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ABSTRACT 
This work investigates the effects of obstacle uncertainty on the speed, 

distance, and feasibility of a planned traversal path. Simulation results for artificial 

and real-world environments are used to numerically quantify how geometric 

uncertainty within a map affects path traversal cost. A significant outcome of this 

research is the discovery of a relationship between increasing uncertainty and path 

cost. As obstacle uncertainty increases, previously planned routes can become 

infeasible as they effectively become blocked off due to uncertainty in the obstacle 

geometry. This paper illustrates a method that can serve to increase the speed, 

simplicity, and reliability of path planning, while allowing uncertainty to be 

included in the mobility analysis. 
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1. INTRODUCTION 
 The U.S. Army has been using the NATO 

Reference Mobility Model (NRMM) to inform 

path-planning decisions since the 1970s. The main 

use for NRMM has been to compare vehicle 

designs and determine the mobility of vehicles 

under certain terrain conditions. Although this tool 

has been a valuable asset over the years, it does not 

take into account many modern vehicle 

characteristics [1-3] or the uncertainty inherent 

with any real-world vehicle and environment [3,4]. 

Recently there have been efforts to modernize and 

update the NRMM [1-4], and one specific intent for 

the Next Generation NRMM (NG NRMM) is to 

include factors for modeling vehicle and 

environmental uncertainty [3,4]. Choi, et al. has 

focused on accounting for what they call 

irreducible uncertainty in the environment [4,5] 

while others, including Ghiocel et al. have focused 

on reducible uncertainty within the vehicle [6]. This 

paper is interested in reducible uncertainty in 

environmental factors. Specifically, the analysis 

presented here will focus on the dimensional 

uncertainty of obstacles.  
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In this paper, global knowledge of obstacle 

position and general geometric shape will be 

assumed, but the extent of the dimensions will be 

assumed to be uncertain. That is, the global location 

of each obstacle is known, but the actual size of the 

obstacle is not known for certain. This type of 

uncertainty can be represented by dilating the 

ground truth obstacle to reach the assumed size, as 

shown in figure 1 and explained in section 2. 

In order to make this analysis easily extendible to 

environments of various sizes and differing unit 

systems, two unitless ratios will be defined that 

describe the two key factors: the dimensional 

uncertainty and the cost of traversal. The 

dimensional uncertainty ratio for this paper will be 

defined as the average maximum radius of all the 

expanded obstacles divided by the average 

maximum radius of all the ground truth obstacles. 

This provides a metric for determining a percentage 

of overall size increase, allowing the analysis to be 

valid on any scale. Although other definitions could 

be used, the major outcomes of this paper should be 

the same. 

The cost used in this paper will be traversal 

distance. The cost ratio will be defined as the total 

path distance divided by the Euclidean distance 

from the starting point to the goal point. This 

provides an easy way to determine how far a 

vehicle will actually need to travel if the Euclidean 

distance and cost ratio are known ahead of time. For 

example, if the goal point is 5 miles away and the 

cost ratio to travel through this environment is 1.1, 

then the actual travel distance should be 5.5 miles, 

which could be crucial information when planning 

an operation. 

 

2. SIMPLIFICATIONS 
  For the simulations in this paper, the analysis 

was made tractable by several methods. First, the 

area of interest is represented via a visibility graph 

on a two-dimensional map. The map is constrained 

to two dimensions to simplify the analysis, but 

could be extended to three dimensions if desired. 

The visibility graph was first formalized by 

Lozano-Pérez and Wesley in 1979 [7], although 

they state the idea predated their work [7-9]. The 

method is to represent all obstacles as polytopes 

with a finite (and ideally small) number of vertices. 

A visibility graph is then composed of all the 

connections between vertices that can be connected 

without passing through the interior of any obstacle 

and the start and goal points, with some cost to 

move between each pair [7]. This type of 

representation is useful because the shortest path 

around the objects will always be the shortest path 

between the start and goal points through the 

visibility graph [7]. 

Second, each potential obstacle is represented as 

a convex polytope. This requirement ensures that 

the path planners do not get caught in local minima. 

This is especially relevant to path planners using 

heuristics, like A*, which speed up the path 

planning process by making approximations of 

future cost [10]. This requirement can be relaxed 

with certain modifications to the planning 

algorithm, but will be kept for now to increase 

simplicity.  

