depend on either 6; or 0gc, as they vanish
when computing the gradient of G.

Now we consider the recognition network
Q(ul|v), which has to closely track the true poste-
rior during learning. The maximization of Eq. (2)
with respect to the parameters of the recognition
network is also intractable. Reference [7] intro-
duced the wake-sleep algorithm which minimizes
the more tractable Kullback-Leibler divergence

P(ulv)
ZP Qulv)’

averaged over the marginal P(v) to take into ac-
count the relevance of each configuration v. In
other words, the reconstruction network maxi-
mizes function

=2 Foclu

where 0 denotes, collectively, the parameters of
the recognition network Q. In Eq. (5) we neglected

D, [P(u]v)][Q(ul]v)]

ZP viu)lnQ(ulv), (5)
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terms that do not depend on g, as they vanish
when computing the gradient of R.

The gradient ascent equations have structure
O+ = (1 —p\)O® + Ve F, where 6 stands for
the parameters being updated, n is the learning
rate, A is a regularization factor, and F stands for
either G or R, accordingly. The type of regular-
ization used here is called weight decay and helps
in preventing overfitting by keeping the weights
small.

Since Inp = —H — In Z, for the parameters of
the quantum distribution 0o = (J;5, h;) we have

G

“ou; © (wtle — (wt (6)
G = el O

where ()¢ and (), denote expectation values with
respect to Q(u[v)Qs(v) and Poc(u) = {ulplu),
respectively.  Here we have used the property

The generation and recognition networks can be
written as deep learning architectures

Z Py(vlu')Py(u'u?) -
Z Qr(ufu®)

in terms of L additional sets of hidden variables
u', ..., u” that connect the variables v = u® in the
visible layer with u = u**! in the last hidden layer.
More specifically, when using Bernoulli variables

uf € {—1,+1}, we have

[T 7(ufa A a"),
7

Pp(u”|u)

P(viu) =

Q1 (u*[u')Qo(u'|v),

Qulv) =

Pe(u£|uf+1>

(8)

Q') = [x(ufu B ), (9)

-1

where 7(u;|u’; C, c) = [1 + o~ 2ui(3; Cz’j'u;-+ci):|

The gradients for the generative network are

oG

aar = (e — () p(ut e,
(5]

0Gg

9al = (Uf>Q—<Uf>P>

)

and similarly for the recognition network

OR

e = {ulul e — (o (uf ),
ij

OR

gy = (e {ua

2.2 Implementation

We now discuss our implementation of the QAHM
for the D-Wave 2000QQ quantum annealer. The
annealer implements a noisy version of the pro-
grammed Hamiltonian in Eq. (1) defined on a
sparse graph of qubit interactions. The device
samples low energy states in the limit I' — 0, non-
trivial non-equilibrium effects may make samples
deviate from the corresponding classical Gibbs dis-
tribution. Several features of the algorithm are en-
gineered to cope with these effects.

To overcome this we follow the work in [§]. By
treating the annealer as grey-box, this approach al-
lows updating the parameters without the need to
estimate deviations from the Gibbs distribution.
It also allows us to implement a fully connected
prior distribution Py (u), despite the actual phys-
ical connectivity be sparse.

For implementing continuous variables, when us-
ing the recognition network, each variable v; in
the dataset is rescaled to lie in [—1,+41] and inter-
preted as the expected value of a binary variable in
{=1,+41}, i.e. the average value of that variable if
evaluated many times. Conversely, the probabili-
ties in output from the generator network are used
to compute the expected value of a binary variable,
rather than to actually sample the binary variable.
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Such a value can then be scaled back to the original
range of the continuous variable. These techniques
allow to use the model without further modifica-
tions and without the need of additional parame-
ters.

Further details of the physical implementation
can be found in [4].

3 SIMULATION FOR MOBILITY AS-
SESSMENT

Generation of the training and test sets were
performed using the Chrono software suite [9].
Chrono’s strength lies in its ability to simulate the
dynamics of large multibody systems [10], includ-
ing discipline-specific support for vehicle modeling
and simulation and soil /terrain modeling and sim-
ulation. In particular, deformable terrains can be
simulated using a fully-resolved Discrete Element
Method (DEM) approach, by modeling the soil as
a large system of bodies interacting through con-
tact, friction, and cohesion (albeit, not necessarily
at the physical soil particle size). Alternatively,
Chrono provides support for more expeditious de-
formable soil representation, such as the Soil Con-
tact Model (SCM) [11].

