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ABSTRACT 

This report documents the investigation of a vibration-based diagnostic approach 

developed for automotive transmissions.  Data was recorded throughout three durability tests that 

were conducted by the transmission OEM.  Rebuilt transmissions were operated around the clock 

under the most demanding speed and load set-points until critical gear or bearing failures 

resulted in loss of operability.   

 

The analysis results indicate that an embedded diagnostic and predictive capability can 

be implemented for military ground vehicle transmissions using vibration-based techniques.  The 

results also specifically show an early indication of a fault condition is possible three weeks 

before failure for the test transmission.  A technique for detecting solenoid faults using only the 

existing control signals rather than response measurements comparison that does not require the 

installation of additional sensors was also developed through this effort and will be discussed.   

 

This paper highlights the diagnostics techniques for the bearing and solenoid faults.  On-

platform testing is suggested for technique validation and future development of these initial 

findings. 

 

INTRODUCTION 
Transmission Analysis Approaches - Statistical Analysis: 

Three statistical based analytical techniques were employed 

to enable fault detection and a predictive capability: 

Kurtosis, Crest Factor and a third technique collectively 

referred to as Combined Data Feature (CDF). Statistical 

approaches provide two main advantages for fault detection. 

The foremost advantage is the inherent capability to 

normalize and compare large and diverse set-point operating 

condition datasets. Second, statistical analysis improves the 

end user’s ability to distinguish anomalies in the data. Some 

anomalies are indicative of machine degradation and the 

objective is to identify these anomalies as indications of 

impending failure. Other anomalies in the data obscure 

trends and require proper pre-processing treatment so as not 

to incorrectly interpret the data. Given that mechanical faults 

typically progress over time before resulting in failure, the 

statistical techniques below were selected because of their 

ability to detect and quantify these changes in the data over 

time. 
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DATA ANALYSIS ALGORITHMS 
 

KURTOSIS 
 Kurtosis is the fourth statistical moment about the 

distribution mean, and can be computed from any signal or 

population distribution. In more general terms, kurtosis 

describes the relative length of the distribution tails.  It 

provides a sensitive response to isolated impacts that are 

characteristic of many mechanical failures, which result in 

the distribution of the vibration data having thinner, and 

more elongated tails, and results in a higher kurtosis value.  

As a gear or bearing wears this feature should react to the 

increased level of vibration [1, 2, 3].  The equation for 

kurtosis is given by: 
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where y(n) is the raw time series at point n,  is the mean of 

the data, 
2
 is the variance of the data, and N is the total 

number of data points. A normal distribution has a kurtosis 

(K) value of 3. 

 

VARIANCE  
    Variance is the measure of a sample’s variability.  The 

bias corrected sample variance is defined as 

 
 

Where N is the sample population and μ is the sample 

population mean. The square root of the variance is known 

as the standard deviation. 

 

CREST FACTOR 
 The simplest approach to measuring defects in the time 

domain is using the RMS of the vibration.  However, the 

RMS level may not show appreciable changes in the early 

stages of gear and bearing damage.  Likewise, RMS can be 

affected by adjacent machinery vibration or in the case of 

mobile assets RMS may be affected by operating conditions 

(engine speed, and transmission range) and terrain 

roughness.  RMS vibration levels also tend to differ between 

similar vehicles, due to a variety of differences in assembly, 

lubrication, and part wear.  Changes in RMS vibration levels 

are affected by too many factors that are unrelated to 

mechanical condition.  As a result, the use of RMS would 

lead to a high rate of false-detections.   

A better measure is “crest factor” which is defined as the 

ratio of the peak level of the input signal to the RMS level. 

Therefore, peaks in the time series signal will result in an 

increase in the crest factor value.  

For normal operations, crest factor may reach between 2 

and 6.  A value above 6 is usually associated with machinery 

problems. This feature is used to detect changes in the signal 

pattern due to impulsive vibration sources such as tooth 

breakage on a gear or a bearing defect pulsation.  The crest 

factor feature is not considered a very sensitive technique.  

Below is the equation for the crest factor: 

RMS

PeakLevel
FactorCrest 

 
 

where PeakLevel is the peak level of the raw time series, and 

RMS is the root mean square of the raw data. 

