
2010 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM
SYSTEMS ENGINEERING & INTEGRATION (SE&I) MINI-SYMPOSIUM

AUGUST 17–19, DEARBORN, MICHIGAN

A SYSTEMS ENGINEERING & INTEGRATION METHODOLOGY FOR
COMPLEX SYSTEMS

Frederick P. Samson

Associate
Booz Allen Hamilton

Troy, MI 48084

 Troy Peterson
Senior Associate

Booz Allen Hamilton
Troy, MI 48084

ABSTRACT
Understanding the intricacy of a complex system is a major challenge in today’s highly dynamic

environment. In addition, managing the lifecycle processes and schedule risks of these complex systems adds to
the challenge of achieving program objectives. Complexity is ever present in today’s military system of systems
architectures, acquisition lifecycle management processes, and supporting organizational structures. This
complexity is often an impediment to the successful development, integration, and transition of capability gap-
closing technologies to support our Warfighters’ needs. Over the years, methods to reduce system complexity
have taken many forms. The Design Structure Matrix (DSM) is one methodology that has proven very effective in
the analysis, management, and integration of complex system architectures, organizational structures, and
densely networked processes. DSM enables the user to model, visualize, and analyze the dependencies among
the entities of any system—and derive suggestions for system optimization.

INTRODUCTION

The intent of this paper is to introduce Design Structure
Matrix (DSM), a simple and insightful yet powerful Systems
Engineering and Integration (SE&I) methodology for
managing and developing complex systems. DSM is a
matrix-based system modeling methodology that may be
applied to the three critical domains in design and
development of systems: product (Product Breakdown
Structure), process (Work Breakdown Structure), and
organization (Organizational Breakdown Structure).
Delivering successful complex systems design and
management through the use of DSM requires a deep
understanding of system element interactions. DSM can
assist by providing a compact and clear representation of a
complex system and a capture method for the interactions,
interdependencies, and interfaces between system elements.

This paper will address several applications of DSM to
optimize system structures (architectures) in the domains
mentioned above. It will also specifically address task-based
DSMs (Process Architecture), component-based DSMs
(System Architecture), and team-based DSMs
(Organizational Architecture).

BACKGROUND
The use of matrices in system modeling can be traced back

to the 1960s and ’70s with Donald Stewart and John
Warfield. However, it wasn’t until the 1990s that the method
received widespread attention. Much of the credit in its
current popularity is accredited to MIT’s research in the
design process modeling arena by Dr. Steven Eppinger.

DSM—also known as the dependency structure matrix,
dependency source matrix, and dependency structure
method—is a square matrix that shows relationships
between elements within a system. Since the behavior and
value of many systems is largely determined by interactions
between its elements, DSMs have become increasingly
useful and important in recent years.

The DSM is related to other square-matrix–based methods,
such as: a dependency map, a precedence matrix, a
contribution matrix, an adjacency matrix, a reachability
matrix, and an N-square diagram, and also related to non-
matrix–based methods such as directed graphs, systems of
equations, and architecture diagrams and other dependency
models.

Relative to other system modeling methods, DSM has two
main advantages that differentiate it from the others:

Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

 A SYSTEMS ENGINEERING & INTEGRATION METHODOLOGY FOR COMPLEX SYSTEMS

Page 2 of 8

• DSM provides a simple and concise way to
represent a complex system.

• DSM is capable of powerful analyses techniques—
which will be discussed in subsequent sections of
this paper.

UNDERSTANDING COMPLEXITY

The key to understanding and managing complexity is
through system decomposition. Figure 1 may represent the
decomposition of a complex:
– System into subsystems and components
– Process into subprocesses and tasks
– Organization into teams and individuals.

Figure 1: Decomposition of a System

The relationship or pattern of interactions between the
decomposed elements defines the architecture:
– System architecture
– Process architecture
– Organization architecture.

