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ABSTRACT 
This paper presents a fast and safe quasi-optimal multistage constant 

current (MCC) charge pattern optimization strategy for Li-ion batteries. It is based 

on an integrated electro-thermal model that combines an electrical equivalent 

circuit (EEC) battery model with a thermal battery model. The EEC model is used 

to predict the battery’s terminal voltage continuously as charging progresses, while 

its temperature rise is also estimated continuously by employing the thermal model. 

This integrated electro-thermal battery model is utilized to search for an optimal 

MCC charge pattern that charges the battery in minimum time, while 

simultaneously limiting its temperature rise to a user-specified level. The search 

for the optimal charge pattern is carried out on a stage-by-stage basis by using a 

single-variable optimal search strategy that can be easily implemented on a battery 

management system. The paper also includes some simulation results obtained 

from an integrated electro-thermal model of a commercially available medium-

power Li-ion cell. These results indicate that the proposed quasi-optimal MCC 

charging strategy performs as expected and can serve as a useful, easy-to-

implement alternative to existing computationally intensive optimal charge 

strategies proposed by other researchers. 
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In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, 

MI, Aug. 13-15, 2019. 

 

1. INTRODUCTION 
With the proliferating usage of Li-ion batteries in 

numerous applications ranging from portable and 

hand-held devices to large electrical appliances and 

transportation vehicles, the need for fast and safe 

charging strategies for such batteries has emerged 

as a very important and fertile area of research. 

Through the concerted efforts of several 

researchers over last five years, a variety of such 

fast charging methods have already been proposed 

in the literature [1]-[11].  

Following the lead of Zhang et al [1], we can 

categorize the battery charging optimization 

schemes into four different categories: i) methods 
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based on improvement of battery materials [3]-[4], 

ii) methods based on improvement of charging 

current [5]-[7], iii) polarization based methods [8]-

[9], and iv) methods based on electrical equivalent 

circuit (EEC) and battery thermal models [10]-[12]. 

All these methods have their relative advantages 

and disadvantages. For instance, methods based on 

improved battery materials seem to hold a great 

deal of promise for future but requires extensive 

experimental studies to prove their safety and 

reliability before mass applications. Similarly, 

methods based on improved charge current 

waveforms are simple to implement, but a majority 

of them are based on heuristic strategies, lacking 

mathematical objectivity and foundation. On the 

other hand, polarization-based methods offer a 

good alternative, but they are more complicated 

compared to methods based on EEC and thermal 

models. The methods based on EEC and thermal 

models use an EEC model to predict the battery 

terminal voltage, while simultaneously estimating 

the temperature rise by employing a battery thermal 

model. These two models are used together to 

search for an optimal charging pattern. These 

methods have been shown to be useful for 

development of fast charging strategies that take 

battery stress and safety into consideration.  

 In this paper, we present a multistage constant 

current (MCC) charge pattern optimization strategy 

that also limits battery temperature rise. MCC 

charging strategy is chosen here because several 

researchers have found it to be less stressful than 

conventional constant current constant voltage 

(CCCV) charge strategy, and recently Lu et al [2] 

have also furnished a theoretical proof of its safety 

aspects. Although similar problems have been 

addressed by other researchers, we present a fast-

quasi-optimal charging strategy that can be useful 

for electric vehicles or other applications that 

require easily implementable and fast near-optimal 

solutions. 

The organization of this paper is as follows. 

Section 2 presents a brief overview of EEC and 

thermal models of a Li-ion battery. The problem of 

battery charge pattern optimization is discussed in 

Section 3. Section 4 introduces a simplified charge 

pattern optimization problem. Section 5 presents 

results of simulation studies. Finally, some 

concluding remarks are provided in section 6. 

 

2. ELECTRO-THERMAL MODEL OF A LI-
ION BATTERY 

A brief overview of the Electro-Thermal of a Li-

ion battery is presented in this section. The Electro-

Thermal model consists of a lumped-parameter 

EEC model for modeling the battery’s 

overpotential and a thermal model to predict its 

temperature rise during charging. First, we discuss 

the EEC model and then summarize the thermal 

model. 

 

2.1. Electrical Equivalent Circuit Model of a 
Li-ion Battery 

A popular five-parameter EEC model [12], used 

in this study and elsewhere, is shown in Figure 1 

below. 

 

 
Figure 1:  Chen and Mora’s Second-Order 

Electrical equivalent circuit (EEC) model  

 

This five-parameter EEC battery model is widely 

used in literature to model the current-voltage 

relationship of a Li-ion battery during both 

charging discharging. The model consists of two 

circuits, namely, an Energy balance circuit and a 

voltage response circuit. In the energy balance 

circuit, 𝐶𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 represents the battery capacity. 