The Chrono::Vehicle module provides support
for template-based modeling and simulation of
ground vehicles, both wheeled and tracked, that
can be fully and implicitly coupled with the
terrain/soil models mentioned above. As such,
Chrono can be used to generate the input data
sets required for the learning algorithms consid-
ered here: for a given set of parameters, a coupled
vehicle-terrain interaction simulation is conducted
and results processed to obtain the desired mobil-
ity measure (speed-made-good or simply a binary
GO/NO-GO decision variable).

3.1 Vehicle modeling

Chrono::Vehicle [12] is a module of the open-

source multi-physics simulation package Chrono,
aimed at modeling, simulation, and visualization
of wheeled and tracked ground vehicle multi-body
systems. Its software architecture and design was
dictated by the desire to provide an expeditious
and user-friendly mechanism for assembling com-
plex vehicle models, while leveraging the under-
lying Chrono modeling and simulation capabili-
ties, allowing seamless interfacing to other optional
Chrono modules (e.g., its granular dynamics and
fluid-solid interaction capabilities), and providing
a modular and expressive API to facilitate its use
in third-party applications. Vehicle models are
specified as a hierarchy of subsystems, each of
which is an instantiation of a predefined subsys-
tem template. Written in C4++, Chrono::Vehicle
is offered as a middleware library.

Chrono::Vehicle provides a comprehensive set
of vehicle subsystem templates (tire, suspension,
steering mechanism, driveline, sprocket, track
shoe, etc.), templates for external systems (power-
train, driver, terrain), and additional utility classes
and functions for vehicle visualization, monitor-
ing, and collection of simulation results. Three
different classes of tire models are supported:
rigid (modeled as cylindrical shapes or else as
non-deformable triangular meshes), semi-empirical
(Pacejka, Fiala, Lugre, and TMeasy), and finite
element (based on ANCF or Reissner shell ele-
ments). For additional flexibility and to allow inte-
gration of third-party software, Chrono::Vehicle is
designed to permit either monolithic simulations or
co-simulation where the vehicle, powertrain, tires,
driver, and terrain/soil can be simulated indepen-
dently and simultaneously.

For the studies conducted herein, we used a
model of a four-wheel drive off-road vehicle with
independent double-wishbone suspension and Pit-
man arm steering (see Fig. 1).

Quantum Annealing for Mobility Studies: Go/No-Go Maps via Quantum Machine Learning, Serban, et al.
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Figure 1: Wheeled vehicle with double wishbone
suspensions and Pitman arm steering.

3.2 Granular terrain modeling

Chrono::Vehicle provides several classes of terrain
and soil models, of different fidelity and compu-
tational complexity, ranging from rigid, to semi-
empirical Bekker-Wong type models, to complex
physics-based models based on either a granular or
finite-element based soil representation. For sim-
ple terramechanics simulations, Chrono::Vehicle
provides a customized implementation of the Soil
Contact Model, based on Bekker theory, with ex-
tensions to allow non-structured triangular grids
and adaptive mesh refinement. Second, Chrono
provides an FEA continuum soil model based
on multiplicative plasticity theory with Drucker-
Prager failure criterion and a specialized 9-node
brick element which alleviates locking issues with
standard brick elements. Finally, leveraging the
Chrono::Granular module and support for multi-
core and distributed parallel computing in Chrono,
off-road vehicle simulations can be conducted using
fully-resolved, granular dynamics-based complex
terramechanics, using a Discrete Element Method
(DEM) approach. Such simulations can use either
of the two methods supported in Chrono, namely
a penalty-based, compliant-body approach, or a

complementarity-based, rigid-body approach.

