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Summary 

Growing environmental concerns coupled with the complex issue of global crude oil 

supplies drive automobile industry towards the development of fuel-efficient vehicles.  

Due to the possible multiple-power-source nature and the complex configuration and 

operation modes, the control strategy of a military vehicle is more complicated than that 

of a conventional vehicle.  Furthermore, military vehicles often have heavier weights 

and are used to operate multiple functions such as engaging weapons, turning on 

sensors, silent watch, etc., which results in big load fluctuation.   In this paper we 

present our research in optimizing power flow in a heavy vehicle for a given mission 

plan.  A mission plan consists of a sequence of operations and speed profiles.  The 

vehicle architecture will be modeled based on Stryker power system which consists of a 

diesel engine, a main battery pack, an auxiliary battery pack, and an APU.  The APU 

can supply power to the auxiliary loads and auxiliary batteries only during silent watch 

mission.  We will use PSAT (Powertrain System Analysis Toolkit) 

(http://www.transportation.anl.gov/software/PSAT/index.html) simulation program to 

construct the vehicle model along with the power system specified above.  PSAT is a 

high fidelity simulation software developed by Argonne National Laboratory under the 

direction of and with contributions from Ford, General Motors, and Chrysler. PSAT is a 

"forward-looking" model that simulates vehicle fuel economy and performance in a 

realistic manner — taking into account transient behavior and control system 

characteristics. It can simulate a broad range of predefined vehicle configurations 

(conventional, electric, fuel cell,  hybrid electric, light and heavy trucks).    We developed 



a dynamic programming algorithm to optimize the power flow during a given mission.  

The cognitive knowledge we explored including roadway type prediction and potential 

load requests associated with specific mission plan. 

 

1. Introduction 

Growing environmental concerns coupled with the complex issue of global crude oil 

supplies drive automobile industry towards the development of fuel-efficient vehicles.   

Vehicle power management has been an active research area in the past two decades, 

and more intensified by the emerging hybrid electric vehicle technologies.  Most of 

these approaches were developed based on mathematical models or human expertise, 

or knowledge derived from simulation data.  The application of optimal control theory to 

power distribution and management has been the most popular approach, which 

includes linear programming [1], optimal control [2,3,4], and especially dynamic 

programming (DP) have been widely studied and applied to a broad range of vehicle 

models [5, 6, 7, 8].  In general, these techniques do not offer an on-line solution, 

because they assume that the future driving cycle is entirely known.  However these 

results have been widely used as a benchmark for the performance of power control 

strategies.   In more recently years, various intelligent systems approaches such as 

neural networks, fuzzy logic, genetic algorithms, etc. have been applied to vehicle 

power management [9, 10, 11, 12, 13, 14, 15, 16].  Research has shown that driving 

style and environment has strong influence over fuel consumption and emissions[17, 

18].  More information on vehicle power management can be found in [19]. 

Due to the possible multiple-power-source nature and the complex configuration and 

operation modes, the control strategy of a military vehicle is more complicated than that 

of a conventional vehicle.  Furthermore, military vehicles often have heavy weights and 

are used to operate multiple functions such as engaging weapons, turning on sensors, 

silent watch, etc., which results in big load fluctuation.   In this paper we present our 

research in optimizing power flow in a heavy vehicle for a given mission plan.  We will 

formulate a general mission plan that is typical in military applications and develop an 

intelligent power controller (UMD-IPC) based cognitive knowledge extracted from the 

mission.  We will  

The vehicle architecture will be modeled based on Stryker power system which consists 

of a diesel engine, a main battery pack, an auxiliary battery pack, and an APU.  The 

APU can supply power to the auxiliary loads and auxiliary batteries only during silent 

watch mission.  We will use PSAT (Powertrain System Analysis Toolkit) 

(http://www.transportation.anl.gov/software/PSAT/index.html) simulation program to 

construct the vehicle model along with the power system specified above.  Experiments 



show that our optimized power controller has the potential of giving significant reduction 

in fuel consumption.   

 

2.  Cognitive power management with application to military vehicles 

Military vehicles have  complicated power systems in order to support various missions.  

Although power systems in military vehicles are in conventional style, i.e. engine is used 

to provide power to drivetrain, military vehicles can have multiple batteries, and multiple 

loads.  Figure 1 shows the architecture of the vehicle power system used by Stryker 

model.   

 

 

Figure 1.  Vehicle power system in a Stryker vehicle. 

