
2019 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY

SYMPOSIUM
MODELING & SIMULATION, TESTING AND VALIDATION (MSTV) TECHNICAL SESSION

AUGUST 13-15, 2019 - NOVI, MICHIGAN

MoVE: A Mobility Virtual Environment for Testing
Multi-Vehicle Scenarios

Marc Compere, PhD1, Kevin Adkins, PhD2, Otto Legon1, Patrick Currier, PhD1

1Mechanical Engineering Department

2Aeronautical Science Department
Embry-Riddle Aeronautical University, Daytona Beach, FL

ABSTRACT
This paper presents a Mobility Virtual Environment (MoVE) for testing

multi-vehicle autonomy scenarios with real and simulated vehicles and pedestrians.

MoVE is a network-centric framework designed to represent N real and M virtual

vehicles interacting and possibly communicating with each other in the same

coordinate frame with a common timestamp. The goal is to provide a spectrum of

test options from simulation-only to semi-virtual, to all real vehicles and

pedestrians. A multi-vehicle test fidelity metric is defined that captures scenario

realism more accurately than traditional hardware-in-the-loop style terminology.

MoVE’s simple built-in vehicle models are described that provide positions

in both latitude and longitude and Cartesian UTM XYZ coordinates. Live GPS

inputs from real people or vehicles allow both virtual and real vehicles to interact

through the virtual environment. Test results are presented from three experiments

with real and virtual vehicles and pedestrians on a university campus. MoVE is

open source software that is freely available in source code at Gitlab.com.

1. INTRODUCTION
Autonomous vehicle researchers around the world are

pursuing multi-vehicle scenarios but lack a common

framework in which to develop, test, and collaborate.

Difficulty with testing even a single autonomous

vehicle, aside from common technical challenges

include vehicle registration, roadway, waterway or

airspace restrictions, and the obvious safety risks of

vehicle-to-vehicle or vehicle-to-pedestrian collision

avoidance. The autonomy research community needs

a way to test multiple autonomous vehicles along a

realism spectrum from simulation-only to all real

vehicles and real people. Multiple vehicles and

pedestrians must be accommodated in simulation with

clear steps for testing with real vehicles and real

pedestrians in the real world.

Multi-domain testing with ground, surface and aerial

vehicles also pose challenges not often faced in a

single domain. Safety and legal limitations for

experimental ground vehicles vary by state, not to

mention the inherent risk with testing a passenger

vehicle’s pedestrian avoidance system. FAA

regulations restrict unmanned aerial vehicle (UAV)

flight to underneath 400 feet and place additional

restrictions on operations within proximity of airports

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

MoVE: A Mobility Virtual Environment for Testing Multi-Vehicle Scenarios, Compere, et. al., GVSETS 2019

2 of 15

and other controlled airspace. Boat registration for an

unmanned surface vehicle can be challenging because

the state Department of Motor Vehicles may not have

procedures for registering unmanned vehicles.

Maritime law lacks clarity for autonomous vehicles

and, as with the automotive industry, correct behavior

while navigating among other vehicles is sometimes

unclear, as is liability during accidents. So there are

legal and regulatory challenges for vehicles.

This paper presents a Mobility Virtual Environment

(MoVE) for testing autonomous system algorithms,

multi-vehicle scenarios, and their interactions with

real and simulated vehicles and pedestrians. The result

is a network-centric framework designed to represent

N real and M virtual vehicles interacting and possibly

communicating with each other in the same

coordinate frame with a common timestamp.

Figure 1: MoVE test scenario with real vehicles, real drivers, and

real pedestrians combined with virtual vehicles and virtual

pedestrians to improve autonomous technology development.

A literature review of comparable autonomous

vehicle softwares is presented along with MoVE

runtime concepts, interfaces, and test results from

three test scenarios. The first scenario is entirely

virtual to demonstrate the avoid() and

stay-in-bounds() behaviors. The second test test is a

traffic wave simulation with 4 real vehicles

demonstrating traffic waves, or the accordion-effect.

The third test is a medical evacuation scenario with all

real vehicles and pedestrians including a ground

vehicle, a pedestrian acting as an injured soldier, a

medic, and a UAV flying a search pattern to report an

injured soldier’s location. Time-history and spatial

plots are presented with vehicle-to-vehicle distance

calculations indicating potential collisions. Plots on

Google Maps using the lat/lon coordinates provides

clear map-based positions and histories for all

vehicles. Post processing or real time map plotting is

available for analysis or runtime coordination using

the Bokeh real time mapping interface. A

configuration file allows researchers to experiment

and share experimental setups like initial conditions,

number and type of vehicles and custom behaviors

easily. The MoVE set of concepts and interfaces are

implemented as open-source software, written in

Python and freely available at Gitlab.com.

1.1 Hardware-In-The-Loop is Inadequate

Model-based design methods have developed over the

last several decades along with terminology intended

to convey a mix of real and virtual components. Terms

like hardware-in-the-loop (HIL, HWIL), model-in-

the-loop (MIL), software-in-the-loop (SIL), soldier-

in-the-loop, controller-in-the-loop (CIL), and even

powertrain-in-the-loop (PIL) all assume a single, or

primary device under test. In each of these terms,

‘the loop’ is intended to convey an interaction

between one element that is virtual or simulated or

emulated and the other that is real. Subtleties exist

among different communities of practice. These terms

are inadequate to describe the various elements in a

multi-vehicle test with real and virtual vehicles and

pedestrians.

To more accurately describe the various degrees of

realism in a multi-vehicle scenario, a Testing Fidelity

Metric (TFM) is defined in Table 1. A multi-vehicle

scenario can be classified using values of 0-3 in five

categories: (a) vehicle, (b) sensors, (c) algorithms,

(d) environment, and (e) pedestrians. A scenario’s

Test Fidelity can be expressed as either a quintet of

values (ex: 3/2/2/1/2) representing the categories in

the order vehicle / sensors / algorithms / environment

/ pedestrians or as a single number (ex: 10) that

represents the sum of the values. This metric provides

a method for comparing the realism of differing

scenarios.

The first scenario illustrated in Section 12 is classified

as Test Fidelity Metric TFM=(1/1/1/1/0), or 4. This

Virtual UAS

o

Z

X

Y* *
*

Real UAS

Virtual vehicles,

Repeatable Traffic

Real and Virtual

pedestrians

Network

Real Vehicle, Real Drivers

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

MoVE: A Mobility Virtual Environment for Testing Multi-Vehicle Scenarios, Compere, et. al., GVSETS 2019

3 of 15

represents a low realism metric for the all-simulated

scenario. Next, test 2 in section 12 is the traffic wave

Scenario with TFM=(3/0/0/3/0), or 6. This has higher

test realism than the previous despite zero sensors and

full human driving operation. Lastly, test 3 in Section

12 is the highest realism with TFM=(3/3/0/3/3), or 12.