Figure 2: Decomposed Simple Architecture

Note the simple architecture in Figure 2 compared to the
complex architecture in Figure 3. This is evident by the lack
of pattern in the interactions between the lowest level
elements of the system.

Figure 3: Decomposed Complex Architecture

DESIGN STRUCTURE MATRIX
There are two major types of DSMs: static (relationships

between the system elements are not time-based) and
temporal (relationships between the system elements are
time-based). [2] For that reason, they are analyzed
differently. Static DSMs are analyzed by clustering elements
of the matrix, and temporal DSMs are analyzed by
sequencing elements of the matrix.

The general DSM modeling approach consists of the

following steps:
1) Define the system boundary
2) Describe important interfaces
3) Decompose the system into simpler elements
4) Define the characteristics of the elements
5) Characterize the element interactions
6) Analyze the system architecture (structure):

a) System model behaviors
b) Potential element arrangements/integrations.

In the next section, we will go into greater detail regarding

the use of DSM for managing complex projects (task-based
DSM).

Process Domain: Task-Based DSM
Before we introduce the use of the DSM method of

analysis for program management tasks, we will briefly
discuss the three possible types of task sequences.

Consider a system (or project) consisting of two elements
(or tasks): Task A and Task B. As illustrated in Figure 4,
there are three basic sequences for describing the
relationship between the tasks: sequential (or dependent
tasks), parallel (or independent tasks), or coupled (or
interdependent tasks).

Three Possible Sequences for Two Tasks

Sequence Type Parallel Sequential Coupled

Graphic

Representation

Relationship Independent Dependent Interdependent

Figure 4: Task Sequences and their Relationships

Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

 A SYSTEMS ENGINEERING & INTEGRATION METHODOLOGY FOR COMPLEX SYSTEMS

Page 3 of 8

The matrix representation of the task sequences in Figure 4
is shown in Figure 5. The matrix layout is as follows: The
system elements are placed down the side of the matrix as
row names and across the top as column headings in the
same order. If there is an interaction, it is marked with an X,
and if there is no interaction, it is left empty. In a matrix
representation of a system, the diagonal of the matrix does
not assist in describing the system.

Figure 5: DSM Representation of Task Sequences

As shown in Figure 5, because there are no interactions in

the first matrix, they are independent of each other; thus, the
tasks can be done in parallel (or concurrently). In the second
matrix, Task B is dependent on information from Task A;
therefore, the task sequence should be to complete Task A
prior to Task B. Lastly, in the third matrix, Task B depends
on Task A. However, Task A also depends on information
provided by Task B, which makes them interdependent
(coupled), which typically results in iteration.

Product or system development is fundamentally iterative,
yet iterations are hidden. Iteration is the repetition of tasks
due to the availability of new information. For example:

– Changes in input information (upstream)
– Update of shared assumptions (concurrent)
– Discovery of errors (downstream).

Engineering activities are repeated to improve product

quality and/or to reduce cost. To understand and accelerate
iterations requires:

– Visibility of iterative information flows
– Understanding of the inherent process coupling.

A task-based DSM can also be considered an information

exchange model. Figure 6 is an example of a task-based
DSM; this can represent any project plan in the order of its
development sequence

DSM Used for Managing Complex Projects
The DSM is constructed in the following manner:

Each task or process step (in our example, letters) is listed in
the order of its development sequence along the side and top.
The X’s in the matrix represent an information exchange (or
interaction) between the tasks, or process steps.

The DSM is read in the following manner: (1) Focus on
the vertical blue line aligned with Task B, and follow the
arrow to see that Task B transfers information to Tasks C, F,

G, J, and K; (2) Focus on the red horizontal line with Task
D; Task D requires information from Tasks E, F, and L.
Note that information flows are easier to capture than work
flows and that inputs (blue lines) are easier to capture than
outputs (red lines).