The third simplification is to dilate obstacles to 

account for the vehicle size and dilate again to 

account for uncertainty. In order for the visibility 

graph to be effective, the vehicle must be 

approximated as a point, which requires that the 

obstacles be extended to account for the vehicle 

dimensions or clearance [7]. Since the orientation 

of the vehicle changes as it moves throughout the 

map, the simplest solution is to find the radius of a 

circle that encompasses the vehicle and dilate each 

ground truth obstacle by that distance. Then the 

point moving along the path will represent the 

centroid of the vehicle. This is shown in figure 1, 

and ensures that as long as the centroid of the 

vehicle remains outside the dilated obstacle, the 

vehicle will never be able to contact the ground 

truth obstacle. On large scales this dilation is often 

very minute as can be seen in figure 3. Similarly, if 

the exact dimensions of an obstacle are only known 

to ±10% the worst-case scenario would be to take 

the nominal obstacle and dilate it by 10%. For this 
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analysis, this uncertainty will be implemented by 

doing additional dilation after the ground truth 

obstacle is dilated to account for vehicle size.  

The final simplification is implemented to 

maintain convexity as more uncertainty is added to 

the environment. As obstacle dimensions become 

more uncertain, obstacles begin to overlap, which 

can create obstacle combinations that appear 

concave to path planners. In order to prevent this, 

whenever two or more obstacles begin to overlap, 

they are combined into a single convex polytope, 

maintaining simplification two. This can 

sometimes remove legitimate paths from the 

visibility graph and as with the second 

simplification, this can also be relaxed with some 

modification, but will be kept for simplicity. 

 

3. SIMULATION METHOD 
The analysis presented here use Dijkstra’s 

algorithm as the path planner for determining the 

optimal-distance path between two points within a 

predefined map [11]. Dijkstra’s algorithm is often 

slower than many heuristic algorithms. However, 

since it does not consider any heuristics, it does not 

struggle with the local minima and, given enough 

time, it can always find the shortest path within the 

visibility graph [9]. The guarantee of the shortest 

path is the main justification, however, being able 

to handle local minima is important for more 

complicated scenarios where convex obstacles are 

not feasible.  

Ultimately, the goal is to find the relationship 

between the cost ratio and uncertainty ratio, defined 

in section 1. Using Dijkstra’s algorithm, the 

uncertainty ratio can be changed incrementally and 

the corresponding paths and cost ratios found. By 

plotting the cost ratio against the uncertainty ratio, 

figure 2, useful relationship characteristics can be 

found.  

4. RESULTS 
The first thing to observe from figure 2 is that the 

plots exhibit jumps in cost ratio at certain 

uncertainty ratios, caused by suddenly changing 

between different path options, which the authors 

refer to as “bifurcation points.” If the bifurcation 

Figure 1: Example showing how polytope dilation 

prevents vehicles from intersecting the ground truth 

polytope. 

Figure 2: A sample cost ratio vs. uncertainty ratio plot for 

the corresponding map in figures 3 and 4. The colored dots 

correspond to the polytope colors in figures 3 and 4. 
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points are observed in conjunction with the 

corresponding map, it can be seen that the 

bifurcations always occur when objects in close 

proximity to the path merge: i.e. when “choke 

points” are closed off. This can be seen in figure 4, 

where the top two figures correspond to 

uncertainties immediately before and after a 

bifurcation. Notice that the path made a significant 

change at this point, explaining the large change in 

the cost ratio. 

A useful characteristic of these plots is that the 

relationship between the bifurcation points is nearly 

linear and can be conservatively assumed to be 

linear. Figure 5 shows the first section of the cost 

vs. uncertainty plot shown in figure 2 before the 

bifurcation point. The dashed line shows a perfectly 

straight line between zero uncertainty and the 

uncertainty immediately before the bifurcation. It 

can be shown with some simple geometry and 

extensive algebra (appendix) that under some 

simple assumptions, the relationship between the 

uncertainty ratio and cost ratio can be assumed to 

Figure 4: The top two maps show a choke point 

immediately before and after a bifurcation. The last plot 

shows the map before several polytopes merge and envelop 

the start point preventing further path planning. The black 

interior polytopes show the dilated obstacles before 

merging.  Units are in meters. 