 

DATA FUSION 
 Data fusion is a technique used to combine quantities 

from multiple sources (sensor or feature based) to improve 

the inference ability over that of any individual indicator.  

An ideal diagnostic indicator would provide a highly 

correlated response to increasing damage, with higher values 

corresponding to increasing levels of damage.  Individual 

statistical features that are commonly used for vibration-

based diagnostics and prognostics do not always provide this 

ideal behavior. In some instances, the condition indicator 

will respond at early stages of damage initiation, and provide 

a sensitive diagnostic indicator.  These types of features 

often do not provide a response that can be easily correlated 

to damage.  Other condition indicators will lack the 

sensitivity to initiating damage, but respond in a manner that 

can be correlated to increasing levels of damage.  Taking 

condition indicators of each type and fusing their responses 

together, can provide an individual damage sensitive feature 

that can be more easily interpreted in either a manual or 

automated fashion.  Within this effort, several feature fusion 

techniques were investigated to improve the overall health 

related indicator.   

As an initial investigation, common statistical features 

such as RMS, Variance, Kurtosis, and Crest Factor, were 

fused together to achieve a superior indicator than either of 

the features by themselves.   

 

SOLENOID FAULT DETECTION APPROACH 
 Solenoids within the transmission are a single point of 

failure item which can render the transmission degraded or 

disabled. While these devices are replaceable in the field, 

currently there is no indication provided to the soldier to aid 

in troubleshooting. With a small embedded device to 

perform comparison logic, indication of range solenoid 

failure can be easily provided to the soldier. 

   The transmission's operational range (1st, 2nd or 3rd) is 

controlled by three solenoid operated valves.  These valves 

control hydraulic pressure within the transmission internals 

for shifts between ranges. Each solenoid receives a binary 
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(high or low) command signal. The ARL's data acquisition 

system recorded the solenoid command signals as well as the 

1st-3rd range pressure signals. By comparing the command 

signal to the resulting pressure signal, solenoid fault 

detection can be automated. 

Table 1 summarizes the solenoid input, or command 

signal-operational range logic relationship. As shown, range 

#1 is engaged when command signal #1 is HIGH and 

command signals #2 and #3 are LOW. Range #2 actuation is 

similar to range #1. Range #3 solenoid is a special case and 

is actuated with negated logic.  

 

Table 1: Range Command Signals 

Table  2 summarizes the output or actuated pressure-

operational range logic relationship. HIGH in this case is 

when the sensed hydraulic pressure is greater than a 

predetermined threshold value (ie. greater than 0 psi).  As 

shown, range pressure #1 signal is HIGH and range pressure 

#2 and #3 signals are LOW when operational range #1 is 

actuated. Range pressure #2 and #3 signals are similar to 

range pressure #1 signal. Note that the logic governing the 

output signals is not negated. 

 

 1st 
Range 

2nd 
Range 

3rd 
Range 

1st  Range Pressure 
Signal 

HIGH LOW LOW 

2nd Range Pressure 
Signal 

LOW HIGH LOW 

3rd  Range Pressure 
Signal 

LOW LOW HIGH 

 

Table  2: Range Command Signals 

 

RANGE SOLENOID FAILURE DETECTION 
APPROACH 
Detecting solenoid faults using this input verse output 

signal comparison requires pre-processing signal 

conditioning, or filtering. Figure 1 outlines the procedure. 

First the raw command signal data is low-pass filtered with 

an approximate 10 Hz cut-off frequency in order to remove 

signal noise. The resulting signals are converted to Boolean 

logic states (ON/OFF). Second, the raw pressure signals are 

similarly filtered. Once the signals are filtered the algorithm 

compares the signals’ relative values according to the logic 

tables referenced above. The algorithm continually monitors 

the signals and discrepancies are reported as range faults. 

 

 
 

Figure 1: Solenoid fault detection processing flowchart 

 

Transmission range shift changes are transient events. 

Damping and capacitive dynamics of hydraulic-mechanical 

systems give rise to response delays which are reflected in 

the system’s time constant(s). Accounting for the pressure 

response delay in the algorithm is necessary in order to 

prevent false positive reporting of solenoid fault conditions. 

