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ABSTRACT 

Modern electronic control units (ECUs) typically contain many physically 
based models represented by a complex structure of maps, curves and scalar 
parameters. The purpose of these models is to monitor or predict engine values that 
are normally measured by actual sensors. If the model structure is a good 
representation of the physical system and the parameters are well fitted, such a 
model can replace the sensor and serve as a virtual sensor to reduce the cost and 
complexity of the overall system. Virtual sensors are commonly used in the ECU 
for predicting engine torque, air pressure and flow, emissions, catalyst 
temperature, and exhaust gas temperatures. To ensure an optimal prediction 
quality of these models, their parameters need to be calibrated using real 
measurement data collected, e.g., in the vehicle or in the test cell. Due to the 
models’ complexity and the high number of parameters, a manual calibration is 
very time consuming or even impossible. Instead, iterative multivariate 
optimization algorithms are more efficient. The optimization of the model 
parameters can be performed offline on a PC and doesn’t require access to the 
physical target which helps to save time and costs throughout the entire calibration 
process. 

This paper presents the implementation of an automated calibration 
procedure in a generic tool framework, ETAS ASCMO-MOCA, to enable a broad 
use in function calibration and virtual sensor development. The ECU model can be 
provided in the proprietary formats of MATLAB Simulink® and ETAS ASCET. A 
formula editor is also available to recreate the function in ASCMO-MOCA, in case 
the source model is not available. Recorded measurement data stimulates the model 
inputs for the optimization. The difference between the actual sensor values in the 
data set and the model output represents the optimizer’s cost function. A gradient 
descent algorithm is used to find optimal calibration parameters while minimizing 
the deviation of the model prediction from the desired output behavior. For 
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practical reasons, additional constraints can be considered during the optimization 
for calibration curves and maps, such as smoothness factors or gradient 
limitations. Once the final optimized and verified model is available, it can be 
integrated into the ECU control strategy. Several examples from ECU function 
development are shown throughout the paper. 

 
MOTIVATION 

In the automotive industry, physics-based 
models are widely used as virtual sensors in 
electronic control units (ECUs) and as plant 
models in Model-in-the-Loop (MiL), Software-
in-the-Loop (SiL) and Hardware-in-the-Loop 
(HiL) simulations. These models consist of 
many multidimensional calibration parameters 
combined in a complex but physically motivated 
structure. The process of properly calibrating 
the parameters has a strong impact on project 
targets like fuel consumption, emissions, 
drivability, and development costs. A major 
challenge is the constantly increasing 
complexity of these models, i.e. number of 
calibration parameters. 

For example, Figure 1 shows a simplified 
implementation of an engine torque model in 
MATLAB/Simulink®. The model output is 

calculated based on the current values of engine 
speed, relative air mass, ignition timing, and the 
combination of four calibration labels. (Please 
refer to the application section in this paper 
regarding more detailed information about the 
purpose and meaning of the calibration 
parameters.) This relatively simple model 
contains a couple hundred individual calibration 
values considering multiple breakpoints within 
each calibration map and curve. A more realistic 
torque model likely has more than ten such 
complex calibration labels, which further 
increases the challenge of the overall calibration 
task. Therefore, a manual calibration is very 
time consuming and sometimes even 
impossible. To be more efficient, it makes sense 
to use automated optimization algorithms, 
where the optimization can be performed offline 
on a PC.  

Figure 1: Simplified engine torque model. Torque is calculated based on the current values of engine speed, relative air 
mass, ignition timing, and the combination of four complex calibration labels. 



Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Automated Optimization of Physics-Based Sensor Models for Embedded Control Systems, Tobias Gutjahr, et al. 
 
 

Page 3 of 9 

Today, original equipment manufacturers 
(OEMs) and ECU suppliers often use specific 
in-house scripts or tools for the task of 
optimizing individual models. A generic tool 
framework for an automated model calibration 
is therefore presented in this paper. The user 
provides the function model and a set of 
recorded measurement data files with the 
desired output behavior. The tool then maps the 
recorded channels to the corresponding model 
inputs to perform simulation runs offline. An 
optimization algorithm iteratively adapts the 
calibration parameters and minimizes the 
deviation between recorded output and model 
prediction. 

The benefit of such a virtual calibration 
approach is that access to the physical target, i.e. 
the vehicle or the ECU, is not required. This 
helps perform calibration tasks earlier in the 
ECU development cycle to significantly reduce 
the demand for real prototypes and to save 
development costs. 