Figure 3: The ground truth obstacle map (black) with 

dilations for vehicle size (red). The units for this map are 

meters and the vehicle radius from the centroid was 

assumed to be 3 meters. 
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be linear as the dashed line suggests. Additionally, 

the curve is always concave up meaning that the 

linear assumption is always conservative. 

One note to make is that the plot goes to infinity 

at some uncertainty. This usually occurs because 

the start or goal point is either surrounded by 

obstacles, has no path out, or becomes enveloped 

by one of the expanding obstacles. This essentially 

means that the situation is now so uncertain that 

traversing the area is assumed to be impossible. 

Typically, this occurs at an uncertainty that is 

unrealistically high, but is worth mentioning here 

as it defines when the uncertainty is no longer 

increasing. 
 

5. MODIFICATION FOR TURNING 
The basic path planner returns a set of nodes that 

give a path of straight-line segments. However, 

most vehicles cannot make instantaneous turns 

especially at high speeds. To account for this, 

modifications to the point-to-point path-planner 

can be introduced to implement constant-radius 

cornering. The method for this is shown in figures 

Figure 5: The relationship between bifurcation points is 

nearly linear. 

Figure 6: Example paths before and after arc correction. 

Units are in meters. 

Figure 7: Zoomed-in portion of figure 6. The dark blue 

polytopes show the base obstacle and the lighter blue 

polytope shows the dilation of the obstacle to push the path 

away from the base obstacle. The dotted lines show the 

initial straight-line paths. The red and green paths show the 

arc path before and after correction respectively. 
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6 and 7. The original path (dashed) is planned and 

a radius equal to or greater than a vehicle’s 

minimum turn radius is added at each line segment 

intersection. As figure 7 shows, this first path (red) 

cuts into the base polytope (dark blue), meaning the 

vehicle could collide with the obstacle. To prevent 

a vehicle collision, the polytope is dilated (light 

blue) further and the path re-planned, figure 7. This 

process can be repeated until a feasible path (green) 

is found. Methods other than obstacle dilation could 

be used for determining the turning radius 

adjustment. However, dilating an obstacle is a 

relatively quick calculation and lends itself to a 

comparison between vehicle turning radius and 

additional uncertainty. This can be seen in figure 8 

where additional vehicle turning radius results in a 

shift in uncertainty in the cost vs. uncertainty plot. 

Although, the cost vs. uncertainty curve does 

change, as figure 8 shows, the major relationship 

characteristics still hold.  
 

6. APPLICATION 
The results found in this work lend themselves to 

several practical applications. The first is a fast 

method for determining the relationship between 

increasing uncertainty and path cost using the linear 

characteristic. If the relationship between 

bifurcations is assumed to be linear, then only the 

paths and associated costs at the bifurcation points 

need to be calculated and all the intermediate points 

can be approximated. To do this, the bifurcation 

points need to be identified. This can readily be 

done by first finding the initial path with the ground 

truth obstacles. Then the obstacles’ uncertainty 

should be increased until either a new obstacle 

impinges on the current path or one of the current 

vertices being used as a path point disappears due 

to obstacles merging. When either one of these 

happens, the path and cost at each point should be 

calculated. Once a path can no longer be calculated 

the points can be connected as shown in figure 9. 

The amount of calculation time reduction depends 

on several factors including the number of 

Figure 8: Straight line and arc path cost ratio vs. 

uncertainty ratio plots. 

Figure 9: Straight line approximation of the cost ratio vs. 

uncertainty ratio plot. 
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uncertainty ratios considered, number of 

bifurcation points, bifurcation detection speed, and 

path planning speed. For the scenario presented 

here and the methods used by the authors, the 

calculation time was reduced by a factor of five. 