The self-discharge resistor Rself-Discharge represents 

the gradual loss of charge in the positive and/or 

negative electrodes when the battery is idle. VSOC 

represents the voltage across CCapacity, which has a 
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value between 0 and 1 volt. VSOC equals to 1V when 

the battery is fully charged and equals to 0 V when 

it is fully discharged. Therefore, VSOC is equivalent 

to the state-of-charge (SOC) of the battery. The 

value of VSOC depends on the magnitude and the 

direction of the battery current, IBatt.  

The voltage response circuit on the other hand 

simulates the battery’s transient response to a given 

current, 𝐼𝐵𝑎𝑡𝑡. 𝑅𝑇𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡_𝑆 and 𝐶𝑇𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡_𝑆 model 

the transient short-term time constant, whereas 

𝑅𝑇𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡_𝐿 and 𝐶𝑇𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡_𝐿 model the transient 

long-term time constant. Also, 𝑉𝑜𝑐is the open circuit 

voltage which is a voltage-controlled voltage 

source depending on SOC. Finally, 𝑅𝑆𝑒𝑟𝑖𝑒𝑠 

represents the internal series resistance of the 

battery.  

For better clarity, the voltage response circuit of 

the EEC model is also shown in Figure 2 below. 

 

 
Figure 2: Simplified EEC model for Li-ion 

 

A state space representation of the EEC model can 

be expressed as: 

 

𝑉1̇ = −
1

𝑅1𝐶1
𝑉1 +

1

𝐶1
𝐼          (1) 

𝑉2̇ = −
1

𝑅2𝐶2
𝑉2 +

1

𝐶2
𝐼         (2) 

𝑉𝑇 = 𝑉𝑂𝐶𝑉 − 𝑉1 − 𝑉2 − 𝐼𝑅𝑆     (3) 

  

where 𝑉1and 𝑉2 are the voltages across the 

capacitors and system states. Current 𝐼 is the input, 

and battery terminal voltage 𝑉𝑇 is the output.  

 An accurate and robust parameter estimation 

method is required for applications of EEC models. 

The estimation method is expected to be robust in 

the presence of both unmodeled system dynamics 

and measurement noise. Two such estimation 

techniques are: A direct Continuous Time (CT) 

system identification method, and an Indirect 

Discrete Time technique (IDT). A previous study 

for parameter estimation of EEC models [13] 

shows that both methods perform equally well if the 

model happens to be a time-invariant system. 

However, if the system is time-varying, then a CT 

system identification method would be a better 

choice for better accuracy and robustness. 

 
2.2. Thermal Model of a Li-ion Battery 

Some researchers have shown that Li-ion 

batteries have a safe operating window of -10 to 50 

°C [14], while others have identified their optimal 

operating temperature range to be between 20 and 

30 °C [15]. Operating temperatures outside of this 

range may affect battery performance and safety. 

Another major safety concern for such batteries is 

the risk of thermal runaway, where internal 

components of the battery experience thermal 

stresses and start to malfunction due to heat 

accumulation and temperature rise, eventually 

resulting in conditions that cause further rise in 

temperature and thermal runaway. Since battery 

performance is highly dependent on temperature, it 

is important to limit the rise of temperature during 

battery operations. Battery thermal models have 

been found to be very useful for such purpose, 

because such models can be used to predict the 

expected temperature rise of a battery during 

charge/discharge operations. 

Different types of battery thermal models, 

suitable for different applications, have been 

proposed in the literature [16]. Each of these is 

associated with a different level of complexity, 

accuracy and computational cost. These models can 

be divided into three main categories, namely, 

lumped parameter models (LPM), finite element 

models (FEM), and analytical numerical models 

(ANM). The LPM models are useful for fast 

simulation, but suffer from limited accuracy, 

whereas FEM models are rather slow to execute, 
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but offer high accuracy. The ANM models, on the 

other hand, offer a good trade-off between 

simulation accuracy and speed. In view of above, 

we chose an ANM model in this study. 

A popular thermal ANM model can be described 

by the following equations [17]: 

 

𝐶𝑐𝑇�̇� = 𝑄 +
𝑇𝑠−𝑇𝑐

𝑅𝑐
            (4) 

𝐶𝑠𝑇�̇� =
𝑇𝑓−𝑇𝑠

𝑅𝑢
−

𝑇𝑠−𝑇𝑐

𝑅𝑐
        (5) 

𝑄 = 𝐼(𝑉𝑂𝐶𝑉 − 𝑉𝑇) + 𝐼𝑇𝑐
𝑑𝑉𝑜𝑐𝑣

𝑑𝑇𝑐
      (6) 

  

where 𝐶𝐶 and 𝐶𝑆 denote the heat capacities of the 

core and the surface, whereas 𝑇𝐶  and 𝑇𝑆  denote 

their temperatures; 𝑇𝑓  denotes the temperature of 

ambient air, and 𝑇𝐶  and 𝑅𝑢  denote the thermal 

resistances used to model the heat exchange 

between the “core and surface” and “surface and 

ambient air”, respectively. Also, 𝑄 denotes the heat 

produced during chemical reactions in the battery 

and modeled by equation (6), where I denote the 

charge current, 𝑉𝑂𝐶𝑉 is the open circuit voltage, 𝑉𝑇 

is the cell voltage and 
𝑑𝑉𝑜𝑐𝑣

𝑑𝑇𝑐
 denotes the entropy 

coefficient. 