Two alternative approaches have emerged as vi-
able solutions for large frictional contact problems
in granular flow dynamics and quasi-static geome-
chanics applications, collectively termed herein
DEM. The so-called complementarity method
(DEM-C) is generally favored within the multi-
body dynamics community. In this approach, in-
dividual particles in a bulk granular material are
modeled as rigid bodies, and non-penetration con-
ditions are written as complementarity equations
which, in conjunction with a Coulomb friction law,
lead to a Differential Variational Inequality (DVI)
form of the Newton-Euler equations of motion.
Not limited by stability considerations, DEM-C al-
lows for much larger time integration steps than
the alternative penalty-based (DEM-P) solutions,
since the latter involve large contact stiffnesses
that impose strict stability conditions on all ex-
plicit time integration algorithms. However, DEM-
C involves a relatively complex and computation-
ally costly solution sequence per time step, since
it leads to a mathematical program with comple-
mentarity and equality constraints, which must be
relaxed to obtain tractable linear complementar-
ity or cone complementarity problems. More ma-
ture and widely adopted within the geomechanics
community [13], DEM-P can be viewed either as a
regularization (or smoothing) approach, which re-
lies on a relaxation of the rigid-body assumption,
or as a deformable-body approach localized to the
points of contact between individual particles in a
bulk granular material [14]. In this approach, nor-
mal and tangential contact forces are calculated
using various laws [15], which are based on the lo-
cal body deformation at the point of contact.

A more in depth comparison between the rigid-
body (DEM-C) and soft-body (DEM-P) formu-
lations is provided in [16]. All granular terrain
simulations used herein relied on the DEM-C for-
mulation. For details on the DEM-C formulation,
derivation of the DVI problem, and Chrono imple-
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mentation, the reader is directed to [17, 18, 10, 4].
Here, we only provide the resulting mixed differ-

q=L(q)v

M(q>‘./:f(t7qv ) gq q’ A + Z

0=g(q,?)
0<®i(q) L Fin >0

(&S A(CI(IL)) : (’7& wy Vi, w) =

These represent the equations of motion for a
multibody system involving both bilateral (equal-
ity) constraints and unilateral (frictional contact)
constraints. The differential equations in Eq. (10a)
relate the time derivative of the generalized posi-
tions q and velocities v through a linear trans-
formation defined by L(q). The force balance in
Eq. (10b) ties the inertial forces to the applied and
constraint forces, f (¢, q, v) and —gg(q, t)j\, respec-
tively. The latter are impressed by the bilateral
constraints of Eq. (10c) that restrict the relative
motion of the rigid or flexible bodies present in
the system. The non-penetration conditions in
Eq. (10d) express the complementarity between
the separation function ®; for contact ¢ and the
associated normal contact force. The last equa-
tion poses an optimization problem whose first or-
der Karush-Kuhn-Tucker optimality conditions are
equivalent to the Coulomb dry friction model. The
frictional contact force associated with contact ¢
leads to a set of generalized forces, shown in red in
Eq. (10b), which are obtained using the projectors
D;., D;,, and D;,, [18].

The problem in Eq. (10) is discretized to yield a
mathematical program with complementarity and
equality constraints. A relaxation of the comple-

ar gIDlIl
’372 » +;f,2w <uiVin

ential algebraic—differential variational inequality
problem in Eq. (10).

(10a)
/7 n 7 N + :?7',,71, Di,u + 277;’“, Di,w) (10b)
i€A(a9) it frictional contact force
(10c)
VT : (;//i,u Di,u + ;/i,u) Di,’w) . <10d)

mentarity conditions and further algebraic manip-
ulations [17] yield a cone complementarity problem
(CCP) whose solution provides the Lagrange mul-
tipliers A and ~.

3.3 Computational and simulation setup

All simulations were conducted on a Cray XC30
system with 12-core Intel® Xeon® E5-2697 v2 pro-
cessors and a dedicated Cray Aries high-speed net-
work. Independent runs were launched in batches
corresponding to the subsets of training points
requested by the sequential approach described
previously. Each separate run (corresponding to
a particular set of the five independent design
parameters considered, namely longitudinal ter-
rain slope, particle radius, particle density, inter-
particle coefficient of friction, and cohesion pres-
sure) was queued on a single node and used 24
OpenMP threads.

To accelerate time to solution, simulations con-
ducted for this study employed the moving patch
feature provided within Chrono::Vehicle. In this
approach, granular material is simulated only
within a sliding window (of user-defined dimen-
sions) centered around and moving with the ve-
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hicle. The number of granular material particles
remain constant (and relatively low). Particles
falling outside the moving patch behind the vehicle
are reused by relocating them in front of the ve-
hicle in chunks of spatial dimensions controlled by
the user. With this approach, depending on the
current particle size, the simulations used herein
employed between 48,000 and 480,000 particles.