The second application is that map fidelity is 

really only needed to predict choke points; after 

objects are merged into larger convex polytopes, 

the fidelity of the map can be reduced. For example, 

the Keweenaw Research Center (KRC) has several 

wooded areas, such as that shown in figure 10. If 

the choke points and the corresponding bifurcation 

points are identified the paths can be calculated at 

these points and the linear approximation described 

above can be used to describe the relationship for 

the given map entry and exit point, figure 11. At 

that point, as long as the entry and exit point of the 

region are the same, the entire region can be 

described by one larger polytope that the vehicle 

can pass through at a cost described by the 

relationship in figure 11. If this were to be repeated 

for all reasonable entry and exit points to a given 

region, the interior of the region could be 

completely ignored, reducing the overall map 

fidelity.  

Often times it may be found that taking a path 

through an obstacle field might be particularly 

costly, especially as costs other than distance are 

considered. In these cases, it may be more 

beneficial to stay on established road networks, as 

shown in figure 12. However, it may arise with 

some amount of rainfall over an extended period of 

Figure 10: Example of path planning in a wooded area at 

the Keweenaw Research Center. 

Figure 11: Cost ratio vs. uncertainty ratio plot for the 

wooded area. The colored dots correspond to the colors of 

the plots in figure 10. 
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time that the bridge near the middle of the map may 

become washed out requiring a new, more costly, 

path to be calculated, figure 13. If the rain continues 

it may cause another previously traversed region to 

become impassable due to flooding, once again 

requiring re-planning, as in figure 14. If the 

uncertainty is replaced with rainfall, a similar cost 

vs rainfall plot, figure 15, can be made and similar 

analysis can be done. 

 

Figure 12: Planned path along the road networks and major drivable areas at KRC. 

Figure 13: Planned path along the road networks and major drivable area at KRC with a washed-out bridge (light 

blue) at 2 inches of rain per hour. 
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7. FUTURE WORK 
As evident by the last application, the framework 

described here readily extends to other types of 

uncertainty such as terrain, soil, and rainfall, among 

others. Additionally, other costs could be used, 

such as traversal time, fuel use, or vehicle damage. 

It is the intent of the authors to work towards 

extending this framework to other costs and 

uncertainties. 

The work here related cost to uncertainty for a 

specific map. However, if this type of analysis is 

done for many maps with similar characteristics, 

trends may become evident. If these trends are 

strong enough, they could be used to predict the 

cost to traverse a map without ever calculating a 

path. This could be a vital element for the NG 

NRMM.  

  

Figure 14 Planned path along the road networks and major drivable area at KRC with a washed-out bridge and 

flooded zone (light blue) at 4 inches of rain per hour. 

Figure 15: Example of what a cost ratio vs rainfall plot 

might look like for the scenario presented. 
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2. Appendix 
In order to show that the relationship between the 

cost ratio and uncertainty ratio is linear, we need to 

show that the length of the paths leading into each 

obstacle vertex changes linearly with the increase 

in obstacle size. Because both the cost ratio and 

uncertainty ratio are made unitless by dividing the 

path length and obstacle radius by constants, if the 

changes in path length (blue distance minus the 

green distance in figure 16) are linearly related to 

the dilation distance (distance between purple 

Figure 16: Dark purple obstacle expanding to lighter 

purple and the path adjusting from green to blue. 
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triangle edges), then the cost ratio and uncertainty 

ratio will also be linearly related. 

This can be shown if the change in length is 

related by some constant to the expansion distance, 

𝐿2 − 𝐿1 = 𝐾1𝛿 + 𝐾2 

where 𝐿1 is the original distance from the blue point 

at (𝑥0, 𝑦0) to the original vertex (orange point) at 

(𝑥1, 𝑦1), 𝐿2 is the distance from the blue point to 

the dilated vertex (red point) at (𝑥2, 𝑦2), 𝛿 is the 

dilation distance, and 𝐾1and 𝐾2 are both constant, 

which are shown in figures 17 and 18. 

 The change in the length can be derived in terms 

of the dilation distance, 

𝐿2 − 𝐿1 =
𝐷𝑥

cos(𝜀2)
−

𝑑𝑥

cos(𝜀1)
, 

where 𝑑𝑥 is the 𝑥 distance from the blue point to the 

orange point, 𝐷𝑥 is the 𝑥 distance from the blue 

point to the red point, 𝜀1 is the original angle of the 

connecting segment, and 𝜀2 is the dilated angle of 

the connecting segment. 