 



In this power system, there are two separate subsystems: the main engine system and 

the Auxiliary Power Unit (APU).  The APU and the vehicle's main engine are not 

designed to run simultaneously.  The connections marked as "note 1" will work only 

when the manual switch is closed.  The switch between the two batteries is turned on 

only when main battery is too low to start the vehicle.   

This research attempts to extract the cognitive knowledge from mission plan that is 

useful in training an intelligent power controller (UMD-IPC).  From power management 

point of view, a mission plan consists of a sequence of events and roadway types the 

vehicle travels on during the mission.  From events we are able to extract operation 

modes of devices that require operation power, and from these operation modes, we 

are able to define the load requests throughout the mission,   For the Stryker power 

system model, a mission plan can be described as follows. M_Plan = {(rd(t), Auto_ld(t), 

Aux_ld(t)), silence (t) | t = 0, ..., tend}, where rd(t) is the roadway type the vehicle is 

traveling on at time t, Auto_ld(t) and Aux_ld(t) are the automotive load and auxiliary load, 

respectively, at time t, silence (t) = 1 means the vehicle is not moving otherwise it is 

moving.  Rich knowledge can be extracted based on the roadway types such as typical 

speed profiles of military vehicles when travel on these roads, such as the optimal 

power settings for each of these roadway types.   

In this study, we divided roadway types into three categories, interstate, suburban and 

city.  Since a Stryker is a heavy vehicle, we use three truck speed profiles provided by 

PSAT(see Figure 2)  to characterize these roadway types.  
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Figure 2: Three speed profiles used as the benchmark of roadway types, (a) interstate, 

(b) suburban, (c) city. 

 

For each roadway type, we generate optimal power settings using a dynamic 

programming algorithm.  With the optimal power settings we train the UMD_IPC, the 

online intelligent power controller.  Figure 3 illustrates the power control scheme.  The 

driver or operator turns the main engine on or off.  When it is off, the vehicle is in the 

silent mode.  Only at this mode, it is possible to run the APU.  The APU can be switched 

on manually by the driver or automatically turned on by the UMD_IPC to charge the 

auxiliary battery.  When the engine is on, UMD_IPC calculates the optimal power to be 

charged to and discharged from the main battery, Pb, and the auxiliary battery, Pab, 

which are used in turn to calculate optimal engine generator power and optimal engine 

power.  When the vehicle is the silent mode, the UMD_IPC calculates the optimal Pab, 

and, if the switch between the two batteries are closed, the optimal Pb.  The Pab along 

with the auxiliary load, Pal are used to calculate the optimal auxiliary engine power. 
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Figure 3.   Intelligent power control scheme in a Stryker vehicle. 

 

3. Experiments  

We will use PSAT (Powertrain System Analysis Toolkit) 

(http://www.transportation.anl.gov/software/PSAT/index.html) simulation program to 

construct a Stryker vehicle model with the power system specified above.  PSAT is a 

high fidelity simulation software developed by Argonne National Laboratory under the 

direction of and with contributions from Ford, General Motors, and Chrysler. PSAT is a 

"forward-looking" model that simulates vehicle fuel economy and performance in a 

realistic manner — taking into account transient behavior and control system 

characteristics. It can simulate a broad range of predefined vehicle configurations 

(conventional, electric, fuel cell,  hybrid electric, light and heavy trucks).     

 

UMD_IPC 



Figure 4 shows the Stryker model built using PSAT.  It is a conventional Vehicle 

Configuration that has a  Detroit diesel engine with 7.3L, Initial power 171 kW and 

scaled to 261 kW, a generator scaled to 16.8 kW, two Hawker Genesis Batteries with 13 

Cells, 27 Volts Nominal and 120 Ah Capacity, and 2 passive axles used to incorporate 

any drag coefficients.  Its transmission is an  AlissonB500 model with gear ratios 

modified to what shown in Table I, and the final drive has the ratio 7.85:1. The 

wheels/tires have 0.533 m radius and 0.0115 rolling coefficient.  

 

 

Figure 4. A Stryker vehicle model built using PSAT simulation software. 

 

Table 1. Gear ratio used in simulated Stryker vehicle model 

Gear  1st 2nd 3rd 4th 5th 6th 

Ratio 3.49:1 1.86:1 1.41:1 1.00:1 0.75:1 0.65:1 

 

 

 



 

The Auxiliary Power Unit (APU) is a liquid cooled, diesel engine powered, DC electrical 

generator, designed to provide auxiliary electrical power during silent watch missions.  

