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ABSTRACT

Understanding the intricacy of a complex systena imajor challenge in today’s highly dynamic
environment. In addition, managing the lifecyclegesses and schedule risks of these complex syatitso
the challenge of achieving program objectives. Cerity is ever present in today’s military systefregstems
architectures, acquisition lifecycle managementcpsses, and supporting organizational structurelis T
complexity is often an impediment to the succesiEuélopment, integration, and transition of cafiabigap-
closing technologies to support our Warfighterseds. Over the years, methods to reduce system exitypl
have taken many forms. The Design Structure M@r8M) is one methodology that has proven very &ffemn
the analysis, management, and integration of compglestem architectures, organizational structurasd
densely networked processes. DSM enables the aisrodel, visualize, and analyze the dependenciemgm
the entities of any system—and derive suggestiorsy$tem optimization.

INTRODUCTION

The intent of this paper is to introduce DesignuStnre
Matrix (DSM), a simple and insightful yet powerfsystems
Engineering and Integration (SE&I) methodology for
managing and developing complex systems. DSM is a
matrix-based system modeling methodology that may b
applied to the three critical domains in design and
development of systems: product (Product Breakdown

Structure), process (Work Breakdown Structure), and
organization  (Organizational = Breakdown  Structure).
Delivering successful complex systems design and

management through the use of DSM requires a deep
understanding of system element interactions. DSM c
assist by providing a compact and clear representatf a
complex system and a capture method for the inierss;
interdependencies, and interfaces between systameals.

This paper will address several applications of D&M
optimize system structures (architectures) in tlenains
mentioned above. It will also specifically addréssk-based
DSMs (Process Architecture), component-based DSMs
(System Architecture), and team-based DSMs
(Organizational Architecture).

BACKGROUND

The use of matrices in system modeling can be draeek
to the 1960s and '70s with Donald Stewart and John
Warfield. However, it wasn't until the 1990s thiaetmethod
received widespread attention. Much of the creditits
current popularity is accredited to MIT's reseaiichthe
design process modeling arena by Dr. Steven Eppinge

DSM—also known as the dependency structure matrix,
dependency source matrix, and dependency structure
method—is a square matrix that shows relationships
between elements within a system. Since the behavid
value of many systems is largely determined byraaons
between its elements, DSMs have become increasingly
useful and important in recent years.

The DSM is related to other square-matrix—basedhouks,
such as: a dependency map, a precedence matrix, a
contribution matrix, an adjacency matrix, a readltsb
matrix, and an N-square diagram, and also relatedoh-
matrix—based methods such as directed graphs,nsysté
equations, and architecture diagrams and otherndiepey
models.

Relative to other system modeling methods, DSMthas
main advantages that differentiate it from the the
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« DSM provides a simple and concise way to

represent a complex system.

« DSM is capable of powerful analyses techniques—
which will be discussed in subsequent sections of

this paper.

UNDERSTANDING COMPLEXITY

The key to understanding and managing complexity is

through system decomposition. Figure 1 may reptetfen
decomposition of a complex:

— System into subsystems and components

— Process into subprocesses and tasks

— Organization into teams and individuals.

System

Process
Organlzatlon

:""‘x ,\ :""‘-\ |
‘ot\oioo ibo\o/t

Figure 1. Decomposition of a System

..\

The relationship or pattern of interactions betwedba
decomposed elements defines the architecture:
— System architecture
— Process architecture
— Organization architecture.

System
Process
Organlzatlon

Figure 2: Decomposed Simple Architecture

Note the simple architecture in Figure 2 compacetthé
complex architecture in Figure 3. This is evideythe lack
of pattern in the interactions between the lowegel
elements of the system.

System
Process

Figure 3: Decomposed Complex Architecture

DESIGN STRUCTURE MATRIX

There are two major types of DSMs: static (relathips
between the system elements are not time-based) and
temporal (relationships between the system elemargs
time-based). [2] For that reason, they are analyzed
differently. Static DSMs are analyzed by clusteraigments
of the matrix, and temporal DSMs are analyzed by
sequencing elements of the matrix.

The general DSM modeling approach consists of the
following steps:
1) Define the system boundary
2) Describe important interfaces
3) Decompose the system into simpler elements
4) Define the characteristics of the elements
5) Characterize the element interactions
6) Analyze the system architecture (structure):
a) System model behaviors
b) Potential element arrangements/integrations.

In the next section, we will go into greater detefjarding
the use of DSM for managing complex projects (faaged
DSM).