Each simulation run represented a straight-line
acceleration maneuver on longitudinally inclined
terrain. The granular material was considered
homogeneous and consisting of identical spheres.
Particles were initialized in layers (with a number
of layers determined dynamically, function of the
particle radius) and using a uniform random dis-
tribution within each layer obtained with a Pois-
son disk sampling technique. Following a short
granular material settling phase, the vehicle is cre-
ated above the terrain and allowed to settle. Sub-
sequently, throttle is increased from 0% to 100%
over the span of 0.5 s, while the gravitational ac-
celeration vector is rotated by the appropriate an-
gle to model the incline plane. To maintain a
straight-line, a path-follower steering controller is
used which makes minute adjustments to the ve-
hicle steering input. Several heuristics are imple-
mented to decide completion of the simulated ma-
neuver; tracking running averages of the vehicle
forward velocity and acceleration, simulations are
stopped when a steady-state maximum velocity is
achieved or when the case of the vehicle sliding
backward is identified.

During simulation, we record relevant vehicle
states for each individual run. In a post-processing
stage, information from these output files is col-
lated to generate the incremental training set for
the sequential QML algorithm, as well as statistics
for estimating computational performance. Ad-
ditional information pertaining to computational
performance is provided in [4].

4 ALGORITHMIC INVESTIGATIONS

The hybrid quantum-classical computational ar-
chitecture, described in Sections 2 and 3 and illus-
trated in Fig. 2, was used for generating and learn-
ing the distribution of the simulation data. We de-
scribe here the implementation of the QAHM on
datasets provided through simulations and exam-
ine relevant characteristics of both the dataset and
the model. We highlight and discuss two salient
features of the model and draw a strong link be-
tween these features and the model effectiveness,
using as a performance metric the mean squared
error between the predictions of the model and an
evaluation (test) set.

The training and test sets contain 320 and 40
points, respectively, sampled from the 6-D param-
eter space (5 inputs and 1 output). The majority
of the networks used for these demonstrations con-
sist of 2 hidden layers comprising 12 nodes each,
and a visible 6-node layer. Several experiments
were needed in order to choose the hyperparame-
ters. A learning rate n = 0.01 and a regularization
factor A = 0.0001 were found to produce best re-
sults. The ranges used for the normalization of the
input parameters were slope = [0.0, 20.0], radius
= [8.0, 18.0], density = [1000.0, 2000.0], friction =
[0.6, 1.0], cohesion = [500.0, 1500.0] and velocity
= [-5.0, 40.0].

4.1 Training and test data

There are three key features of the data which are
important to these investigations. First, the size of
the initial training set is 320 points; although neu-
ral network machine learning algorithms are noto-
riously data intensive, expanding the dataset avail-
able was limited by the computational resource re-
quired. Second, the points in the training set and
the test set were both distributed regularly, us-
ing Latin Hypercube Sampling (LHS), over the 5-
D input parameter space. Lastly, the distribution
of the velocities is roughly bimodal. As shown in

Quantum Annealing for Mobility Studies: Go/No-Go Maps via Quantum Machine Learning, Serban, et al.
Page 9 of 17



Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Model Data Simulation
Quantum Quantum s=1{SnS:....S |
computer or not computer { 0,21 n}
@ : ﬁluantum-Assistem
1 Learning
:> Stochastic ﬁ
u' Gradient Descent Predictions
9]
g ¢>Q7(u’?)p > ~P 1\p(ul|u2 2
é)af i i P v (v|u ) (u |ll )Q(u )
v O000O  oooo ot ool e e e
recognition generation 873 f)P <U5>Q e P(v|u1)P(u1|u2)P(u2)
QuuQW'Y)  Pv]u")Pu'ud)P(u?) \3”1' /

Figure 2: Pipeline for learning simulation datasets with quantum assisted models.

Fig. 3, the final velocity of the simulation tends
to fall into one of two modes, high (20...34 m/s)
or low (—=5...5 m/s), and is skewed to higher ve-
locities; this can be explained in part by the LHS
sampling used to generate the training set.

30
25
20
15
10
5
| | L.
0 -5 0 5 10 1

5 20 25 30 35
Velocity (ms™?)

Frequency

Figure 3: Distribution of final velocities in the
training set (simulation results), showing its skew
and bimodal nature.