The remainder of this paper is organized as 
follows. In the next section, the core 
functionality of the automated calibration 
framework is described in detail, in particular, 
data import, supported model types and their 
optimization. The section thereafter discusses 
the application of the presented concept using a 
steady-state, transient, and closed-loop 
calibration example. The paper concludes with 
a brief summary. 

 
AUTOMATED MODEL CALIBRATION  

The tool suite ETAS ASCMO (Advanced 
Simulation for Calibration, Modeling and 
Optimization) provides model-based 
approaches for a broad range of calibration tasks 
to help with the increasing complexity of 
today’s internal combustion engines [1, 2]. In 
addition to design of experiment (DoE) and 
data-driven modeling, ASCMO comes with 
powerful optimization algorithms, an interactive 
visualization, and prognosis features tailored to 

different calibration needs. The latest product 
extension, ASCMO-MOCA (Model 
Calibration), was designed for ECU function 
development and, in particular, the automatic 
calibration of physics-based ECU models or 
virtual sensors. Figure 2 shows the overall 
concept of ASCMO-MOCA consisting of the 
main modules: data import, model simulation, 
and optimization. An intuitive graphical user 
interface enables the user to perform the 
parameter optimization in a few easy steps.  

 

 

Measurement Data 
As a prerequisite for performing offline 

simulation and optimization, a recorded set of 
measurement data with the desired output 
behavior is needed from the real system. 
Depending on the particular application, this can 
be steady-state data from the engine test cell or 
transient data (with timestamp information) 
from vehicle test trips. In any case, the recorded 
data should cover all operating areas of the 
model, i.e. all input value combinations. 
Otherwise, the optimization result 
will only be valid for parts of the model’s 
operating range. All common automotive 
measurement data file formats are supported: 
Measurement Data Format (MDF3 and MDF4), 
Excel, and comma separated values (CSV). The 
recorded channels from the measurement data 
are later mapped to the corresponding model 

Figure 2: Overview of ASCMO-MOCA. Optimization 
of calibration parameters based on the model simulation 

against a recorded data set of desired output values. 
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inputs for simulation. Thus, a signal for each 
model input needs to be present in the loaded 
data set. It is also possible to import multiple 
data sets from various test runs. The data can be 
separated into training data for optimizing the 
model parameters and test data for validating the 
model quality.  

 
Model Formats 
Besides measurement data, the ECU function 

model has to be provided. Currently, the 
proprietary formats of MATLAB/Simulink® 
and ETAS ASCET are supported. A formula 
editor is also available to recreate the function, 
in case the source model is not available. For 
example, Figure 3 shows the simplified engine 
torque model manually entered in the ASCMO-
MOCA formula editor. It is worth noting that the 
formula representation provides the benefit of 
calculating the analytical gradients of the 
optimizer’s cost function in each iteration step, 
rather than numerically as with the proprietary 
modeling formats. This generally leads to better 
performance, i.e. a reduced optimization time. 

 

 

Optimization 
The sum of the squared residuals between the 

true sensor values ݕ௞  and the model output 
 over the entire prediction horizon is used (݌)ො௞ݕ
for optimization: 

 

(݌)݂ = ෍(ݕො௞(݌)− ௞)ଶݕ
௄

௞ୀଵ

 
 

(1) 

K represents the number of all sample points in 
the training data set, and p are the model’s 
calibration parameters. In addition to the model 
error, a smoothness factor for the calibration 
curves and maps is considered in the 
optimization criterion. The goal is to avoid 
overfitting and to provide good extrapolation 
capabilities. A penalty term is therefore used to 
describe the roughness R of the calibration 
surface by the 2nd order derivatives of the map 
output z with respect to its grid point locations 
 .࢓࢟ and  ࢔࢞
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1
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1
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(2) 

 
ܰ and ܯ are the total number of grid points in 
direction of operating point axes 1 and 2, 
respectively. (Equation (2) is valid for a two-
dimensional calibration map. In case of a 
calibration curve with only one operating axis, 
the second summand of equation (2) related to 
y୫ can be neglected.) Based on equations (1) 
and (2), the overall cost function of the 
optimization task can be formulated as follows: 
 

min
௣
൭෍(ݕො௞(݌)− ௞)ଶݕ

௄

௞ୀଵ

+ ෍ ௟ܴܵ௟

௅

௟ୀଵ

൱ 
 

(3) 

 
 is an individual smoothing factor applied by ࢒ࡿ
the user for each of the ࡸ calibration maps and 
curves.  