The vehicles are real, the sensors are real mobile

phones reporting real positions, the scenario

algorithms are a result of human operators, the

environment is real, and the pedestrians are real. This

is the highest realism metric of the three scenarios

despite both vehicles being human piloted. The

maximum possible Test Fidelity Metric score is 15,

corresponding to all real vehicles, sensors, algorithms,

and environment with pedestrians.

Table 1: Testing Fidelity Metric

Category

Rating

0 1 2 3

Vehicle None All

simulated

Partially

simulated

vehicles

and/or

control

Real

vehicles

with control

Sensors None All

simulated

Simulated

sensors

fused with

real sensors

Real sensors

Algorithms None or

human

operator

Run off-

board,

not in

real-time,

tele-op

Run

partially

onboard,

partially

off-board,

or semi-

automated

Run fully

onboard in

real-time, or

fully

automated

operation

Environ-

ment

None Fully

simulated

Real

environment

with

simulated

features

Real

environment

with

features

present

Pedestrians None All

simulated

Some real,

some

simulated

Real

pedestrians

1.2 MoVE Overview
The MoVE software is composed of vehicle models

that execute in separate computer processes. Each has

simple behavior threads with a priority-based

scheduler similar to Rodney Brooks’ subsumption

architecture. These behaviors command simulated

vehicle mobility and each vehicle reports position and

health status updates to another process called Core.

MoVE Core aggregates all vehicle messages to

construct a complete scenario representation, State,

with all vehicles and pedestrians, real or simulated.

Move Core computes distance calculations, notifies

vehicles at risk of collision, provides vehicle to

vehicle communication for followMe() or

searchAndRescue() behaviors, and logs all vehicle

data for after-action review. MoVE Core also outputs

scenario State information to Bokeh, an open-

source 2D visualization package, and MongoDB, an

open-source database for test recording and playback.

1.3 Simple Vehicle Models and Coordinate Frames

The vehicle models use a READY-SET-GO-PAUSE-

STOP state machine, an RK4 solver with simple

mobility ODEs, a drift-free soft-real-time subsystem,

and priority-based behavior scheduler to provide

interesting mobility during simulation-only testing.

Coordinate frames include a body-fixed xyz frame for

each vehicle, an inertial XYZ frame and standard UTM

coordinate transformations between inertial XYZ and

latitude and longitude from live GPS sources. Each

vehicle, whether live or virtual, reports position in

both Cartesian XYZ UTM coordinates and latitude and

longitude in decimal degrees. This allows for uniform

post processing scripts for either virtual or real

vehicles in both coordinate frames.

1.4 Real versus Virtual Vehicles

The built-in vehicle model equations of motion

(EOM) provide simple mobility in the body-fixed

frame, xyz, that are subsequently transformed into the

inertial frame, XYZ. These EOMs are only used for

virtual vehicle motion. To represent real vehicles or

pedestrians, the same vehicle model is used with a

flag to designate it as a live-GPS-follower. This type

of vehicle listens on a separate network port for GPS

position updates from a real vehicle or pedestrian in

the real world. In this way, the mobility in the virtual

world is determined by real GPS updates from the real

person or vehicle in the real world. This approach

allows virtual vehicles and real vehicles or pedestrians

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

MoVE: A Mobility Virtual Environment for Testing Multi-Vehicle Scenarios, Compere, et. al., GVSETS 2019

4 of 15

to be represented in a common coordinate frame with

a common timestamp. Virtual vehicles are provided

awareness of other virtual vehicles and the live GPS

followers through Core message updates. A sense and

avoid algorithm is computed in Core with thresholds

triggering warning messages to the relevant vehicles.

Similarly, followMe() and searchAndRescue()

behaviors in vehicle models get updates from Core as

needed. Real vehicles or pedestrians can be made

aware of other live or virtual entities in a similar way

but this has not yet been implemented. Updates to live

GPS followers is an active area of development using

a web interface, a mobile device app, or an

Augmented Reality (AR) headset.

1.5 Cellular Network Use for Testing

Live-GPS-followers stream GPS position from

mobile phones or custom microcontrollers over the

cellular network. The cellular network is the most

convenient, widely available network for testing

purposes. With the upcoming 5G network, this type of

testing over the cellular networks will improve.

1.4 The Ideal Multi-Vehicle Development Pathway

A multi-vehicle simulation environment would, by

itself, be useful for very low TRL experimentation,

but it is important to have a direct pathway to

incorporating real vehicles to improve test fidelity.

Once the proof-of-concept is achieved in simulation,

advancing the test maturity level by including real

hardware in the same semi-virtual test is the ideal

pathway to maturing a technology. What is needed is

a simulation environment designed with clear

networked interfaces to incorporate real hardware as

the algorithms and tests mature while keeping the

high-risk elements represented virtually until safety

risks are addressed. Eventually, greater realism and

expense must be undertaken such as one of the

federally designated autonomous vehicle test sites [1]

or MCity [2]. But, prior to advanced testing with all

real vehicles, what the community needs is an open-

source, widely available testing framework for low

TRL, multi-vehicle autonomy testing. The MoVE

framework provides such a framework for multiple

real or virtual vehicles and real or virtual pedestrians

with a freely available software implementation on

GitLab.com [3].

2. LITERATURE REVIEW
Single-vehicle software simulations such as ADAMS

CAR [4], SimCreator [5], TruckSim and CarSIM [6]

are primarily designed for medium or high fidelity

single-vehicle simulations. These have interfaces for

interacting in multi-vehicle environments but were

not designed specifically for multi-vehicle scenarios.

This literature review focuses on multi-vehicle, multi-

user, multi-pedestrian environments.

First generation multi-vehicle and multi-person live,

virtual, and constructive environments originated in

the early and mid 1990s with DARPA’s SIMNET [7]

and the US Army’s CCTT [8]. The concept of

integrating multiple vehicles among physically

separate distributed, networked simulation

environments was revolutionary [7]. OneSAF [9],

ModSAF, WarSim, Janus, JCATS and others may be

considered second generation multi-user, multi-

vehicle simulation environments with real soldiers

interacting within the environment during scenario

rehearsal. These typically use DIS or HLA [10] for

networked communications and use simple physics

based models. OneSAF has remained viable for over

20 years from 1996 to the present and is the U.S.

Army’s fully-featured live, virtual, and constructive,

multi-vehicle, multi-site military scenario training

capability. OneSAF’s Product Line Architecture

Framework (PLAF) [11, 12] outlines a

comprehensive suite of components for creating

scenarios, pulling parameters from military databases,

executing live and virtual training missions, managing

friend and foe forces, maneuvers, terrain databases,

and also performing after-action review (AAR).