Process Domain: Task-Based DSM

Before we introduce the use of the DSM method of
analysis for program management tasks, we will flyrie
discuss the three possible types of task sequences.

Consider a system (or project) consisting of twenents
(or tasks): Task A and Task B. As illustrated igu¥e 4,
there are three basic sequences for describing the
relationship between the tasks: sequential (or rofbget
tasks), parallel (or independent tasks), or coupled
interdependent tasks).

Three Possible Sequences for Two Tasks
Sequence Type Parallel q Coupled

Graphic
Representation

Relationship Independ. Depend Interdepend.

Figure 4: Task Sequences and their Relationships
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The matrix representation of the task sequenceégjime 4
is shown in Figure 5. The matrix layout is as falo The
system elements are placed down the side of thexnes
row names and across the top as column headingisein
same order. If there is an interaction, it is mdristh an X,
and if there is no interaction, it is left emptyr & matrix
representation of a system, the diagonal of theixebes
not assist in describing the system.

Three Possible Sequences for Two Tasks
Parallel Sequential

Sequence Type Coupled

AlB AB AB
DSM

N | Al A llx
5/ B xH Bx

Independent Dependent Interdependent

Representation

| Relationship

Figure5: DSM Representation of Task Sequences

As shown in Figure 5, because there are no inferacin
the first matrix, they are independent of each ipttinus, the
tasks can be done in parallel (or concurrentlyxhimsecond
matrix, Task B is dependent on information from K &g
therefore, the task sequence should be to compket& A
prior to Task B. Lastly, in the third matrix, TaBkdepends
on Task A. However, Task A also depends on infoionat
provided by Task B, which makes them interdependent
(coupled), which typically results in iteration.

Product or system development is fundamentallyaties,
yet iterations are hidden. lteration is the repetitof tasks
due to the availability of new information. For exale:

— Changes in input information (upstream)

— Update of shared assumptions (concurrent)

— Discovery of errors (downstream).

Engineering activities are repeated to improve peobd
quality and/or to reduce cost. To understand amelarate
iterations requires:

— Visibility of iterative information flows

— Understanding of the inherent process coupling.

A task-based DSM can also be considered an infésmat
exchange model. Figure 6 is an example of a taskeba
DSM; this can represent any project plan in theepwf its
development sequence

DSM Used for Managing Complex Projects

The DSM is constructed in the following manner:
Each task or process step (in our example, letiefisted in
the order of its development sequence along theasid top.
The X’s in the matrix represent an information exwhe (or
interaction) between the tasks, or process steps.

The DSM is read in the following manner: (1) Foars
the vertical blue line aligned with Task B, andldal the
arrow to see that Task B transfers information asks C, F,

G, J, and K; (2) Focus on the red horizontal lirthwask
D; Task D requires information from Tasks E, F, dnd
Note that information flows are easier to capturant work
flows and that inputs (blue lines) are easier tptwe than
outputs (red lines).

Original Process Architecture

A B CDETFGHIIJ KL
Al X

Sl B
c
Sl c |« .
o
S| o e X3¢ (
j‘ueE [;f X X
Sl F | : X X
(%]
Sl 6 |« . X
S
al H|X X X X
c
g| X X - X
sl |- X - X X
[]
gl x |« X .
a !

v L IX X X X

Interpretation:
sTask B transfers informationto tasks C, F G, J, and K
eTask D requires information from tasks E, F, and L

Figure 6: Task-Based DSM (Original Sequence)

Figure 7 shows the direction of information flowsyided
initially in Figure 6 with the upper and lower dawl
sections of the matrix. Information exchange in thpper
half of the matrix represents feedback of informatihat
cause process iteration and are sometimes undiesivab
sometimes necessary for system optimization. Inétion
exchange in the lower diagonal is desirable, meptfiat it
should not cause iteration.

Note that each X above the diagonal representsemiial
area of iteration and rework resulting in workforce
inefficiency. The key is to reorder the tasks sticét the
number of X's above the diagonal is minimized fskr
mitigation.

Note that this convention in some literature shows
feedbacks below the triangular and feed-forward of
information flows above the diagonal. This is jusing the
transpose of the matrix. As long a consistent agrois
used, the two conventions convey the equivalent
information.
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Original Process Architecture
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Interpretation:

» Interactions above the diagonal feeds information back to
previous tasks; potential for iteration / rework
» Interactions below the diagonal feeds information forward

Figure 7: Information Flows

The visualization and analysis depicted in Figuesnd 7
of the product lifecycle provides insight into thegram or
system complexity.