Figure 2 illustrates the pressure response delay to a 2nd to 

3rd range command signal. Note the approximate 0.35 

second time lag between the point when the operational 

range (blue line) is commanded to 3rd range and the time 

required for both the 2nd range pressure signal to decrease 

relative to the increasing 3rd range pressure signal. The 

algorithm addresses this characteristic response delay 

between ranges by waiting 0.35 seconds after a shift 

command event prior to comparing signals to detect fault 

conditions. 

For graphic designation purposes, the algorithm denotes 

the operational range to be ‘-1’ during the brief instance the 

solenoid signals change states. It is also noted that while the 

response delays due to sensor dynamics contribute to the 

overall system delay, they are insignificant relative to the 

magnitude of the hydraulic-mechanical response delay. 

 

 Operational Range 
1st 

Range 
2nd 

Range 
3rd 

Range 

1st  Range CMD 
Signal 

HIGH LOW LOW 

2nd Range CMD 
Signal 

LOW HIGH LOW 

3rd  Range CMD 
Signal 

HIGH HIGH LOW 
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Figure 2: Range pressure signals during a shift from 2nd to 

3rd range 

 

Figure 3 illustrates series of 1st-3rd range shift events 

performed over a 20 sec period. This figure shows the 

relationship between commanded operational levels (blue 

line – right axis) and their respective relative hi/low pressure 

signal levels (green, red, cyan lines – left axis) tabulated in 

Table 2. 

 
   Figure 3: Range pressure signal over different shift events 

 
TRANSMISSION #1 FAILURE DESCRIPTION 

 The data acquisition hardware was installed 

approximately half-way through the testing of transmission 

#1.  The reliability test set-points defined by the OEM 

provided consistent, repeatable operating conditions at 

which the operational characteristics and vibratory 

signatures of the transmission could be compared throughout 

the testing.  These set-points are illustrated in Figure 4, 

according to their output horsepower and output RPM.  

Vibration data was analyzed separately for each individual 

set-point, and data that was recorded during transient 

conditions (speed, load, or range changes) was discarded.  

This approach allowed speed and load related effects to be 

distinguished from damage induced changes in the measured 

signals.  The operating speeds, loads and range of the 

transmission cause sufficient changes to the vibratory 

behavior of the system to warrant this type of analysis 

approach. 
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Figure 4:  Steady state groups 

 

Failure Description 
 This test for the first transmission was terminated when it 

failed to support the required load during 1st range 

operations. The tear-down inspection revealed a failure of 

the left-hand hydraulic unit.  A bolt holding the actuator 

housing to the hydraulic unit came loose, resulting in an o-

ring being blown out the front of the hydraulic unit.  This 

resulted in obvious hydraulic pressure loss and loss of 

operation.  In addition to the hydraulic failure, which 

ultimately resulted in loss of operation, the tear-down 

inspection revealed that the bearing supporting the 1st gear 

on the right-hand side had failed.  Small pieces of a bearing 

cage had gradually been showing up in the oil sump long 

before the test was terminated.  It was assumed that the 

bearing was so tightly packed that the balls were not able to 
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displace significantly until they had experienced significant 

wear.  Without the cage, the transmission was able to 

operate for an extended period of time without exhibiting 

adverse effects of the damage, or any operational 

impairment.  The tear-down inspection revealed that the 

raceways exhibited significant damage, and several of the 

balls had large areas of damage and severe wear, including 

flat spots.  Once the balls and raceway had become 

significantly worn from the initial cage debris, the balls were 

able to displace more and more, which increased uneven 

load distribution, increased the amount of wear debris, and 

escalated damage progression. At this late stage of failure, 

observable indications of damage were apparent to the 

operators and technicians. 

 

Analysis Results  

To understand how faults in the transmission affect 

vibrations within the transmission, accelerometer recordings 

were analyzed in both the time and frequency domains for 

each of the test plan operating conditions.  Data collected 

during testing was processed and analyzed applying the 

signal processing tools outlined above.  The results of this 

analysis were used to identify fault indicators which could 

be easily integrated into an onboard health management 

system.   

 

Statistical Data Analysis  
Fundamental statistical processing tools were used to 

identify vibration fault indicator features from the data 

collected from transmission #1.  These features included: (1) 

kurtosis, (2) crest factor, (3) variance, (4) root mean square, 

(5) skewness, (6) standard deviation, and (7) peak-to-peak 

amplitude.  The most significant findings from these 

analyses are reported below. 