In classical machine learning these characteris-
tics of the training data can be addressed and
accommodated by selecting tailored algorithms.
However, at this early stage of quantum machine

learning development, only few viable algorithmic
options are available. As such, the dataset size lim-
its the ability of the algorithm to effectively train
models with larger number of nodes (and hence
the number of parameters to be updated during
training); this situation can result in underfitting.

Furthermore, sampling the test and training
sets using the same method resulted in undesired
correlations between the predictions on the two
sets. However, LHS was a necessary compromise
between the need for random sampling and the
ability to only provide a relatively small dataset
through simulation; indeed, random sampling with
a small number of points could have resulted in
small sample size bias.

4.2 Model fitting

Initial investigation into optimizing the model per-
formance, primarily by varying the number of
nodes in an attempt to correctly fit the model, in-
dicated that the network complexity (number of
hidden nodes) was not the main source of the ob-
served systematic errors. As shown in Fig. 4, the
model performance — as measured by the mean
squared error between predictions and data — im-
proves with increased network complexity up to
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about 10 nodes per hidden layer, but then reaches
anoise floor around 60 (m/s)?. This is observed for
both the training and test sets, whereas typically
one expects a monotonic evolution as the model
tends to overfitting.

B Training Set
Test Set

= = =
I Y ®
S o o

-
N
o

Mean squared error (m?s~2)
-
=
S
—

60 ‘ ,,,,,

40 |

6 8 10 12 14 16 18 20
# Nodes in Each Hidden Layer

Figure 4: Prediction accuracy as function of net-
work complexity (number of nodes per hidden
layer).

The source of these prediction errors can be
identified by looking at their distribution across
given dataset. Figure 5 shows the mean squared
errors at the different velocities in the training set
and highlights a squeezing phenomenon, whereas
the extremities of the velocity range in the dataset
are outside the predictive bounds of the model; in
other words, the model tends to generate a range
of predictions that is squeezed relative to the data
in the training set.

A second consequential effect of the larger errors
at the extremities of velocity range, coupled with
the mostly bimodal distribution of velocities in the
training set, is a tendency of predictions to switch
between these two modes. This effect, termed here
mode-switching, negatively impacts the accuracy
of samples from the model and contributed domi-
nant anomalous errors to the resulting predictions.

400

300

200

Squared error (m2s~2)

100 ke

. ° B‘ ce
I SRR LR -
o fes B SIS 2 RS

-5 [ 5 10 15 20 25 30 35
Velocity (ms™?)

Figure 5: Distribution of the errors in predictions
across the training set, showing clear dominant er-
rors at lower velocities and upticks in error at both
the lowest and highest velocities.

4.3 Model sampling

The model is sampled in order to make predictions
about the velocity at a given point in the param-
eter space. In order to mitigate systematic errors
discussed above, due to the squeezing and mode-
switching phenomena, several sampling methods
were investigated. these are succinctly listed here
and described in more detail in [4].

Sampling 1: Markov chain sampling from the
generative network. In this process, one step in the
Markov chain evolution consists of a bottom—up
pass of the recognition network (with given input
parameters and randomized velocity), followed by
a top—down pass of the generation network. While
the system does reach an equilibrium, the variance
of the produced distribution is so large that the
results resemble noise; see Fig. 6.

Sampling 2: Markov chain sampling with av-
eraging. Different from the previous case, at each
step of the Markov chain, the model is sampled
multiple times (e.g., 10 samples) and the results
averaged; see Fig. 7. While mitigating the large
variance observed with the pure Markov chain
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Figure 6: Markov chain evolution of the QAHM:
samples from the device are used as measures of
the predicted velocity.

sampling above, this averaging has the disadvan-
tage of further squeezing the results away from the
extreme values.

Sampling 3: Peak frequency sampling. In this
process, a number of samples (e.g.; 500) are taken
at random velocities in the range given by the
dataset, without evolving the system like in the
previous sampling methods. A histogram is then
generated (using 40-50 bins) and the prediction
is set to be the velocity corresponding to peak
frequency. This approach provides better results
for predicting velocities from the lower and higher
modes, but has difficulties in predicting intermedi-
ate values. Indeed, in the case illustrated in Fig. 8
the predicted normalized velocity is around —0.5,
far from the training data, indicating bias toward
the low mode.