Analysis Technique for Process DSMs

Partitioning is the re-sequencing or reordering of the DSM
rows and columns such that the new DSM arrangeoesg
not contain any feedback marks in the upper didgdhas
transforming the DSM into a lower triangular forfRor
complex engineering systems, it is highly unlikelyat
simple row and column manipulation will result incaver
triangular form. Therefore, the analyst’'s objectleanges
from eliminating the feedback marks to moving thes
close as possible to the diagonal (this form of rtiwrix is
known as block triangular).

In Figure 8, the development sequence providedgarEs
6 and 7 was partitioned (or re-sequenced) to mizénthe
marks in the upper triangle of the matrix. After
partitioning—the new development sequence shows an
improved order of process steps—also shown arehtiee
different types of process steps previously disediss

— Sequential tasks (in green) shows Task B must be
completed before Task C as information on Task B is
required to do Task C.

— Parallel tasks (in blue) have no interaction wech
other and can be executed at the same time (eagksTA
and K can be done simultaneously after Task C).

— Coupled (in brown) tasks can be identified unigue
highlighting iteration and potential rework.

Process Architecture Resequenced

B C A K L J F I E D H G
| S
B \'\ Sequential

slcfxs_ .
g A )(I. Parallel
Slelx x! <
% L X X|. X XCoupIed
EliIx x  x|x .
8] F|x X .x4
=l X X X o
S|E X x |. X
%‘ D X X X .
o X X x| x .
4G |IX X .

Figure 8: Partitioned DSM and Sequence Type

Note the large iterative process (or coupled tagkghe
middle of the matrix in Figures 8 and 9. This itera
process can be further reduced to achieve a betteress
architecture by a method callegaring (see Figure 9).
Tearing marks in the DSM can break coupled blocks i
smaller ones or make them sequential.

Torn marks may become assumptions or controlsHer t
process. Torn marks are usually justified by good
assumptions that reduce risk of unwanted iteratibimis
requires a full understanding of relationships dfe t
interfacing elements. Adding controls in the pracds
another method to allow tearing of marks.

Tear to Reduce Size of Coupling

B CAKULJFIEDU HSG

8

clB - Sequencial

;%_ C X\‘:\/_ o Tear This Mark
nlA X: . I Parallel

2|« |x X, _ !

g L X Xf. X X Coupled
9 J X X XX .

gl r|x X . X 4
Sl «x X X .

=1 E X X . X
glo X X [x .
§ H X X x| x .
a¢ G |X X .
o

Figure 9: Partitioned DSM with Proposed Tearing
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Once a mark is torn, the large coupling that egigte
Figures 8 and 9 can be represented by two smaligyliangs
to allow a quicker overall process, as depicteligure 10.

Tearing Reducing Size of Coupling

B CAKTLJ JFIETDTHG
B \.\\ .
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Elafx x  x|x -

§ FIx X |- x

E I X XX -
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HL X X XL x -

DWG X X °

Figure 10: DSM with Tearing Effects

Process Architecture DSM Approach:

1. Select a process or sub-process to model.

2. ldentify the tasks of the process, identify who is
responsible, and determine the outputs created.

3. Lay out the square matrix with the tasks in theeord
they are nominally executed.

4. Ask the process experts what inputs are normakby us
for each task. Insert marks representing the
information inputs to each task.

5. ldentify the exceptional (unplanned) process flows
and the ways that the process can fail. Includeksnar
representing these unplanned iterations.

6. Analyze the DSM model to re-sequence tasks,
suggesting a new process by forcing marks below the
matrix diagonal.

7. Draw solid boxes around the coupled tasks
representing the task couplings (iterations).

8. Draw dashed boxes around groups of parallel
(uncoupled) tasks—opportunities for leaning out
process.

9. Highlight the unplanned iterations: risks

10. Further analyze by deep-diving the risks to deteemi
ways to minimize schedule risks.

In summary, the benefits of applying a Process ®d/as
follows:

— Visualizing processes or information flows

— Interface management representation

— A means of highlighting iteration and rework
— Enables “leaning” out processes

— Analyzing process cost, schedule, and risks
— A framework for knowledge management.

The next section goes in greater detail regarding t

application of static DSMs for both product/system
architecture (component-based DSM) and organization
(team/people-based DSM) and the analysis technique
typically used for managing system complexity.