The APU generates 123 usable amps at 28.5 volts.  The APU and the vehicle’s main 

engine are not designed to run simultaneously. The APU will shut down within 60 

seconds if simultaneous operation is attempted. 

For the purpose of experiments we constructed the following drive cycle based on the 

cognitive knowledge discussed in the last section, Mission_EX = {(rd(t), Auto_ld(t), 

Aux_ld(t)), silence (t) | t = 0, ..., tend}, where rd(t)=city for t = 0 ~ 2460, rd(t) = interstate 

for t = 2450 ~ 4500,  Auto_ld(t) = 4KW during non-silent period and 0 during the silent 

period. The  Aux_ld(t) = 4KW during the non-silent mode and 2KW during the silent 

mode. silence (t) = 1 when t = 1350 ~ 2460, otherwise, silence (t) = 0. The vehicle 

speed profile for this drive cycle is shown in Figure 5.  Automotive loads and auxiliary 

loads are shown in Figure 6. 

 

Figure 5. Speed profile of the drive cycle used in experiments 

 

 

 

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

5

10

15

20

25

30

Time (sec)

S
p
e
e
d
 (

m
/s

)

WVU City & WVU Interstate w/ Silent Mode
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Figure 6.  Automotive loads and auxiliary loads used in experiments. 

 

Two types of cognitive power management are explored.  First type is to construct the 

UMD_IPC to follow the target SOCs during drive cycles based on the mission plan.  

Since we know from the mission plan that there is a silence period between t = 1350 

and t = 2460 and we are given that we can use the APU power to charge both batteries 

during the silence mode, we make the target SOC = 30% during the non-silent time, and 

target SOC = 70% at the silence time.  Note during the silence mode, the APU also 

supplies power to the auxiliary loads.  The target SOCs for the drive cycle is shown in 

Figure 7. 
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Figure 7.  A target SOCs used in experiments. 

The second type of cognitive power management is to train the UMD_IPC on the 

optimal power settings generated by Dynamic Programming on the drive cycle meet the 

specification of the given mission plan.  The experiments are ongoing and will be 

included in the final paper. 

 

4. Conclusion 

We have presented our research in cognitive power management in military vehicle 

applications.  We presented an abstract representation of drive cycles for military 

vehicles based on a given mission plan.  The representation can be extended to 

incorporate more complicated mission plans that involve more events and knowledge 

that can be used to manage the vehicle power system for not only fuel economy but 

also more reliable power system.  We presented two power management strategies, 

one uses target SOCs during driving and silence mode to achieve better fuel economy, 

one is to use Dynamic Programming to achieve optimal power settings. 
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Drive cycle Power 

controller 

Total 

Fuel (g)  

Ending 

SOC (%)  

Total Fuel After 

SOC Correction 

(g)  

Savings 

(%)  

WVU 

Interstate 

PSAT  7401.6  64.14  7425.7   

 DP  7008  70  7008  5.62  

WVU sub. PSAT  4876.1  63.78  4902.6   

 DP  4220.6  70  4220.6  13.9  

WVU City PSat  2648.7  63.73  2675.4   

 DP  2066.5  70  2066.5  22.76  

 

 

 

The SOC correction is calculated as follows.  We applied DP optimization program to 

the WVU interstate drive cycle twice.  The first run had the initial SOC at 50% and 

ending at 70%, and the second run had the same initial SOC but the ending was at 

64.5%.  The SOC correction factor λ is calculated as follows. 

λ=(Cummulative_Fuel_1 – Cummulative_Fuel_2)/(SOC_DP_1 – SOC_DP_2) 

Fuel consumption based on SOC Correction is calculated as follows 

Corrected_Cumulative_Fuel = PSat_Cummulative_Fuel + (70 – Ending_Psat_SOC)* λ  

 



 

Charging Control Rules 

• During city and interstate cycle, soc drops to target, 0.3.

– No charging is done during these times

• During silent mode, a constant current is used to charge until soc reaches 0.7 

 

 

Sample Simulation - SOC 

During city and interstate cycle, soc drops to target, 0.3. 

No charging is done during these times 

During silent mode, a constant current is used to charge until soc reaches 0.7 

 

During silent mode, a constant current is used to charge until soc reaches 0.7  
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