 

Kurtosis 
 The results of the statistical analysis of the data collected 

during transmission #1 testing suggest that the transmission 

condition can be monitored by tracking the kurtosis of the 

vibration.  Kurtosis was calculated for each data collection 

over every transmission operating test point group and the 

results indicate that this feature responds in a statistically 

significant manner to the developing damage, with sufficient 

damage sensitivity to provide in-situ detection capabilities.  

The processing results for transmission snapshots that were 

characterized by a 2,765 RPM output shaft speed and 375 ft-

lbs output torque are illustrated in Figure 5. 

.    

 

 
Figure 5: Transmission #1 kurtosis processing results 

 

In the illustration in Figure 5, it is evident that the steady 

state groups available for analysis from the transmission #1 

testing are contained in a finite time window.  No steady 

state data at this specific speed-load set point were recorded 

due to the inability of the transmission to support the 

commanded 2,765 RPM – 375 ft-lbs set-point.  The data in 

Figure 5 are therefore plotted on a more appropriate time 

scale in Figure 6 in order to more clearly capture the 

transition to failure that is indicated by the kurtosis feature. 

An analysis of the data presented in Figure 6 reveals that 

the probability distribution of the vibration time history 

changes throughout the transmission’s operating life.  It is 

apparent that an increasing trend of kurtosis begins on 

September 10, and continues until the last steady state 

snapshot of transmission #1 testing at this set point is 

recorded.  This rise in kurtosis indicates that there are 

distinct impacts being measured by the accelerometer.   
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Figure 6: Detailed view of transmission #1 kurtosis 

processing 

 

Physically, these irregular vibrations are likely to be 

caused by rolling mechanical impacts caused by gear or 

bearing defects, or due to the presence of wear debris 

circulating with the lubrication fluid that creates additional 

sources of impacts.  As the defects grow larger, the vibration 

resembles a series of impulses that correlate to a statistical 

distribution with a lower kurtosis value than when the 

damage was a smaller single point-defect.  Similarly, if the 

measured vibration is caused by wear debris, the kurtosis 

can decrease after the sediment is deposited in filters or 

sumps.  

Knowing that transmission #1’s primary mode of failure 

was a loss of functionality in the 1st gear bearing on the 3rd 

range side, and hydraulic failure, it is likely that this 

observed rise in vibration kurtosis is correlated to the these 

failures.  Long before testing completed it was reported that 

pieces of bearing cage were noticed in the oil sump.  The 

measured rise in vibration kurtosis between September 10 

and September 15 is likely a direct quantifiable indication of 

the failing bearing cage.  As pieces of the degrading bearing 

cage were shed into the transmission, they caused 

mechanical interference with other moving components of 

the transmission, generating vibration and inducing 

secondary damage, until they were deposited in the oil sump.  

The wear debris generated from the bearing cage typically 

results in distributed damage across the entire bearing, 

including the rolling elements and raceways. 

This theory is also supported by the quality of data 

observed by the two accelerometer installations.  While the 

transmission’s right output instrumentation recorded a strong 

rise in kurtosis between September 10 and September 15, the 

left output instrumentation didn’t observe a similar change 

in vibration probability distribution.  This is likely to be due 

to the localized interference caused by the failing 1st gear 

right hand side bearing. 

From the data presented in Figure 5 and Figure 6, it is 

obvious that the level of kurtosis computed from the 

vibration signal could be a useful tool for the predictive 

condition monitoring of the 1st gear bearing.  The rising 

trend in kurtosis quantifies a degradation of the 1st gear right 

hand side bearing’s functionality.  As a result, the data 

presented in Figure 5 through Figure 8 are illustrated on a 

colored background reflecting three regions of assumed 

condition degradation.  These regions of condition 

degradation are set by a kurtosis threshold.  The green 

background signifies a fully functional 1st gear bearing, the 

yellow background reflects a degrading level of 1st gear 

bearing function, and the red signifies a critical 1st gear 

bearing. 

 

Variance 

 An increase in the variance of the measured vibration was 

also observed between September 10 and September 15.  