A gradient descent search algorithm [3] is used 
to solve the optimization problem, i.e. 
minimizing the model error while trying to find 
optimal values for the calibration labels p. The 
tool also supports a multi start of the 
optimization. This can help to avoid local 
minima in the cost function. Initial calibration 
values can be provided by the user in standard 
automotive file formats such as DCM [4] and 
CSV. The resulting calibrations after the 

Figure 3: Formula editor with simplified engine torque 
model. 
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optimization are exportable into the same 
formats to use in other measurement and 
calibration tools, e.g. ETAS INCA. 

 
APPLICATIONS 

This section demonstrates the application of 
the proposed optimization procedure with three 
virtual sensor models. Different use cases are 
addressed including: steady-state input-output 
relationship (engine torque model), transient 
behavior (exhaust gas temperature model), and 
closed-loop system simulation (engine idle 
speed governor). The Root Mean Square Error 
(RMSE) is used in all examples to compare the 
model quality before and after the optimization: 

 

ܧܵܯܴ = ඨ∑ ො௞ݕ) − ௞)ଶ௄ݕ
௞ୀଵ

ܭ  
 

(4) 

 
(In this equation, K is equal to the number of all 
sample points in the training data set. ݕො௞  is the 
model prediction and ݕ௞  represents the desired 
output behavior.) 
 

Engine Torque Model 
The engine torque model introduced in the 

beginning of the paper (Figure 1) is examined in 
this example. As mentioned, the model 
calculates torque based on the input values of 
engine speed, air mass and ignition timing. The 
model consists of three calibration maps and one 
calibration table. The purpose of the individual 
calibration labels is summarized in the 
following. Be aware that this is a simplified 
version of an engine torque model. A real-life 
model likely has more than ten calibration labels 
to consider additional influences such as a 
lambda value, variable valve timing, swirl flaps, 
etc. 
 Map_Opt_Torque: Maximum inner torque 

from the combustion at the optimal 
ignition angle without any friction or 
pumping losses.  

 Map_Opt_Ignition: Optimal ignition angle 
(from optimal combustion) depending on 
engine speed and air mass. 

 Curve_eta_delta_spark: Reduction of 
inner torque in case of a deviation from the 
optimal ignition angle. The input to this 
curve is the deviation between the current 
ignition angle and the optimal ignition 
angle (the output of Map_Opt_Ignition). 

 Map_Drag_Torque: To consider any 
friction and pumping losses, e.g. from 
unfired engine operation, depending on 
engine speed and air mass. 

 

 
Figure 4: Time series plot in ASCMO-MOCA of the 

data used for optimizing the engine torque model: 1st 
graph – engine speed input, 2nd graph – relative air 

mass input, 3rd graph – ignition timing input, and 4th 
graph – desired engine torque (black) and optimized 

model output (blue). The red curve in graph 4 
represents the remaining deviation between modeled 

and desired torque output after the optimization. 
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Figures 4 and 5 show the data set used in 
ASCMO-MOCA for optimizing the model 
parameters in a time series and scatter plot, 
respectively. The stimuli for the system inputs 
were based on a full factorial design plan 
(Figure 5) adhering to the physical constraints of 
the system. A total of 2812 steady-state sample 
points were collected in a test cell on an engine 
dynamometer.  

 

 

The optimization results were as follows. The 
optimizer converged after 22 iterations with an 
RMSE of 1.83 Nm compared to an RMSE of 
76.38 Nm before the optimization; see the 
histograms of the absolute model errors in 
Figure 6. Please note the different scales of the 
x-axes in Figure 6. The distribution of the post 
optimization histogram is narrower than the 
results before the optimization and aligns with 
the red signal (residual model deviation) in the 

bottom graph in Figure 4. The required 
computational time for the optimization 
strongly depends on the model complexity, i.e. 
the number of calibration labels, breakpoints 
within each label, and any additional 
constraints. The optimization for the 22 
iterations in this example took about 1.5 minutes 
on a state-of-the-art engineering laptop. As 
mentioned above, there is a potential 
computation benefit if the model equation is 
entered as a formula expression due to the 
ability to calculate the cost function gradients 
analytically. For the same engine torque model 
provided as analytical formula (Figure 3), 
identical optimization results were achieved 
with a computation time of less than 2 seconds. 

 

 

 

To visualize the changes in the model’s 
calibration, Figure 7 compares the drag torque 
map before the optimization (grey) and after 
(colored). For the sake of simplicity, the other 
calibration labels are not shown. It is worth 
noting that the user can modify the calibration 
map manually via dragging the green dots at the 

Figure 6: Absolute model error of the engine torque 
model before (top) and after (bottom) the optimization. 

Figure 5: Scatter plot with the full factorial input 
design of the engine torque model data set. 
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breakpoint locations and ASCMO-MOCA will 
immediately provide the updated model error 
caused by the changes. 