Product Domain: System Architecture DSM

A definition of System Architecture is “The fundantal
organization of a system embodied in its componehtsr
relationships to each other and to the environmemd, the
principles guiding its design and evolution.” Aneth
definition is, “The arrangement of functional eler®into
physical modules which become the building bloaksthe
product of family of products.” [IEEE Std 1471-2Q00he
modules employ one of more functions. The intecacti
between modules should be well understood and et:fiA
modular architecture provides value in its simpjicand
reusability for a platform. System integration neeake
determined by the chosen decomposition and itsltiegu
architecture. We map the structure of interactionsrder to
plan for integration.

The system architecture DSM example employs an
automobile’s climate control system, as shown guFé 11.

System Architecture DSM Approach:

1. Decompose the system architecture into its comgsnen

2. Document the interactions between the components
using a DSM.

3. Cluster (integrate) the components into “chunks” or
subsystem modules.

Clustering is another technique for manipulatin®aM.
As seen with partitioning (i.e., re-sequencing)ttie task-
based DSM, the goal of partitioning was to rentier DSM
lower triangular as much as possible. The reasandua to
the significance of upper-diagonal marks, whichrespnted
feedback information flows. This situation arisesemever
the matrix elements represent a set of time-bakadents.
On the other hand, when the DSM elements reprefssign
components (i.e., a component-based DSM), the gfotile
matrix manipulation changes significantly from that
partitioning algorithms. The new goal becomes figdi
subsets of DSM elements (i.e., clusters or modutex)are
mutually exclusive or minimally interacting subsdi<.,
clusters as groups of elements that are intercéadesnong
themselves to an important extent while being elittl
connected to the rest of the system). This proisessferred
to asclustering.
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In other words, clusters absorb most, if not afl,ttoe
interactions internally, and the interactions ok$ between
separate clusters are eliminated or at least maeidi

VEHICLE INTERIOR ENGINE COMPARTMENT

EVAPORATOR
CASE CONDENSER

HEATER HOSES RAD|AT0H7

HEATER
CORE

ACTUATOR[
EVAPORATOR|
CORE

ONCOMING
AIR

BLOWER
CONTROLLER
BLOWER
MOTOR

ENGINE

LI COM

CUMULATOR

I—I

INTERIOR E
AIR

Figure 11: Automotive Climate Control System
Component Schematic

Step 2 requires documentation of all componentactéens,
beginning with a binary DSM.

A B CDETFGHI J KLMNOFP

Radiator A

Engine Fan

Heater Core

Heater Hoses
Condenser
Compressor
Evaporator Case
Evaporator Core
Accumulator
Refrigeration Controls
Air Controls

Sensors

Command Distribution
Actuators

Blower Controller O
Blower Motor P

Z2ZZ-rX"R~—-—IOTMMOO®

Figure 12: Preliminary Binary DSM

The next step is to classify and quantify the ixtéons
based on type of interaction (i.e., Spatial, Energy
Information, Material) and quantification of eacypé of
interaction (i.e., it could be a scale of -2 {deteintal to
system functionality} to 0 {does not affect funaiaity} up
to +2 {required for functionality}).

Analysis of the system architecture identifies fiomwal
modules and distributed subsystems. This knowlechye
support the formation of your IPTs and plans fosteg
integration. Figure 13 shows the final clusteredvD®r our
example. When clustering, one objective should be t
maximize internal interactions while minimizing extal
interactions for each module. Another objective mhe
clustering is to consider the size of your subsysteodule,
such that the modular chunk adds system value.
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Figure 13: Clustered I nteractions M atrix for
Automotive Climate Control Example

In summary, the following are insights gained frohe
application of a System (Product) Architecture DSM:

1) DSM is an effective representation for system
components and their relationships.

2) DSM can be analyzed by clustering (integration
analysis).

3) Integration analysis:
a) Can generate alternative views on system

architecture.

b) Help improve architectural understanding.
c¢) Facilitates architectural innovation.

4) Architecture DSMs also support the following

applications: interface management, functional
integration, portfolio segmentation, knowledge
capture.

The next section goes in greater detail regarding t
application to organizations (team/people-based D&k
the analysis technique typically used for managggtem
complexity.

Organization Domain: Organization DSM
Organizations are complex systems. An improved
understanding of these complex organizational gachires
enables their ability to innovate and continuousiyprove.
Organizational decomposition requires an undersatgndf
the elements and their relationships (interfaces).
Relationships among the elements are what give
organizations their added value. The greatest &geerin
organizational architecting is at the interfacesnyl barriers

A SYSTEMS ENGINEERING & INTERATION METHODOLOGY FOR COMPLEX SYSTEMS

Page 6 of 8



Proceedings of the 2010 Ground Vehicle Systemsreeging and Technology Symposium (GVSETS)

in system development programs are a result offatimg
problems or the organizations inability to integraeam
structures, which leads to either lack of commuiacaor
information  overload. Another problem complex
organizations face is how to design a project agmm
organization in a way that facilitates and motigatie
timely flow of appropriate information and regulate
information overload.