The variance for the same datasets used in the kurtosis 

analysis is illustrated in Figure 8.  Similar to the kurtosis of 

these datasets, the variance follows an increasing trend 

which starts between September 9 and September 10.  It is 

important to note that the beginning of this increasing trend 

is slightly earlier than the first noticeable rise in kurtosis. 

In a similar contrast to the kurtosis trend in Figure  9, the 

variance continues to follow this increasing trend throughout 

the entire dataset while the kurtosis level decreases after its 

peak.  Physically, this indicates that the vibration amplitude 

began to increase soon after the 1st gear bearing cage started 

to fail, and continued increasing as the damage became more 

widespread throughout the bearing and throughout the 

transmission.  This rise in vibration amplitude continued 

even after pieces of the bearing cage were filtered out of the 

system as a result of the higher level of vibration.    

The regions of condition degradation (green, yellow, and 

red) are set by predetermined thresholds based on the 

variance data observed in these tests.  The green background 

signifies a fully functional 1st gear bearing, the yellow 

background reflects a degrading level of 1st gear bearing 

function, and the red signifies a critical 1st gear bearing. 
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Figure 7: Transmission #1 variance statistical processing 

results 

 
Data Fusion – Damage Severity Factor 
 Data fusion is a powerful tool that could be used to create 

a condition monitoring feature superior to its constitutive 

metrics.  Kurtosis is a very robust feature whose amplitude 

can be used to reliably monitor the condition of machinery.  

The problem exists, though, that for most failure 

mechanisms, failing machinery’s vibration kurtosis often 

decreases after peaking.  This happens when pieces of 

sediment which are created by component failures are 

filtered from the system and no longer cause irregular 

vibrations.  If kurtosis is not calculated on a frequent enough 

time schedule, this peak may be wholly overlooked.  

To overcome this, Kurtosis was combined with variance to 

create a fused feature called the Damage Severity Factor 

(DSF).  The DSF has been calculated for the steady state set 

points used in previous statistical analysis and is plotted in 

Figure 8.  Data trends suggest that the amplitude of the DSF 

can be used to quantify the level of damage severity for 

transmission #1.   

DSF thresholds were set to mark three levels of damage 

severity for transmission #1.  These three levels of 

operational health are signified by the green, yellow, and red 

background colors in Figure 8.  For the illustrations in 

Figure 5 through Figure 8 the background colors represent a 

fully functional 1st gear bearing, degrading 1st gear bearing, 

and a critical 1st gear bearing respectively. 

 

 
Figure 8: Transmission #1 DSF 

 

Transmission #1 Summary  
Knowing the equations for the bearing, gear and shaft 

frequencies also provide a wealth of information and 

resolved nearly all the frequency components observed in 

the frequency spectrum. This is the bare essentials for even 

attempting to locate abnormal behavior and pin point the 

location of the impeding failure.  While the frequency 

domain processing provided great insight to the operating 

transmission, the energy for the bearing related frequency 

components were very small and most likely not-measurable 

due to the dominating energy of the shaft and gear mesh 

related components in the system.  One possible way to 

improve sensitivity to bearing related faults is optimal sensor 

placement.  This is achieved through modal impact testing.  

While not performed in this effort due to time and testing 

schedule, this analysis should be performed before any 

testing commences.  Modal impact testing can determine the 

best transmissibility between individual component and 

casing, thereby providing a roadmap for optimal sensor 

placement.  This approach can also determine if a node exist 

in the frequency range of interest. 

While the frequency domain provided a wealth of 

information related to the gear mesh and shaft frequencies, 

bearing frequency content was least apparent.  However, 

simple time domain statistical measures provided a 

predictive early indication of the 1st gear bearing failure.  

For this transmission, kurtosis and variance were two 

statistical features that provided equal indications of the 

failure.  While kurtosis is an adequate feature for indication 
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of the onset of failure, due to its nature it tends to decline as 

the failure continues to get progressively worse.  Therefore, 

it has been shown for this transmission that fusing another 

feature, in this case variance, provided a superior feature.  

Specifically this means that we want a feature that continues 

to rise as the fault severity continues to worsen.  The fused 

feature which ARL called the Damage Severity Factor 

(DSF) in Figure 8 demonstrates this idealistic result.   