 

3. MCC CHARGE PATTERN OPTIMIZATION 
PROBLEM 
A MCC charge pattern simply consists of N 

gradually decreasing constant current charge 

levels, 𝐼𝑘, 1 ≤ k ≤ N, of unequal durations, ∆tk= tk - 

tk-1, 1 ≤ k ≤ N, respectively. The charge pattern 

optimization problem can be stated as follows: 

 

 Find optimal values of {N; ∆tk, Ik, 1 ≤ k ≤ N} that 

minimize the total charge time, tN, subject to the 

constraints,  

 

∑ ∆𝑇𝑘 ≤ ∆𝑇𝑚𝑎𝑥  𝑁
𝑘=1         (7a) 

 

∑ ∆𝑆𝑂𝐶𝑘 = 1𝑁
𝑘=1     (7b)     

where ∆Tk and ∆SOCk denote the temperature-rise 

and SOC gain during the kth stage of charge, and 

∆Tmax denotes the maximum allowable rise in core 

temperature of the battery.  

The above problem is difficult to solve unless 

some simplifying assumptions are made. Thus, 

most researchers assume that N is known a priori, 

and the allowable values of charge current levels, 

Ik, are assumed to be known fractions or multiples 

of C-rate charge current, such as 0.5C, 1C, 1.5C, 

etc. [1], [10]-[12]. So, a simplified version of the 

above problem becomes:  

 

Find optimal values of {tk, Ik, 1 ≤ k ≤ N} that 

minimize the total charge time, tN, subject to the 

constraints (7) 

 

An optimal solution to the above problem can be 

found by using either a multi-objective 

optimization algorithm, such as minmax or goal 

programming or an evolutionary optimization 

method, such as genetic algorithm (GA) [18]. In 

fact, GA has been the algorithm of choice by 

several researchers [1], [10]-[12]. However, it 

should be borne in mind that the solutions so 

obtained are really not optimal, but only quasi-

optimal because: i) N is assumed to be known a 

priori, ii) (as indicated by other researchers), MCC 

profile may not be an optimal charge profile after 

all, and iii) a solution given by GA is not guaranteed 

to be optimal at all because basically it is a random 

search technique conducted in an organized way. 

 

4. A SIMPLIFIED MCC CHARGE PATTERN 
OPTIMIZATION SCHEME 

In view of above, we propose to use a quasi-

optimal search strategy that is much faster, easy-to-

implement, and can provide a near-optimal 

solution. To simplify the problem, we add an 

additional constraint related to temperature-rise in 

each stage and therefore, constraint (7a) is modified 

to the following simplified form:  

 

∆𝑇𝑘 ≤ ∆𝑇𝑘,𝑚𝑎𝑥           (8) 
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where ∆𝑇𝑘,𝑚𝑎𝑥 denotes the maximum temperature-

rise allowed for the kth stage. With prior knowledge 

of ∆𝑇𝑘,𝑚𝑎𝑥, 1 ≤ k ≤ N, the above optimization 

problem reduces to finding the optimal values of 

successive stage-to-stage transition times, {tk, 1 ≤ k 

≤ N}, which only requires successive one-

dimensional searches for each stage. For instance, 

a simple Interval-Halving method [18] for stage k 

may consist of the following steps: 

 

Step 1. For stage k, first compute an upper 

bound for tk as:  𝑡𝑘,𝑚𝑎𝑥 =  
1−∑ ∆𝑆𝑂𝐶𝑗

𝑘−1
𝑗=1

𝐼𝑘
 

Step 2. Using a battery thermal model, compute 

the expected temperature-rise, ∆T(tk.max), at 

time tk,max, If ∆T(tk.max) < ∆𝑇𝑘,𝑚𝑎𝑥, let tk = tk,max 

and proceed to the next stage; else go to Step 3. 

Step 3. Compute the expected temperature-rise 

at (tk,max/2). If ∆T(tk.max/2) < ∆𝑇𝑘,𝑚𝑎𝑥, choose 

the reduced search interval as: (tk, tk,max/2), else 

choose it to be: (tk,max/2, tk,max), and go back to 

Step 2. 

 Our simulation results indicate that the search for 

optimal values of tk requires only a few iterations 

for each stage. The number of iterations can be 

reduced even further by using a golden section 

search method [18]. 