Complexity in OneSAF, WARSIM, Janus and others

is high with a focus specifically on military use-cases.

MoVE attempts to capture the real time, multi-

vehicle, multi-operator networked aspects and after-

action review via post-processing but is much simpler

with a smaller code base. MoVE is not specifically

targeted at military scenarios but can be configured

for such scenarios. MoVE has a 2D live graphical

output similar to OneSAF’s top-down battlespace

view but is designed as an engineering tool for

simulating and testing a spectrum of real and virtual

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

MoVE: A Mobility Virtual Environment for Testing Multi-Vehicle Scenarios, Compere, et. al., GVSETS 2019

5 of 15

vehicles with real and virtual pedestrians. MoVE’s

goal is to provide autonomous vehicle researchers

with the ability to rehearse complex multi-vehicle

scenarios, develop autonomy algorithms, and test

messaging structures among vehicles and pedestrians

along a spectrum of realism from fully virtual to fully

real. Massively Multi-player Online games (MMO or

MMOG) may be considered the third generation of

multi-vehicle, multi-user software environments that

resulted from widely available high speed network

access, sophisticated graphics hardware, and a

vibrant, creative open-source software community.

For example, the iRacing online game has impressive

vehicle models, tracks, multiple drivers interacting in

real time over high speed internet connections.

iRacing is proprietary but even open source gaming

softwares are not designed for testing autonomous

vehicles.

An important project historically focused on ground

vehicle robotics is ROS: the Robot Operating System

[26]. The Robot Operating System (ROS) is an

open-source collection of tools, libraries, and

conventions that aim to simplify the task of creating

complex and robust robot behavior. The companion

program, ROS-Military (ROS-M) program aims to

create a central registry of defense-related robotic

components surrounded by a community of practice

with common processes, systems, and standards. Both

ROS and ROS-M are important contributors to the

robotics community and focus on a single platform.

MoVE is not intended for a single robot, but rather

intended specifically for multi-vehicle scenarios.

ROS 2.0 addresses multi-robot systems [28] but does

not appear to address pedestrians explicitly as part of

the scenario, although each robot may have pedestrian

avoidance incorporated. ROS-M or ROS-2.0 is a

likely candidate for future integration with MoVE.

ROS has an active user community, however, one of

the largest active user communities for an open-

source robot project is ArduPilot [29,30]. Perhaps the

most active open-source user community for

simulating and flying real autonomous vehicles, the

ArduPilot suite includes a ground control station,

mission planner, and other functions that work on

multiple aerial, ground, and surface (water) hardware

platforms. ArduPilot focuses on operating a single

vehicle but multi-vehicle coordination is supported.

ArduPilot is open source software and a likely

candidate for future collaboration with the MoVE

software environment.

One of the most sophisticated software environments

specifically intended for multi-vehicle autonomous

vehicles is Microsoft’s AirSim [13]. Airsim is an

open-source, software for simulating multiple

autonomous vehicles in a photo-realistic 3D

environment. It uses Unity’s Unreal Engine [14] to

simulate ground vehicles and popular aerial vehicles

with impressive visual realism. It captures shadows,

weather and time of day effects. It is impressive and a

non-trivial code to interact with. The graphics portion

of AirSim drives a large portion of the code base and

complexity to compile and run on specialized

hardware.

3D Graphics Belong Elsewhere

Most, if not all multi-vehicle gaming or simulation

environments include a high-fidelity graphics

component intended to improve realism for an

immersive gaming or simulation experience. This

single design feature drives computing software and

hardware requirements towards high performance

CPUs, GPUs, and low latency input devices and

displays. The investment in hardware and software

setup time can yield significant, impressive benefits.

But the financial, time, and cognitive load associated

with these graphics environments is non-trivial. The

need to develop and test simple behaviors with real or

virtual vehicles should not be impeded by the

substantial barriers-to-entry from high fidelity 3D

graphics. In short, high performance 3D graphics and

associated CPUs, GPUs, and displays should not be a

prerequisite to simulating and testing autonomous

vehicles, behaviors, and algorithms.

MoVE Design Philosophy

In contrast, the MoVE framework is conspicuously

lacking in 3D graphics capability. MoVE is designed

with a Unix or Linux philosophy of multiple small,

focused programs designed to perform clear, simple

functions. Clearly defined interfaces allow MoVE to

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

MoVE: A Mobility Virtual Environment for Testing Multi-Vehicle Scenarios, Compere, et. al., GVSETS 2019

6 of 15

effectively represent multi-vehicle scenarios

composed of real and virtual vehicles communicating,

each with various behaviors, without the overhead of

3D graphics output. A live 2D map plotting function

is available but not necessary to rehearse complex

multi-vehicle scenarios. This allows autonomy

developers to focus on behaviors, inter-vehicle

messaging, or improving model fidelity without any

need for 3D graphics hardware or software.

Simple desktop computers, mobile devices with

cellular network connections, and even edge

computing devices like Raspberry-Pi class computers

can run MoVE and participate in creative, networked,

multi-vehicle simulation and testing. Also, with such

low computational overhead, high vehicle count

scenarios can be explored such as modeling swarming

or teeming behaviors found in bird flocks or fish

schools. Or, some or all vehicles in the National Air

Space (NAS) can be simulated or monitored with

virtual UAVs inserted to test flight guidelines or safety

scenarios between manned and unmanned aircraft.

The ADS-B Framework

The aerospace community is quite familiar with the

ADS-B family of aircraft messages. ADS-B is also

somewhat well known in the Unmanned Autonomous

Systems (UAS) community. However, other technical

communities interested in autonomy may be less

familiar, so a brief explanation is warranted. ADS-B

is a messaging approach for commercial aircraft to

both send and receive messages from ground stations,

satellite, or other aircraft. ADS-B_Out contains

position information outbound from each aircraft to

make the surrounding airspace and control towers

aware if it’s location. ADS-B_In represents messages

back toward the aircraft with weather updates or other

vehicle locations. The MoVE software uses a

messaging concept somewhat similar to ADS-B but is

by no means compliant or even close to complete. The

analogy is intended to convey the concept of

individual vehicles sending outbound position

updates to a central receiver (i.e. MoVE Core) and

vehicle inbound messages being conveyed back to

each vehicle with important information useful for

that vehicle, such as a vehicle to follow or avoid [15].

3. MOVE ARCHITECTURE
The MoVE framework is composed of a process

launcher, a test manager for issuing runState

commands, and simple vehicle models that are run as

separate computer processes. Move Core

communicates with the vehicle processes and outputs

full scenario snapshots to a MongoDB database for

scenario recording and playback. A top-down 2D

mapping script shows all vehicle locations using

Bokeh, an open source 2D plotting library.