Again, the regions of condition degradation (green, yellow, 

and red) are set by predetermined thresholds based on the 

observed data in these tests.  The green background signifies 

a fully functional 1st gear bearing, the yellow background 

reflects a degrading level of 1st gear bearing function, and 

the red signifies a critical 1st gear bearing. 

 

TRANSMISSION #2 FAILURE DESCRIPTION 

The failures experienced during the testing of transmission 

#2 were similar to the bearing failure during the first 

transmission test.  The tear-down inspection revealed that 

the bearing supporting the 1st gear on the left-hand side had 

failed in a similar manner as in the previous test, where 

pieces of the cage were observed in the oil sump long before 

any indications of failure had been observed.  In addition to 

this bearing failure, a nearby bearing supporting the 2nd 

range output-side sun gear and 2nd range B-average gear 

was also significantly damaged.  The outer race of this latter 

bearing split in two pieces (longitudinally, so that there were 

two rings).  Two separate sets of beach marks were clearly 

visible, indicating the location at which crack initiation 

occurred, and the direction of propagation.  A 1.5” length of 

material was also missing from an inside edge of the 

raceway.  In particular, the beach marks formed a 180-

degree angle facing away from the center-line of the bearing.  

This, in addition to the fracture surfaces, indicated that the 

bearing appeared to fail under high axial loads.  A lock-

washer, riveted to the 3rd range planetary sun gear had also 

been damaged during the testing.  The rivets were sheared 

off by a sharp edge of the rivet holes on the washer that 

created a location of stress concentration.  This was not 

considered a significant design issue, and is probably an 

atypical secondary failure that developed after significant 

damage had already accumulated.  At approximately 330 

hours of testing, in December 2010, the first pieces of 

broken cage material were appearing in the oil sump, 

although it is not clear which bearing failed first, or if the 

one failure directly caused the second failure.  The pieces of 

the cage that were collected were uniformly bent in half, 

which indicated that they had broken off and been rolled 

over by the balls. 
All 3 of the failed bearings from tests #1 and #2 exhibited 

signs that severe cage damage preceded damage to the 

raceway and balls (this was deduced from the fact that 

pieces of the cage appeared prior to any observable changes 

in overall vibration levels, which would be associated with 

severe raceway and ball damage).  In general, the bearing 

failures seemed to indicate high thrust loads resulting from 

the bevel gear-set (which is the first gear-set from the input 

shaft).  This gear-set produces reactionary forces in the axial 

direction that are maximized under high load dynamic 

conditions.  One possible condition where this might occur 

is during the shift between 2nd and 3rd range.  The 

instantaneous change in hydraulic stroking that occurs 

during this shift could result in a disparity in loading 

between the hydraulic A-end gear-path and the mechanical 

gear path to the output planetary ring gears.  This creates a 

torsional shock that is probably difficult to estimate and 

measure, from a design and analysis perspective.  As a 

result, it would not be surprising if this condition was not 

fully designed into the requirements of the bearing load-

rating capacity.  However, it is not clear that this was the 

root cause of failure.  The post test tear-down inspection 

revealed significant damage to the bearings, which 

precluded an obvious determination of the initial cause of 

the failure.  

 

Analysis Results 
The same statistical and spectral processing techniques 

used to examine data collected during transmission #1 

testing were used to inspect the transmission #2 datasets.  

These processing techniques included: (1) kurtosis, (2) crest 

factor, (3) variance, (4) root mean square, (5) skewness, (6) 

dataset standard deviation, and (7) peak to peak amplitude.  

The most significant findings from these analyses are 

reported below. 

 

Statistical Data Analysis 

Prior to statistical processing, steady state set point groups 

were compiled for each of the test plan set points.  These 

groups were used to examine statistical features of the 

vibration time history for the transmission #2 testing at 

similar transmission operating conditions.   

 

Kurtosis 

Kurtosis was calculated for each of the steady state set 

point groups and graphically examined.  Figure  9 illustrates 

the kurtosis trend for the 2340 RPM, 375 ft-lb group 

throughout transmission #2 testing.   
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Figure  9: Transmission #2 kurtosis processing results 

 

The data illustrated in Figure  9 shows three peaks of 

elevated kurtosis values following the start of transmission 

#2 testing.  These events occur between October 12 and 

November 4.  After these events, there is a consistently low 

period between November 4 and December 23.  Following 

this low period, kurtosis again rises and remains high until 

the end of testing.   