 

 

 
Exhaust Gas Temperature Model 
This example shows the application of the 

optimization routine to a transient model, in 
particular, a simplified exhaust gas temperature 
model. The model calculates the temperature 
based on engine speed, injection quantity and air 
mass. The transient behavior of the model is 
introduced by a first-order delay element (PT1), 
as shown in Figure 8. The two calibration maps 
in this example are:  
 Map_Exh_Temp_Steady: The steady-state 

temperature depending on engine speed 
and injection quantity. 

 Curve_Time_Const: Time constant for 
changing the behavior of the PT1 transfer 
function depending on air mass.  

 
Figure 9 summarizes the time series of the 

stimuli and the optimized model behavior. The 
data was recorded during an in-vehicle 
measurement campaign and consisted of 26482  

 

 

Figure 7: Drag torque map before (grey) and after the 
optimization (colored) in ASCMO-MOCA. 

Figure 8: Simplified exhaust gas temperature model with 
two calibration labels and first-order transfer function. 

Figure 9: Time series plot with input stimuli (graphs 1 
– 3) and output behavior (graph 4) of the exhaust gas 

temperature model. Graph 4 shows the desired 
temperature values (black), the optimized model output 

(blue), and the remaining model error (red). 
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samples captured at a sample rate of 10 Hz. The 
optimization was able to improve the RMSE 
from 197.57 °C down to 3.76 °C. The results for 
the two calibration labels (before and after the 
optimization) can be seen in Figures 10 and 11. 

 

 

 

Engine Idle Speed Governor  
The previous applications demonstrated the 

use case of optimizing the open-loop behavior 
of a function model. In contrast to this, the 
following example will focus on the 
optimization of a control algorithm in a closed-
loop configuration connected to a plant model. 

Figure 12 shows a simplified engine idle speed 
governor, where a proportional-integral (PI) 
controller is tasked to command a torque value 
to keep the engine speed at the desired rpm 
(revolutions per minute) level. The plant model 
of engine speed in this control loop is a transient 
data-driven model generated with ASCMO-
DYNAMIC [5] and based on a representative 
set of in-vehicle measurements.  

 

 

Compared to the previous examples, the idle 
controller optimization had far less 
computational requirements, since only two 
scalar labels (Kp and Ki) needed to be 
optimized. Figure 13 shows the ability of the 
calibrated controller to keep the engine speed at 
the desired value for the given profile with an 
RMSE of 25.02 rpm (Kp = 0.08 and Ki = 0.046). 
The RMSE before the optimization was 1115 
rpm (Kp = 0 and Ki = 0). It can also be seen in 
Figure 13 that the calibrated controller causes 
overshoots in the closed-loop behavior. The user 
has the option to define additional constraints in 
the tool, e.g. for a maximum allowable deviation 
between set value and actual value. Depending 
on the threshold, this will result in a slower but 
smoother response of the controller. 

Having the entire control loop available in 
such an offline calibration can help reduce the 
demand for hardware prototypes. New or 
modified control strategies can be calibrated and 
tested without actual measurement runs in the 
test cell or the vehicle. 

Figure 10: Steady-state exhaust temperature map 
before (grey) and after the optimization (colored). 

Figure 11: Time constant curve for the PT1 transfer 
function before (grey) and after the optimization 

(colored). 

Figure 12: Engine idle speed governor control loop 
consisting of a discrete PI controller and transient engine 

speed model generated with ASCMO-DYNAMIC [5]. 
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CONCLUSION 
ASCMO-MOCA is a generic solution for an 

efficient optimization of calibration labels in 
virtual sensor models. A constrained non-linear 
optimization is used to match the model output 
to the desired sensor behavior and to find an 
optimal set of calibration values. The tool comes 
with an intuitive graphical user interface to load 
and analyze measurement data, import function 
models from different sources, define 
optimization tasks, and visualize and validate 
the optimization results. In practice, this can 
help reduce the required calibration time and the 
demand for hardware prototypes. The successful 
application of ASCMO-MOCA was shown in 
this paper on two ECU functions with steady-

state and transient behavior. An optimization of 
a closed-loop simulation consisting of a control 
algorithm and plant model was also 
demonstrated. With the integration in an easy to 
use tool environment, model calibration is no 
longer restricted to modeling experts and can be 
made available to a wider audience of 
calibration engineers.  
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Figure 13: Response of engine rpm of the closed-
loop control strategy to a given set value change: 

desired value (black), engine model response (blue), 
and deviation (red). 
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