Figure 2: MoVE architecture with N vehicle models interacting with

MoVE Core. Core sends State updates to a 2D map and database

for test recording, post-processing and playback

4. MOVE RUNTIME DESCRIPTION
A test is initiated by launching Core, the vehicle

models, and issuing runState commands to

advance from Ready, to Set, then Go. A

configuration file captures all relevant parameters like

number of built-in vehicle models, number of

live-GPS-follower models, numerical integration

stepsize, udp/ip communication ports, and similar.

Each vehicle model uses a drift-free soft-real-time

subsystem to integrate mobility ODEs, each with it’s

own simulated time that advances at the same rate as

wall-clock time. Each of these models is assigned a

unique vehicle identifier, vid, so Core can

distinguish different vehicles. All vehicles send

updates via udp/ip to Core by sending position

updates with velocity, orientation and vehicle health

status messages. Core aggregates all incoming

positions and health status messages into a single

scenario representation called State. This State

dictionary is polled periodically for detecting and

avoiding collisions or providing position updates to

other vehicles running the followMe() behavior. If two

vehicles are at risk for collision, an avoidance

message is sent from Core to both vehicles with

position information to avoid collision. MoVE Core

MoVE

Core

vehicle 1

udp/ip Bokeh 2D MapDatabase

playbackrecord

live 2D map updates

vehicle 2

vehicle N

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

MoVE: A Mobility Virtual Environment for Testing Multi-Vehicle Scenarios, Compere, et. al., GVSETS 2019

7 of 15

records State for post-processing, playback, and

After Action Review (AAR). MoVE Core has two

simple command-line tools. The first launches vehicle

processes and the second commands each vehicle to

change runState.

Each vehicle process uses multiple threads for

advancing the vehicle mobility dynamics in

soft-real-time, sending and receiving udp messages

with MoVE Core, and for behaviors controlling

mobility or vehicle (model) functions. This

architecture allows MoVE to represent a mixture of

both real and simulated ground, surface, and aerial

vehicles along with real or virtual pedestrians. For

representing mobility of real people or real vehicles,

some vehicle models are designated as

live-GPS-followers that accept GPS latitude and

longitude coordinates from a real GPS device. For

live-GPS-followers there are no vehicle dynamics but,

rather, the mobility is determined by the real GPS

position updates in the real world, for example from a

mobile phone or tablet. The widespread availability of

low cost GPS receivers in smart-phone devices make

capturing real vehicle or pedestrian movements

straightforward. Open-source or low-cost apps are

available for iPhone or Android devices to transmit

GPS coordinates to the live-GPS-follower MoVE

vehicles [16, 17]. If hand-held smart phone devices

are too large or lack required accuracy, more

specialized electronics can provide similar

functionality with improved accuracy or smaller,

lighter form factors for vehicles with limited

payloads. A Cartesian XYZ frame is the underlying

coordinate system in which vehicle model mobility is

represented. All GPS latitude and longitude

coordinates are converted to orthogonal XYZ

Cartesian coordinates in meters via WGS84 UTM

conversion [18].

Pedestrians are also important to capture in the

scenario and may be either real or virtual pedestrians.

MoVE mobility models can be configured as

pedestrians with simple walking behaviors, ground

vehicles with simple driving behaviors, or aerial or

surface with flight or water navigation behaviors. A

scenario is composed of multiple vehicles,

pedestrians, and possibly multiple

live-GPS-followers capturing movement of real

people in the real world. Upon scenario execution,

each vehicle model receives Ready, Set, Go, Pause, or

Stop runState commands, communicates with

Core, and possibly communicates with other vehicles.

MoVE Core collects all communications and logs and

sends periodic updates to the MongoDB database and

Bokeh 2D visualization.

5. LIVE MAPPING
MoVE Core gathers all vehicle telemetry and

periodically sends vehicle position updates to a

Bokeh-based plotting program running on the same or

a networked computer. This allows all virtual and real

vehicles to be monitored in real-time on a 2D map

with Google Maps satellite overlays. The map

updates in real-time which displays new positions

each time MoVE sends a new UDP message. The last

N points of each vehicle are displayed to show tails of

the recent position history. This allows the user to see

a portion of the course of the vehicle leading up to the

current position, and to identify any outliers in the

data stream. A Google API Key and a GPS origin are

required for live vehicle display. Example map with

16 virtual vehicles is shown in Figure 4.

Figure 3: Map from the Bokeh-based live mapping program

6. VEHICLE BEHAVIORS
To provide interesting motion from simulated

vehicles, a priority-based behavior scheduler selects

different mobility behaviors similar to Rodney

Brooks’ subsumption architecture [19]. These

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

MoVE: A Mobility Virtual Environment for Testing Multi-Vehicle Scenarios, Compere, et. al., GVSETS 2019

8 of 15

behaviors provide reactive, simple motions with low

computational overhead and little or no world model

necessary. The table in Figure 4 outlines prioritized

behaviors that remain dormant until activated.

Figure 4: Table of behaviors and associated steer, throttle, and

pitch commands chosen by the priority-based behavior scheduler

Behaviors in built-in models include wander(),

periodicTurn(), and periodicPitch() plus the more

complex behaviors named avoid(), stayInBounds(),

and searchAndReport(). Each behavior is

implemented as a thread within the vehicle model

process and activates based on time or state

conditions. The stayInBounds() behavior requires a

bounding box, or convex polygon and associated

point-in-polygon test to periodically check if the

vehicle has exceeded the boundary. The avoid()

behavior may be simple or complex based on vehicle,

sensor, computing, or infrastructure capability. The

nominal avoid() implementation relies on MoVE

Core to provide vehicle-to-vehicle distance

calculations and notify vehicles of problem

conditions. The avoid behavior is one of the primary

motivating reasons for developing a mixed virtual and

real vehicle mobility testing capability.

Sense-and-avoid is an important class of problems in

unmanned aerial systems development [20]. One

reason the sense-and-avoid behavior is difficult to test

with real vehicles is the complexity of hardware,

software and test conditions. The MoVE testing

framework and freely available open-source software

addresses this need.

The searchAndReport() behavior provides an

interesting combination of simulation-only simplicity

and real-world realism. This particular search

function has no priority and no actuator commands.

Its role is only to monitor the vehicle’s current

position and signal when it is within some threshold

radius of a given target. The target’s position is

provided via MoVE Core and represents unrealistic

information that a real-world search effort would not

have. By definition, a real search effort has no

knowledge of the unknown target location. But, a real

vehicle could discover an unknown target with an

on-board sensor like a camera or IR sensor. Upon

discovering the unknown location, a real vehicle

could, indeed, signal the discovery and last-seen time

and location. The searchAndReport() behavior can

mimic this discovery message in a simulated vehicle

by disallowing the model’s mobility functions from

knowing the unknown location. In this way, the

searchAndReport() behavior allows simulation-based

rehearsal of search-based scenarios without a real

vehicle discovering a real target. Or a simulated

vehicle could be configured to search for a

live-GPS-follower, which is a real person in the real

world. In this way, complex search functions can be

rehearsed in simulation only or with a mix of real and

virtual vehicles or pedestrians.