When assembling complex machinery it is usually difficult 

to get perfectly manufactured and installed components.  

The break-in period after machinery is newly assembled 

generates component wear that typifies gear vibration, so it 

is not a surprise to see some initial response of the kurtosis.  

It is also possible that the elevated responses observed at the 

early part of the test were due to incipient damage that 

briefly manifested changes in the dynamic behavior of the 

transmission, without causing significant permanent damage.  

To gain insight into the possible cause of the rises in 

vibration kurtosis between October 12 and November 4, raw 

vibration time histories were examined and transmission test 

logs were reviewed.  Neither the raw data nor maintenance 

test logs provided information confirming particular 

component failures in the transmission during this time 

period.  Although the specific cause of these rises are 

unknown, it is possible that the first three events evident in 

Figure  9 are associated with the transmission’s break in 

operation. 

The consistent kurtosis levels near 3.0 between November 

4 and December 23 reflect nearly 12 weeks of normal 

transmission operation.  After December 23, a steep rise in 

the magnitude of vibration kurtosis is visible in Figure  9.  

This rise in value is likely due to deterioration in the 

functional capability of the transmission.  Unlike the kurtosis 

trends recorded near the ultimate failure of transmission #1, 

the magnitude of kurtosis observed near the completion of 

transmission #2 testing remained consistently high.  This 

difference demonstrates the variability in the failure process, 

and the challenge of interpreting individual condition 

indicators.  Although a failure in the 1st gear bearing led to 

ultimate failure in both transmissions, it’s possible that not 

all pieces of the deteriorating bearing cage were captured in 

the oil sump.  In this scenario, vibration kurtosis would 

remain high instead of peaking as in transmission #1 

experiments. 

A comparison of Figure 6 and Figure  9 show that the peak 

kurtosis levels for transmission #2 is 23% larger than those 

recorded from transmission #1.  This is because the vibration 

probability distribution function is dependent on the 

vibration mechanics individual to each transmission build.  

As a result, kurtosis thresholds will also be individual to 

each transmission.  Figure  9 is plotted with the same three 

color bands used in Figure 6.  These bands represent 

thresholds placed on vibration kurtosis that can be used to 

characterize the condition of transmission #2’s operation 

throughout the second test.  As in previous figures, a green 

background signifies a fully functional 1st gear bearing, a 

yellow background reflects a period of degrading level of 1st 

gear bearing function, and the red threshold signifies a 

critical 1st gear bearing. 

 
Transmission #2 Summary 
Much like the result found for transmission #1, the 

frequency domain provided a wealth of information for the 

gear and shaft related frequency components.  However, the 

bearing frequencies again were least apparent. Like 

transmission #1, the simple time domain statistical measures 

provided a means of an early indication of failure.  For this 

transmission, kurtosis alone provided an adequate means of 

measure for failure.  While not shown here, other statistical 

metrics could be fused to further enhance the feature 

performance.  The Damage Severity Factor in this case 

would simply be kurtosis which is presented in Figure 8. 
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CONCLUSION 

The bearing failures experienced during testing of 

transmissions 1 and 2 presented obvious similarities, and 

there are several conclusions that can be drawn from the 

results.  The severe deterioration of the bearings that 

occurred prior to any obvious impact to the functional 

operation of the transmission clearly indicated that the gears 

are conservatively designed, allowing them to absorb 

significant abuse with little consequence.  The OEM 

confirmed that gear failures seldom occur in the field.  As a 

result, there is little need to develop algorithms specific to 

gear-related failure modes.  Additionally, the bearing 

failures that were experienced in tests 1 and 2 were not 

characteristic of the types of failures that are generally 

observed in the field.  This could have resulted from the re-

use of worn components in build assembly of these test 

transmissions, or certain aspects of the test-cell environment 

or test plan, etc.  In particular, the OEM indicated that 

hydraulic system failures represented the most common 

mechanical failure types, whereas the existing EA is 

generally regarded as having the most reliability issues on 

the existing transmission.  For this effort, simple statistical 

analysis and data fusion techniques provided a simple 

baseline for developing a lightweight, embedded 

diagnostic/prognostic module for ground vehicles. 
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