4.4 Results

We implemented both a quantum-assisted and a
classical versions of the QAHM model and use
them to predict model output (final velocities)
on a regular discretization of the 5-D input pa-
rameter space, generating a total of 10° predic-
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Figure 7: Markov chain sampling with averaging:
at each step of the Markov chain several samples
are taken and the average of these values used to
calculate the value of the next step.

tions. In both cases a 6 x 12 x 12 deep neural
network is trained on a 320 point dataset from
the 6-D parameter space for 5000 epochs with
learning rate n = 0.01 and regularization factor
A = 0.0001. We present here a comparison of the
learning performance of the two versions of the al-
gorithm and then discuss the predictions of the
quantum-assisted generative model and their re-
spective variations.

As demonstrated in Fig. 9, the quantum and
classical models generate predictions of compa-
rable accuracy (as measured against the train-
ing data). Furthermore, both sets of predictions
have the same characteristics, namely non-uniform
mean squared error distribution with a large range
and squeezing, as explored in the algorithm inves-
tigations above.

The first conclusion drawn from the plots in
Fig. 9 is that the quantum algorithm is success-
fully training a model. The second promising re-
sult is that the classical and quantum algorithms
are comparable. Any slight difference can be
attributed to the numerical differences incurred
when translating between the two algorithms (e.g,
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Figure 8: Peak frequency sampling: for a given
input vector the QAHM is sampled repeatedly and
the corresponding distribution generated.

a learning rate of 1 in the classical algorithm may
not equate to a learning rate of 1 for the quantum
algorithm). These ideas are complementary and a
first step in establishing the quantum-assisted al-
gorithm and laying the groundwork for extensions,
variations, and improvements.

Figure 10 confirms intuitive understanding of
the data, thus providing evidence that the
quantum-assisted model is learning the underlying
distribution. The plot on the left represents a slice
through the parameter space (for constant particle
radius, material density, and inter-particle coeffi-
cient of friction) with final velocities obtained as
model predictions at various combinations of slope
and cohesion. The shape of the predicted surface
across the considered range generally follows the
expected trend. In particular, velocity is nega-
tively correlated with slope and positively corre-
lated with cohesion. The standard deviation of the
predictions, provided on the right of Fig. 10, shows
that the regions of high variance of the predictions
tend to be in regions of steep change, namely be-
tween the two modes (large and small velocity),
characterized by large gradient of the velocity.

200
B Classical
175 N B Quantum

150
125

100

Mean squared error (m2s~2)

[ 1000 2000 3000 4000 5000

Figure 9: Comparison of the performance of the
quantum and classical algorithms.

4.5 Algorithm Investigation Discussion

The issues outlined in these investigations are
mode-switching and squeezing. These were identi-
fied and described above, in conjunction with var-
ious attempts at mitigating their effect on predic-
tion accuracy. Mode-switching results in dominant
anomalous predictions, while squeezing leads to a
small systematic error for the predictions at the
extremities of the model.

Throughout the investigations, several sources
of prediction squeezing have been highlighted. Al-
though other sources may contribute to this ef-
fect, the evidence suggests that fundamental as-
pects of the training algorithm result in a model
which squeezes predictions to some range smaller
than that of the input data. It is possible to say
with some confidence that mode-switching is the
combined effect of the particular structure of the
data considered here and some learning feature of
the algorithm which results in samples with a high
variance and with a bias toward regions trained
with more data. Potential directions for devising
algorithm adjustments to reduce variance and in-
crease range of the resulting model are outlined in
Section 5.
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Figure 10: Slice of the predictions and corresponding variance.

5 CONCLUSIONS. FUTURE WORK

A main result of this interdisciplinary project was
the identification of some of the constraints that
come from integrating the different fields. Mo-
bility simulations are computationally expensive
and generate high-dimensional results. This means
that a dataset of mobility simulations will contain
(i) a relatively small number of simulations, and
(i) a large amount of information for each of the
simulations. This regime is the exact opposite of
the desired one for two reasons. First, some of the
most successful machine learning algorithms are
known to perform well when large amount of data
is available, in contrast to (i). Second, currently
available quantum computers have a small num-
ber of qubits and therefore can handle a limited
number of variables, in contrast to (ii).