7. BUILT-IN MOBILITY MODEL
The built-in mobility model equations of motion are a

simple kinematic formulation with velocity and steer

angle as inputs. The vehicle velocity in SAE body-

fixed coordinates is given by

𝑣⃗𝑥𝑦 = (
𝑣𝑥
𝑏 ∙ 𝜓̇

) (1)

where 𝑣𝑥 is the specified forward velocity, 𝑏 =
𝐿𝑐ℎ𝑎𝑟/2 is the distance from the vehicle CG to the rear

axle (for ground vehicles) and 𝜓̇ is the vehicle yaw

rate about the body-fixed 𝑧-axis. Yaw rate is specified

with operator steer commands with

𝜓̇ = (
𝑣𝑥
𝐿𝑐ℎ𝑎𝑟

) ∙ 𝛿 (2)

where 𝛿 is the operator steer command and 𝐿𝑐ℎ𝑎𝑟 is

the vehicle’s characteristic length. For ground

vehicles, this represents wheelbase. For aerial or

surface vehicles this represents total longitudinal

vehicle length. The mobility model is simple wiwth a

characteristic length, 𝐿𝑐ℎ𝑎𝑟, intended to capture an

idx behavior priority enable? steer cmd throttle pitch cmd

0 wander 1 (0/1) 0 const 0

1 periodicTurn 2 (0/1) rand[-1,+1] -10% 0

2 periodicPitch 2 (0/1) 0 const rand[-1,+1]

3 stayInBounds 4 (0/1) turnAround +10% 0

4 avoid 10 (0/1) turnAway const turnAway

5 searchAndReport 0 (0/1) N.A. N.A. N.A.

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

MoVE: A Mobility Virtual Environment for Testing Multi-Vehicle Scenarios, Compere, et. al., GVSETS 2019

9 of 15

approximate vehicle size for ground, air, surface,

underwater vehicles or pedestrians. For example,

integer multiples of 𝐿𝑐ℎ𝑎𝑟 are used for thresholding in

the avoid() behavior to allow for a small UAV to avoid

collision with a much larger, manned aircraft like a

787 whose 𝐿𝑐ℎ𝑎𝑟 is much larger. Transforming this

body-fixed 𝑥𝑦 velocity into inertial, or terrain-fixed

velocity with

𝑣⃗𝑋𝑌 = 𝑇𝑇 ∙ 𝑣⃗𝑥𝑦 (3)

provides inertial frame XY velocities suitable for

numerical integration with a fixed-step 4th order

Runge-Kutta ODE solver. 𝑇 = 𝑇(𝜓) and is the

transformation matrix from body-fixed 𝑥𝑦 to inertial

𝑋𝑌 velocities give by

𝑇 = (
cos(𝜓) sin(𝜓)
−sin(𝜓) cos(𝜓)

) (4)

For aerial or underwater vehicles, elevation can be

included by specifying vertical climb velocity with:

𝑣𝑍 = 𝑣𝑥 ∙ sin⁡(𝜃) (5)

where 𝑣𝑍 is the inertial frame vertical velocity as a

function of 𝜃, the operator’s commanded pitch angle.

These ODEs represent simple kinematic mobility

models for a ground vehicle with Ackermann steering

on flat ground. The simple dynamics includes a

simple pitch equation to increase or decrease

elevation, so these may also simply represent a

fixed-wing aerial vehicle, rudder-steered surface

vehicle, or even an underwater vehicle. Higher

fidelity models can be incorporated using the same

runState commands and the same MoVE Core

incoming and outbound messages. Open-source

examples are freely available at the MoVE software

repository [3]. The GPL v3 license allows use for

personal, research, or commercial use as long as the

original source code is referenced and modifications

are made available to the wider open-source

community [21].

8. VEHICLE MODEL ARCHITECTURE
The vehicle model architecture is illustrated in Figure

5.

Figure 5: MoVE built-in mobility model with priority-based

behavior scheduler

The layout uses a standard control diagram with

operator inputs from MoVE core, a priority-based

behavior scheduler to provide interesting operator

commands, a drift-free soft-real-time subsystem, a 4th

Order Runge-Kutta ODE solver, and simple mobility

equations of motion. Vehicle model outputs include

position in XYZ coordinates, positions converted to

latitude and longitude, health status metrics such as

soft-real-time margin, current behavior command,

runState, unique vehicle ID, vehicle type and sub-

type, and a vehicle name string for identifying

vehicles during post processing.

9. SOFT-REAL-TIME SUBSYSTEM
A drift-free soft real time subsystem advances

simulated time at the same rate as wall-clock time so

simulated motion is realistic as it interacts with real

vehicles or pedestrians. The MoVE software can be

run on desktop PCs, laptops, Raspberry Pi class

computers, or consumer grade tablets and mobile

devices. Almost none of these computing platforms

claims to provide a hard real time operating system,

so the best and most convenient option is to achieve

soft-real-time. Some simple implementations of soft-

real-time delay a certain amount each loop resulting

in simulated time advancing at roughly

wall-clock-time. By subtracting the estimated

computation time during each loop this can be

reasonably effective. However, without an absolute

reference this approach results in drift from wall-

clock time, sometimes by many seconds or even

minutes. The MoVE soft-real-time subsystem

𝑦

𝑥̇

𝑥 = 𝑥̇

 ℎ

behavior scheduler mobility dynamics

𝑥̇ = 𝑥

 = 𝑥

 𝑐 𝑟

𝑥

𝑥

to Corefrom Core

i d x b e havior p r iority e n a ble?s t e er cm d t h rottlep i t ch cmd

0 wander 1 (0/1) 0 const 0

1 periodicTurn 2 (0/1) rand[-1,+1] -10% 0

2 periodicPitch 2 (0/1) 0 const rand[-1,+1]

3 stayInBounds 4 (0/1) turnAround +10% 0

4 avoid 10 (0/1) turnAway const turnAway

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

MoVE: A Mobility Virtual Environment for Testing Multi-Vehicle Scenarios, Compere, et. al., GVSETS 2019

10 of 15

captures the start time at execution and uses this

absolute reference to ensure the N’th numerical

integration step is taken and paused appropriately to

maintain coordination with wall-clock time over

many minutes and hours with a bounded total delay.

The approach is similar to a PI controller with control

error as absolute time difference and control input as

sleep time.