 

Remark 

   It may be pointed out that the solution obtained 

above can be improved further by picking the best 

one from M separate solutions obtained by starting 

from M randomly chosen constraints {∆𝑇𝑘,𝑚𝑎𝑥, 1 ≤ 

k ≤ N}. This is a well-known method of finding a 

near-optimal solution [18] to any optimization 

problem. 

 

5. SIMULATION RESULTS 
The proposed quasi-optimal search strategy was 

simulated for an integrated electro-thermal battery 

model for A123-26650 Li-ion battery [19]. 

Although many simulations were carried out to 

study the performance of the proposed optimization 

algorithm under different scenarios, the results of 

only three studies are shown below. 

 

Sample Simulation Results 

   Three sample MCC charge pattern optimization 

simulation results for a five-stage, a six-stage, and 

a seven-stage are shown in Figures 3-11 below. In 

all cases, the battery is assumed to be fully 

discharged to start with and the initial temperature 

of the battery core is assumed to be 25 °C. Also, the 

simulations in all cases were stopped at SOC = 1. 

Figures 3-5 show the current levels, temperature-

rise, and battery voltage for a six-stage charge 

pattern, where ∆Tmax was chosen to be 9 °C. The 

values of ∆Tk,max (in oC) and charge current levels 

for this simulation were chosen to be as follows: 

 

{∆Tk,max (in oC), 1 ≤ k ≤ 5} = {2  2  2  2  1}; 

Charge currents (in C-rate),  

Ik, 1 ≤ k ≤ 6 = {3.5C 3C 2.5C 2C 1.5C 1C}. 

 

In this case, it took approximately 1750 secs to 

completely charge the battery. 

Also, Figures 6-8 show similar results for a six-

stage charge pattern, where ∆Tmax was chosen to be 

7 °C. The values of ∆Tk,max (in oC) and charge 

current levels for this simulation were chosen to be 

as follows: 

 

{∆Tk,max (in oC), 1 ≤ k ≤ 5} = {1  1  1  2  2}; 

Charge currents (in C-rate),  

Ik, 1 ≤ k ≤ 6} = {3C 2.5C 2C 1.5C 1.2C 1C}. 

 

In this case, it took approximately 2330 secs to 

completely charge the battery. 

A comparison of the above two simulations shows 

the trade-off between ∆Tmax and total charge time, 

tN, namely, a decrease of ∆Tmax results in a longer 

charge time and vice versa. 

Finally, keeping the optimal operating 

temperature range in mind, Figures 9-11 show the 

results for a seven-stage charge pattern, where 
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∆Tmax was chosen to be 5 °C. The values of ∆Tk,max 

(in oC) and charge current levels for this simulation 

were chosen to be as follows: 

 

{∆Tk,max (in oC), 1 ≤ k ≤ 5} = {1  1  0.5  0.5  1  1}; 

Charge currents (in C-rate),  

Ik, 1 ≤ k ≤ 7 = {2.5C 2C 1.7C 1.5C 1.2C 1C 0.5C}. 

 

In this case, it took approximately 2750 secs to 

completely charge the battery. 

 

 

Figure 3: Temperature rise of battery core (Tc) 

and surface (Ts) for ∆Tmax = 9 °C (From 25 °C - 

34 °C) 

 

 

Figure 4: SOC and VOC for ∆Tmax = 9 °C 

(From 25 °C to 34 °C) 

 

Figure 5: Optimum charge pattern for ∆Tmax = 

9 °C (From 25 °C to 34 °C) 

 
Figure 6: Temperature rise of battery core (Tc) 

and surface (Ts) for ∆Tmax = 7 °C (25 °C - 32 °C) 

 
Figure 7: SOC and VOC for ∆Tmax = 7 °C 

(From 25 °C to 32 °C) 
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 Figure 8: Optimum charge pattern for ∆Tmax =  

7 °C (From 25o C to 32 °C) 

 
Figure 9: Temperature rise of battery core (Tc) 

and surface (Ts) for ∆Tmax = 5 °C (25 °C - 30 °C) 

 
Figure 10: SOC and VOC for ∆Tmax = 5 °C 

(From 25 °C to 30 °C) 

 
Figure 11: Optimum charge pattern for ∆Tmax =  

5 °C (From 25o C to 30 °C) 

 

 

6. CONCLUSION 
A fast and safe quasi-optimal MCC charge pattern 

optimization strategy for Li-ion batteries has been 

proposed and studied here. Simulation results 

obtained from an integrated electro-thermal model 

of a 2.3 AH A123-26650 Li-ion battery indicate 

that the proposed charging strategy performs as 

expected and can serve as a useful, easy-to-

implement alternative to existing computationally 

intensive optimal charge strategies proposed by 

other researchers. Further improvement of the 

proposed search strategy by incorporating 

additional battery-stress issues as well as non-

MMC charge patterns are currently under 

investigation. 
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