Organization Architecture DSM Approach:

1. Decompose the organization into elements or teams
with specific functions, roles, or assignmentsgibften
helpful to map teams to product subsystems,
components, etc.).

2. Document the interactions between the elements@ea
or people) using a DSM.

3. Cluster (integrate) the elements
elements (organizational modules).

into higher-level

Example: Automobile Engine Design Organization [7]

This next example will show how DSM can be used to
develop organizational team structures for improved
communications and systems integration.

This example was an engine development programMy G
Figure 14 shows the original organization breakdown
structure for this program.

New Engine System
Program

|
|

Induction
Subsystem Team

System/Program

Emissions &
Electrical
Subsystem Team

Short Block
Subsystem Team

Valve Train Engine Assembly

Subsystem Teams Subsystem Team

Engine Block Cylinder Heads Intake Manifold
Crankshaft CamshaftValve Train uel System
PDTs Flywheel Water Pump/Coolng Accessory Drive EVAP
Pistons Air Cleaner Ignition
Connecting Rods
Lubrication

Exhaust
EGR

AR
Throttle Body Electrical System

Figure 14: Organization Breakdown Structure

The matrix in Figure 15 shows the original orgatitaal
structure and the frequency of interactions of #mgine

Original Organizational Architecture
AFGDE 1 BCJKPHNOOQOLMRSTUV
EngineBlock Al A @ . o . ofle o o . . . . . ° .
CrankshaftF | e F e o o of« . .
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PistonsD| e ¢« . D of@ ¢ o . . .
ConnectingRods E| « o E of .
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Water Pump/Cooling J
Intake Manifold K | K'e
Fuel System p . e P. .
o
.
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AlLR.Of - . .
Throttle Body Q . o « . 0 . e . e
Exhaust L | - . e . .
E.G.R. M| - . .oe . . . e m e .

EVAP R .. . R
Ignition S| e e e . . e e . . e o e . s
ECM.T|. « . A I e o] - e e
Electrical Systemu| e . « . D . o . . o
Engine Assembly V| ® ® « o « o o +« + o o «

< o

Erequency of Team Interactions

® High(Daily) Average (Weekly) Low (Monthly)

Figure 15: Original Organizational Structure

Proposed Organizational Architecture
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Figure 16: Proposed Organization After Clustering

The matrix in Figure 16 shows the elements reagdr{gr

“clustered”) to minimize interactions outside oétproposed
structures. Note that the number of interactionguired
outside of the team structures has been significaetiuced.
Also note the overlapping of teams—requiring thattain
team members support multiple teams—and the foomati
an integration team.

This proposed organization significantly improvet$ i
communication and efficiency and its ability toeigtate the
engine system with the creation of the integrateam.

subsystem teams and product development teams (PDT)
structures. The subsystem teams are as followst blark

(in red), valve train (in green), induction (in ko), and
emissions/electrical (in blue).

Note the legend below the matrix, which describes t
frequency of interactions between the system elésnéine
largest dot depicts daily interactions, the medisize dot
depicts weekly interactions, and the smallest dptasents
monthly interactions. Also note the number of iat#ions
outside of the team structure and lack of a formal
mechanism to ensure communication and integratfcthe
system formally within the current team structures.
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SUMMARY AND FINAL REMARKS

The DSM methodology supports a major need in
engineering design and management of complex sgstem
The method provides a visually powerful means for
capturing, communicating, and organizing enginggrin
design activities and architectural issues sugtraject team
structures and system architecture.

This paper provides an introduction to the DSM rodths
an alternative approach to classical project mamage
techniques for managing complex systems developriéet
method is useful by simply building and inspectitige
DSM, and even without further analysis, building>&M
model of a project/system improves visibility and
understanding of project/system complexity. Wita tise of
a DSM model, one can more easily convey the protess
others in a single picture (matrix).

This paper introduced the power of DSM by presentie
application in the three key domains in system glesi
development, and management. DSMs have been ajpplied
numerous industries including automotive designosmace
design processes, building construction, micropsce
development, telecom, electronics, and some myjlitar
applications (e.g., U.S. Air Force and U.S. Navy).
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