The elapsed wall clock duration in seconds is

 𝑤𝑎𝑙𝑙⁡𝑐𝑙 𝑐𝑘 = 𝑛 𝑤 − 𝑠𝑡𝑎𝑟𝑡. The start time, 𝑠𝑡𝑎𝑟𝑡, is

captured when a vehicle process enters the GO

runState. Total elapsed simulation time is 𝑠𝑖𝑚 =

𝑁𝑠𝑡 𝑝𝑠 ∙ where 𝑁𝑠𝑡 𝑝𝑠 is the total number of

integration steps taken at the integration stepsize, ,

in seconds. The difference between elapsed

wall-clock time and total simulated time is the soft

real time drift error:

 𝐸𝑟𝑟 = 𝑤𝑎𝑙𝑙⁡𝑐𝑙 𝑐𝑘 − 𝑠𝑖𝑚 (6)

The amount the vehicle model process should delay,

or sleep with a non-busy wait is the intended

𝑠𝑙𝑒𝑒𝑝 = max⁡(⁡0.0⁡ 𝑐𝐼𝑛 − 𝐸𝑟𝑟 − 𝑘𝐼 ∙ 𝐸𝑟𝑟𝑆 𝑚) (7)

The term 𝐸𝑟𝑟𝑆 𝑚 is the accumulated time errors

much like an integral term accumulating error. The

integral gain, 𝑘𝐼 = 0.3 was chosen for stable delay

time compensation limiting the total drift over many

minutes with variable CPU load. Soft real time margin

is defined as sleep time divided by communication

interval. This allows quick reference on how much

margin the soft real time process has for ensuring

soft-real-time performance. As many vehicles (>100)

begin to tax the computer’s across all cores, the

soft-real-time margin is a useful metric for

understanding how well all vehicle models are

advancing at wall-clock time.

10. SIMPLE VEHICLE BEHAVIOR MODELS
The mobility equations of motion accept operator

inputs and solve for resulting motion. However,

operator inputs must also be generated for 𝑁 virtual

vehicles. A priority-based behavior scheduler provide

vehicle inputs within each vehicle model process to

generate interesting motion in the virtual world. In the

late 1980’s and early 1990’s Rodney Brooks and

colleagues developed the subsumption architecture as

a means of creating complex, fast, reactive robotic

inputs to sensor stimulus [19]. At the time, the leading

robotics philosophy demanded high world knowledge

and extended computation to make thoughtful

decisions [22]. The subsumption architecture is fast,

has direct responses connected to certain inputs, is

straightforward to program on embedded computers

and yet can generate a rich result of complex

behaviors, especially as the vehicle models interact

with the environment and with one another, both real

and virtual. At the heart of subsumption is a priority

based scheduler which selects the winning behavior

from the set of active behaviors. This competitive

approach among behaviors is in contrast to Ronald

Arkin’s method which composes a blended approach

from, perhaps, multiple active behaviors [23]. The

MoVE built-in vehicle models are designed with a

priority-based scheduler with in behaviors called

wander, periodicTurn(), periodicPitch(),

stayInBounds(), avoid(), and detectAndReport().

Behaviors under development include followPath()

and followMe() for built-in vehicles.

11. TEST EXECUTION
A testing scenario typically has a common set of

phases, each of which takes time to complete so

MoVE’s state machine transitions the runState

variable suitable to each of these phases. The

following list briefly describes characteristics of the

five run states, Ready, Set, Go, Pause, Stop:

• Ready, or runState==1 is the default starting

run state for each newly launched vehicle process.

The Ready state tells each vehicle model to

provide MoVE Core with a low frequency

(e.g. 1Hz) status update with vehicle ID,

runState, and health status information.

• Set, or runState==2 commands each vehicle to

assign initial conditions to vehicle location,

velocity, and optional payload. Set increases

network traffic by commanding all vehicle models

to report standard position, velocity, and health

status updates to MoVE Core at the runtime

communication interval, cInt. A reasonable

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

MoVE: A Mobility Virtual Environment for Testing Multi-Vehicle Scenarios, Compere, et. al., GVSETS 2019

11 of 15

value for cInt is 0.1(s) which provides 10Hz

MoVE Core updates. This allows test operators to

verify the physical communications channels are

well suited for the combination of communication

intervals and number of vehicles in the scenario.

In particular, wireless communication channels

can be verified during the Set state.

• Go, or runState==3 commands all vehicle

models to begin numerical integration of the

governing equations of motion in soft-real-time.

This causes each vehicle model process to

simulate vehicle or pedestrian motion in the

virtual environment and continue to report

position, velocity, and health updates to MoVE

core at cInt. In the Go run state,

live-GPS-follower models begin listening for

their respective GPS locations on a pre-defined

udp port. Upon receiving GPS location, this

latitude and longitude is converted from lat/lon in

decimal degrees to UTM coordinates which are

meters in an orthogonal XYZ frame.

• Pause, or runState==4 commands all vehicle

models to stop numerical integration and hold

position while test operators make adjustments to

real hardware or evaluate the current test.

• Stop, or runState==5 commands all vehicle

processes, whether simulated or

live-GPS-followers to close log files and exit

gracefully.

12. SCENARIO EXAMPLES
Three scenarios are presented below that illustrate real

and virtual vehicles interacting in a common

coordinate frame with a common time stamp.

12.1 Scenario #1: All simulation, 3 vehicle

The first experiment presented is simulation-only

with three virtual vehicles configured with wander(),

periodicTurn(), stayInBounds(), and avoid()

behaviors. The boundary imposed is a 100m x 100m

region and each vehicle detects when it leaves the

region and performs a turning maneuver, steering

toward the center to return inside the boundary. Figure

6 shows the Google Maps view with latitude and

longitude traces of all three vehicles, plus the

boundary. The latitude and longitude origin is

provided at the baseball field center.

Figure 6: Three virtual vehicles in a 100mx100m region

demonstrating stayInBounds() and avoid() behaviors

Figure 6 clearly shows the stayInBounds() behavior

for each vehicle model while Figure 7 illustrates all

vehicle distances to all other vehicles remained above

a safe threshold.

Figure 7: Three virtual vehicles in a 100mx100m region

demonstrating stayInBounds() and avoid() behaviors. After startup

(t=15s) MoVE Core directed all three vehicles to avoid the others as

evidenced by the all-to-all distance plot versus time.

Aside from a close proximity startup between t=0 and

t=15s, MoVE Core detected potential collisions and

informed each pair of vehicles to take evasive action.

The avoid() behavior is a simple example of

sense-and-avoid. Virtual vehicle models integrate

Virtual

UAV #3

Virtual

UAV #1

Virtual

UAV #2

100m XY

boundary

No collision!