The distance equation then becomes, 

𝐿2 − 𝐿1 =
𝑑𝑥 + 𝑙 cos 𝜔

cos 𝜀2
−

𝑑𝑥

cos 𝜀1
, 

where 𝑙 is the distance the vertex moved and 𝜔 is 

the angle defining the direction it moved. 

  We can define the second term as a constant since 

all terms within it are constant. 

𝐶 =
𝑑𝑥

cos 𝜀1
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

  We can find 𝜀2 in terms of an arc tangent of 

distances as 

𝜀2 = tan−1 (
𝐷𝑦

𝐷𝑥
) = tan−1 (

𝑑𝑦 + 𝑙 sin 𝜔

𝑑𝑥 + 𝑙 cos 𝜔
), 

where 𝑑𝑦 is the 𝑦 distance from the blue point to 

the orange point and 𝐷𝑦 is the 𝑦 distance from the 

blue point to the red point. 

Using the definition of the cosine of an arctangent 

and expanding the denominator we get 

cos(𝜀2) =
𝑑𝑥 + 𝑙 cos 𝜔

√(𝑑𝑦 + 𝑙 sin 𝜔)
2

+ (𝑑𝑥 + 𝑙 cos 𝜔)2

 

=
𝑑𝑥 − 𝑙 cos 𝜔

√𝑑𝑦
2 + 2𝑑𝑦𝑙 sin 𝜔 + 𝑙2 sin2 𝜔 + 𝑑𝑥

2 + 2𝑑𝑥𝑙 cos 𝜔 + 𝑙2 cos2 𝜔

. 

We can then substitute in some replacement 

variables for constants, 

cos 𝜀2 =  
𝑑𝑥 + 𝑙 cos 𝜔

√𝐸 + 2𝐵𝑙 + 𝑙2
,   

where 𝐸 = 𝑑𝑦
2 + 𝑑𝑥

2 and 𝐵 = 𝑑𝑦 sin 𝜔 + 𝑑𝑥 cos 𝜔. 

  Substituting this back into the length equation and 

simplifying we get 

Figure 17: Length and angle definitions for the 

original and dilated polytopes. 

Figure 18: Length and angle definitions for the green 

and blue paths. 
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𝐿2 − 𝐿1 =
𝑑𝑥 + 𝑙𝑐𝑜𝑠(𝜔)

(
𝑑𝑥 + 𝑙𝑐𝑜𝑠(𝜔)

√𝐸 + 2𝐵𝑙 + 𝑙2
)

+ 𝐶 

𝐿2 − 𝐿1 =  √𝑙2 + 2𝐵𝑙 + 𝐸 + 𝐶. 
  We then use the fact that 𝑙 = 𝛿 cot(𝛾), where 

𝛾 =
𝜃

2
 and 𝜃 is the interior angle of the polytope at 

the vertex of interest to get 

𝐿2 − 𝐿1 = √𝑐2𝛿2 + 2𝐵𝑐𝛿 + 𝐸 + 𝐶,   

where 𝑐 = cot (
𝜃

2
) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

Using the definition of 𝐵, we can find that the 

largest 𝐵 can ever become is √𝑑𝑦
2 + 𝑑𝑥

2 = √𝐸. 

Substituting this for 𝐵 we get the result 

𝐿2 − 𝐿1 = √𝑐2𝛿2 + 2√𝐸𝑐𝛿 + 𝐸 + 𝐶 

= √(𝑐𝛿 + √𝐸)
2

+ 𝐶 = 𝑐𝛿 + √𝐸 + 𝐶 

𝐿2 − 𝐿1 = 𝐾1𝛿 + 𝐾2, 

where 𝐾1 = 𝑐 and 𝐾2 = √𝐸 + 𝐶, which are both 

constant. 

   For every smaller value of 𝐵, the values drift 

farther from linear and closer to the square root of 

a quadratic. However, because the 𝑐2 will always 

be positive, the quadratic will always be concave 

up, ensuring the linear approximation will always 

be conservative. 

 

Acknowledgment: 
This paper is based upon work supported by the Army Ground Vehicle Systems Center under Contract Number N00024-12-
D-6404, Delivery Order Number #18F8346. The content of the information does not necessarily reflect the position or policy 
of the Government, and no official endorsement should be inferred. 

 