Among the available quantum machine learn-
ing proposals, we chose an algorithm that can in
principle deal with some of the above constraints
and, at the same time, be implemented on ex-
isting quantum hardware. In particular, the al-
gorithm was designed for quantum annealing as
implemented by the D-Wave 2000Q hardware. A

simplified classical version was used for comparison
purposes and to establish a baseline; the quantum-
assisted version was used for the final results. Al-
though the quantum algorithm did not excel, it did
not perform worse than the classical version. This
is promising in the sense that the algorithm was
able to cope with noise and errors from the quan-
tum annealer. As more general gate-model quan-
tum computers become available and quantum al-
gorithms evolve, we expect much better outcomes.

The machine learning model used here has a
large number of hyperparameters: number of lay-
ers, number of units, learning rate, regularization
factor, number of samples, and data encoding, to
name a few. A thorough exploration of these would
require a large number of executions and was be-
yond the scope and timeline of this work. Although
we successfully proposed and implemented a D-
wave-assisted alternative for the GO/NO-GO prob-
lem, more work is needed to determine whether
there could be any advantage in this approach or
if it would be better to consider quantum machine
learning implementations of other alternative solu-
tions to this problem; e.g., via Bayesian optimiza-
tion. However, it is likely that implementation of
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these alternative machine learning techniques will
require quantum hardware resources beyond the
state-of-the-art of currently available devices.

Future work. There are many routes open to
expanding this work. As an early stage imple-
mentation of sampling from a quantum annealer
to assist classical machine learning, it stands as
one of the first efforts to address the problems fac-
ing near-term implementation of quantum devices.
Lessons learned here inform the development of
quantum algorithms that will eventually surpass
their classical counterparts. We take it as a given
that quantum devices will be used in some way
for computation, with quantum-accelerated sub-
routines within hybrid classical-quantum architec-
tures, like the one presented here, a likely scenario.
However, much remains to be done before
quantum-assisted algorithms are mature enough
to be robustly applied to complex engineering and
scientific problems. We highlight here three key
potential avenues for further exploration.

(i) First, other classical machine learning archi-
tectures can be explored for the opportunity
of replacing core subroutines with quantum-
assisted algorithms. As there are promising
advantages in the implementation described
in this paper, the lessons learned here can
be applied to the development of novel and
potentially improved hybrid algorithms. Al-
ternative quantum computing architectures
(notably gate-based) have passed small-scale,
proof of principle, tests and are now coming
to the second major hurdle: scalability. Algo-
rithms such as the one described here must be
tailored, implemented, and analyzed to map
their associated range of applicability, advan-
tages, and limitations.

(ii) A second route is further research into appli-
cations of the generative model learned by the
QAHM. The generative model can potentially

be applied to a wide range of scenarios, such as
time-series analysis, compression, fast search
of data through example generation, and as-
sessing the effect of dataset size and complex-
ity on the model.

(iii) Finally, we see great benefit for further re-
search into potential QAHM variants, includ-
ing placing the annealer at the top of the
recognition network. This particular QAHM
algorithm has several advantages: the classi-
cal recognition network can map continuous
variables and large data vectors to a small
quantum device, the quantum device does not
need to be queried for each data point, and
the temperature of the system does not need
to be calculated, see Section 2. With these ad-
vantages in mind, there are significant incen-
tives to look at QAHM variants, both to see if
there can be improvements made to the model
learned and to determine if alternative imple-
mentations can be applied to a wider class of
applications.

While the above directions are focused on the
QML aspects of further exploration, there are in-
teresting adjustments that can be considered on
the simulation side, to make it more amenable to a
QML treatment and to fully tap into the potential
advantages of using QML over classical machine
learning. In particular, the type of mobility prob-
lems considered here invite a higher-dimensional
input space; in other words, more input param-
eters, which would allow an increased number of
nodes in the visible and hidden layers. However,
more parameters to be learned will require signif-
icantly larger training datasets. This suggests the
use of using lower-fidelity simulations, assumed to
be more expeditious. The disadvantages of lower
accuracy can potentially be offset by a deeper
learning of the parameter space and the genera-
tive capabilities of the model. Furthermore, such
a model may be able to capture the uncertainty in
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these lower fidelity simulations.

Finally, it is worth noting that the nascent field
of quantum computing requires the identification
and exploration of new areas of scientific and engi-
neering applications as candidates for quantum ac-
celeration. It is the challenges posed by real-world
problems that inform and direct the development
of new algorithms and hardware.
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