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

MoVE: A Mobility Virtual Environment for Testing Multi-Vehicle Scenarios, Compere, et. al., GVSETS 2019

12 of 15

ODEs in the body-fixed xyz frame, transform to the

terrain-fixed XYZ frame with a UTM origin offset, and

then use a UTM coordinate converter to output

latitude and longitude for plotting on Google maps.

The all-to-all distance calculations are performed in

the inertial XYZ frame as a standard Euclidian 2-norm

in units of meters.

12.2 Scenario #2: Traffic Wave Observation

The second experimental scenario is a traffic wave

monitoring exercise with 1 (real) lead vehicle and 3

real followers. Four live-GPS-follower vehicles were

configured along with 4 virtual vehicles that

wandered and turned in the same scenario but did not

interact with the live vehicles.

Figure 8: Traffic wave scenario with 1 lead vehicle and 3 follower

vehicles streaming GPS position over the cellular network at 10Hz

The virtual vehicles are not shown but were present in

the recorded data. All four Android devices running

HyperIMU were configured to stream GPS location to

MoVE Core at 10Hz over the cellular network [17].

HyperIMU is free for Android devices. Similar

functionality streaming location position via udp over

cellular networks will soon be available for iPhones

using SensorLog [31]. Configuration and network

communication was verified in runState 1 and 2

(Ready, Set). Then runState was assigned to 3 (i.e.

Go) which initiated the testing sequence. The four

vehicles drove from the campus parking lot to a city

streetlight, then across the road to complete 1 lap

around the university sports complex (Figure 8). The

lap duration was just less than 6 minutes and 2.5km.

The lap included approximately 7 speed bumps and

stop signs causing the lead vehicle to intentionally

accelerate and decelerate at each.

Post-processing the GPS locations of each vehicle in

time consisted of UTM conversion from latitude and

longitude in decimal degrees to orthogonal XYZ

coordinates in units of meters. With distance

converted to the inertial, or terrain frame, path lengths

were calculated and plotted against time.

Figure 9: Traffic wave position versus time with 1 lead and 3

follower vehicles. Accordion or wave like motion is demonstrated.

MoVE successfully illustrates a common traffic wave

pattern with real vehicles and real drivers. These time

histories can be used to validate driver models,

recreate traffic in simulation and ultimately design

control laws for autonomous vehicles to reduce or

eliminate traffic oscillation and traffic jams. Reduced

traffic through autonomy is an important step toward

reducing environmental impact, reducing fuel

consumption, and reducing driver fatigue, distress and

total drive time caused by highway traffic.

12.3 Scenario #3: Medical Evacuation

The US Army promotes a medical evacuation

scenario as a useful situation for autonomous

vehicles. The autonomous vehicle could enter a

possibly hostile area, retrieve an injured person and

provide automated medical evacuation from the

danger area. Two real pedestrians and 2 real vehicles

role played a medical evacuation sequence on a

Real Lead Vehicle

Stop and Go

Real Follower

Vehicle #1

Real Follower

Vehicles #2

Real Follower

Vehicles #3

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

MoVE: A Mobility Virtual Environment for Testing Multi-Vehicle Scenarios, Compere, et. al., GVSETS 2019

13 of 15

university campus. The real person role playing an

injured soldier went to a location and waited for the

UAV to discover an injured soldier. then signaled help

from the medic. The medic then approached the

injured person, calling in an ambulance that traveled

the boundary path to evacuate both medic and injured

person back to the role-played hospital. The GPS

traces collected by MoVE core from three

live-GPS-follower vehicles is illustrated in Figure 10.

Figure 10: GPS Positions of 2 real pedestrians role-playing injured

solder and medic, 1 real UAV flying lawnmower search pattern,

and 1 real vehicle role-playing an ambulance.

All four traces are from live-GPS-followers. Two are

from real people, one is from a real UAV flying, and

the fourth is from a real vehicle traveling to retrieve

both pedestrians.

Figure 11 shows the distance time history from

all-to-all vehicles and pedestrians. The single trace

with low distance near the beginning is the medic with

Vehicle ID (vid) of 101 near the ambulance (vid=103).

The first decreasing distance represents the UAV

(vid=100) approaching the injured person (vid=102).

The next distances that drop are the medic

approaching the injured person and UAV. The third

reduction in distances represents the ambulance

approaching the medic, injured person with the UAV

nearby, then taking the medic and injured person back

to the hospital. The fourth rise and fall is the UAV

following the ambulance returning to hospital. The

UAV maintains safe distance from all others.

Figure 11: Distance traces for all-to-all vehicles with real UAV, 2 real

pedestrians, and 1 real ground vehicle.

Post-processing multi-vehicle position histories can

be a challenge, especially when the resulting logs

have missing data points from temporary network

drop-outs. One primary goal of the MoVE framework

is to capture vehicle positions with a common

timestamp. This is achieved but position updates are

still individually collected at different, unique times.

The concept of a vehicle-to-vehicle distance function

presumes distances are able to be calculated at

approximately the same time, plus or minus a few

milliseconds. But because of intermittent packet loss

over the cellular network, each position time history

has a different array length which forces a time-based

approach to computing vehicle-to-vehicle distances.

The MoVE Core postProc script in Matlab negotiates

these details and computes distances from each

vehicle to each other vehicle for the logfile time

ranges common to both. The number of

vehicle-to-vehicle position calculations is

𝑁𝑑𝑖𝑠𝑡𝑎𝑛𝑐 𝑠 = (𝑁
2 − 𝑁) 2⁄ . The distance function

executes fairly quickly on modern PCs when the

number of vehicles, N, is small say, N < 300, and can

be computed in real time or post-processed from logs.

The injured soldier, medic and ambulance are all role-

played actors on a university campus. The role-played

ambulance is a John Deere Gator XUV855D-S4

4-seater instrumented research vehicle and the UAV is

Role-play

injured soldier
Real UAV

Lawnmower

Search Pattern

Simulated

Hospital

Ambulance

Medic

UAV Approaching

Injured Person

Medic Approaching

Injured Person

Ambulance, medic,

injured return to hospital

UAV following

ambulance

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

MoVE: A Mobility Virtual Environment for Testing Multi-Vehicle Scenarios, Compere, et. al., GVSETS 2019

14 of 15

a DJI Matrice 100 quad rotor. This quad design has a

large flat surface for mounting a sensor package.

Figure 12: LEFT: DJI Matrice 100 Quadrotor UAV with large

surface for mounting instrumentation. RIGHT: Instrumented

John Deere Gator research vehicle

UAV Camera images observing the medic and injured

soldier is show in Figure 13.

Figure 13: UAV Camera image observing ambulance approach

medic and injured soldier on university campus

Figure 14 shows the UAV camera view following the

ambulance back to the hospital.

Figure 14: UAV camera image while following ambulance back to

hospital on university campus

MoVE as Open-Source Software

The MoVE software development style follows the

Unix philosophy of simplicity, transparency,

modularity, and clearly defined interfaces [24].

Likewise, 3D graphics hardware and software is, and

has always been a rapidly developing field with a

substantial code base and literature base. Also, the

complexity and effort required to develop and render

visual databases is significant. For this reason, MoVE

is entirely absent of 3D graphical output. MoVE

provides real-time 3D position updates for each

vehicle in the scenario, along with vehicle health

status information via udp/ip netowork messages. The

udp output messages are designed to interface with a

3D rendering engine, but there is no 3D real-time

visualization tool included in the MoVE software

distribution. Post-processing tools for visualizing 3D

trajectories after a test are included. A real-time, 2D

top-down position mapping tool based on Bokeh [25]

is provided for monitoring MoVE vehicles with a

Google maps overlay.

13. CONCLUSION
The need for multi-vehicle autonomy testing is clear

and the autonomy community needs improved

methods for testing, sharing, and comparing

multi-vehicle scenarios. The Mobility Virtual

Environment, or MoVE, provides one approach to

data collection and sharing. A configuration file

capturing all relevant settings can be shared among

researchers for collaboration on scenario rehearsal,

vehicle behaviors, or vehicle messaging. The MoVE

software provides a mechanism for simulation-only

testing and a clear mechanism for using a mix of real

vehicles in the same scenario. The MoVE Core

function provides test coordination with the Ready,

Set, Go, Pause, Stop state machine and gathers all real

and virtual vehicle positions for post processing

afterward. Core also provides the sense-and-avoid

detection and notification to vehicles. All-to-all

distance calculations are performed by MoVE Core

that detect imminent collision and notify both vehicles

of interest. Bokeh is an open-source plotting library

for 2D top-down display of real and virtual vehicles

with a Google Maps overlay, in real time. A

MongoDB interface records all vehicle messages for

subsequence analysis and replay. The MoVE software

Medic (vid=101)

and Injured

Soldier (vid=102)

Ambulance

Approaching

(vid=103)

UAV (vid=100)

Following Ambulance

(vid=103) with Medic

and Soldier

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

MoVE: A Mobility Virtual Environment for Testing Multi-Vehicle Scenarios, Compere, et. al., GVSETS 2019

15 of 15

is written in Python 3 and is freely available on

Gitlab.com for the autonomy and multi-vehicle

simulation community to enhance collaboration.

14. ACKNOWLEDGEMENTS
The authors would like to thank Mr. Peter Wambolt

for professional UAV flights and Mr. Ruel Morant and

Ms. Shelby Bischoff for scenario rehearsal.

15. REFERENCES
[1] U.S. Department of Transportation. (2017,

January 19). U.S. Department of Transportation

Designates 10 Automated Vehicle Proving Grounds to

Encourage Testing of New Technologies. Retrieved

from Transportation.gov.

[2] University of Michigan. (2019). Mcity Test

Facility. Retrieved from mcity.umich.edu.

[3] Compere, M. (n.d.). Mobility Virtual Environment

publicly available open source software repository on

gitlab.com: https://gitlab.com/comperem/move

[4] MSC Software. (2019). Adams Car. Retrieved

from mscsoftware.com.

[5] Realtime Technologies. (2019). Simulation for

Autonomous Vehicle Testing. Retrieved from

faac.com.

[6] Mechanical Simulation. (2019). Vehicle

Simulation Products. Retrieved from carsim.com.

[7] Cosby, L. N. (1995). SIMNET: AN INSIDER'S

PERSPECTIVE. Alexandria: INSTITUTE FOR

DEFENSE ANALYSES.

[8] Noble, J. L., & Johnson, D. R. (1991). Close

Combat Tatical Trainer (CCTT), Cost and Training

Effectiveness Analysis (CTEA). Fort Leavenworth:

Department of the Army.

[9] Bowman, L., Rhinesmith, F., & Mervin, L. (2017).

Synthetic Environment Core (SE Core): 3D

Geospatial M&S Summit Follow On. Department of

the Army.

[10] Hofer, R. C., & Loper, M. L. (1995). DIS Today.

Proceedings of the IEEE.

[11] Smith, R. (2008). OneSAF: Next Generation

Wargame Model. Department of the Army.

[12] Logsdon, J., & Wittman, D. (2008).

Standardizaton, Transformation, & OneSAF.

Orlando: Program Executive Office Simulation

Training and Instrumentation.

[13] Kapoor, A., & Shah, S. (2017, November 13).

Microsoft extends AirSim to include autonomous car

research. Retrieved from Microsoft Research Blog.

[14] Wilson, J. (2019, April 2). Unreal Engine 4.22

released. Retrieved from Unreal Engine.

[15] Federal Aviation Administration. (2019, March

12). Automatic Dependent Surveillance-Broadcast

(ADS-B). Retrieved from faa.gov.

[16] Thomas, D. B. (2019, March 23). SensorLog

v2.6. Retrieved from sensorlog.berndthomas.net.

[17] IANOVIR. (2019). HyperIMU. Retrieved from

ianovir.com.

[18] Bieniek, T. (2017, April 6). UTM. Retrieved from

pypi.org.

[19] Brooks, R. (1985). A Robust Layered Control

System for a Mobile Robot. Arlington: Office of Naval

Research.

[20] Angelov, P. (2012). Sense and Avoid in UAS. John

Wiley & Sons.

[21] Smith, B. (2014, 11 8). A Quick Guide to GPLv3.

Retrieved from GNU Operating System.

[22] Brooks, R. (1990). Elephants Don't Play Chess.

Robotics and Autonomous Systems, 3-15.

[23] Arkin, R. C. (1998). Behavior-based robotics.

MIT press.

[24] Raymond, E. S. (2003). The art of Unix

programming. Addison-Wesley Professional.

[25] NUMFOCUS. (2018). Welcome to Bokeh.

Retrieved from bokeh.pydata.org.

[26] ROS: The Robot Operating System, n.d., url:

https://www.ros.org/about-ros/

[27] Jerry Towler, Matthew Bries, "ROS-Military:

Progress and Promise", In Proceedings of the Ground

Vehicle Systems Engineering and Technology

Symposium (GVSETS), NDIA, Novi, MI, Aug. 7-9,

2018.

[28] ROS 2.0, "Why ROS 2.0?", url:

https://design.ros2.org/articles/why_ros2.html

[29] Ardupilot Open-Source software, n.d., url:

http://ardupilot.org/

[30] Open-Source Software Comparison Tool, n.d.

url: www.openhub.net

[31] SensorLog iphone app, Bernd Thomas, url:

apps.apple.com/us/app/sensorlog/id388014573

https://gitlab.com/comperem/move
http://www.openhub.net/