Interpretation:

•Task B transfers information to tasks C, F, G, J, and K

•Task D requires information from tasks E, F, and L

C

D

A

B

G

H

E

F

K

L

I

J

C DA B G HE F K LI J

•

•

•

•

•

•

•

•

•

•

•

•

D
ev

el
op

m
en

t P
ro

ce
ss

 (T
as

k)
 S

eq
ue

nc
e

Original Process Architecture

Figure 6: Task-Based DSM (Original Sequence)

Figure 7 shows the direction of information flows provided

initially in Figure 6 with the upper and lower diagonal
sections of the matrix. Information exchange in the upper
half of the matrix represents feedback of information that
cause process iteration and are sometimes undesirable but
sometimes necessary for system optimization. Information
exchange in the lower diagonal is desirable, meaning that it
should not cause iteration.

Note that each X above the diagonal represents a potential
area of iteration and rework resulting in workforce
inefficiency. The key is to reorder the tasks such that the
number of X’s above the diagonal is minimized for risk
mitigation.

Note that this convention in some literature shows
feedbacks below the triangular and feed-forward of
information flows above the diagonal. This is just using the
transpose of the matrix. As long a consistent approach is
used, the two conventions convey the equivalent
information.

Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

 A SYSTEMS ENGINEERING & INTEGRATION METHODOLOGY FOR COMPLEX SYSTEMS

Page 4 of 8

Interpretation:

� Interactions above the diagonal feeds information back to

previous tasks; potential for iteration / rework

� Interactions below the diagonal feeds information forward

C

D

A

B

G

H

E

F

K

L

I

J

C DA B G HE F K LI J

•

•

•

•

•

•

•

•

•

•

•

•

Feed Forward

Feedback

D
ev

el
op

m
en

t P
ro

ce
ss

 (T
as

k)
 S

eq
ue

nc
e

Original Process Architecture

Figure 7: Information Flows

The visualization and analysis depicted in Figures 6 and 7

of the product lifecycle provides insight into the program or
system complexity.

Analysis Technique for Process DSMs
Partitioning is the re-sequencing or reordering of the DSM

rows and columns such that the new DSM arrangement does
not contain any feedback marks in the upper diagonal, thus
transforming the DSM into a lower triangular form. For
complex engineering systems, it is highly unlikely that
simple row and column manipulation will result in a lower
triangular form. Therefore, the analyst’s objective changes
from eliminating the feedback marks to moving them as
close as possible to the diagonal (this form of the matrix is
known as block triangular).

In Figure 8, the development sequence provided in Figures
6 and 7 was partitioned (or re-sequenced) to minimize the
marks in the upper triangle of the matrix. After
partitioning—the new development sequence shows an
improved order of process steps—also shown are the three
different types of process steps previously discussed:

– Sequential tasks (in green) shows Task B must be
completed before Task C as information on Task B is
required to do Task C.

– Parallel tasks (in blue) have no interaction with each
other and can be executed at the same time (e.g., Tasks A
and K can be done simultaneously after Task C).

– Coupled (in brown) tasks can be identified uniquely,
highlighting iteration and potential rework.

D
ev

el
op

m
en

t P
ro

ce
ss

 (T
as

k)
 S

eq
ue

nc
e C

D

A

B

G

H

E

F

K

L

I

J

C DAB GHEFK L IJ

Sequential

Parallel

Coupled

•
•

•
•

•
•

•
•

•
•

•
•

Process Architecture Resequenced

Figure 8: Partitioned DSM and Sequence Type

Note the large iterative process (or coupled tasks) in the

middle of the matrix in Figures 8 and 9. This iterative
process can be further reduced to achieve a better process
architecture by a method called tearing (see Figure 9).
Tearing marks in the DSM can break coupled blocks into
smaller ones or make them sequential.

Torn marks may become assumptions or controls for the
process. Torn marks are usually justified by good
assumptions that reduce risk of unwanted iteration. This
requires a full understanding of relationships of the
interfacing elements. Adding controls in the process is
another method to allow tearing of marks.

C

D

A

B

G

H

E

F

K

L

I

J

C DAB GHEFK L IJ

Sequencial

Parallel

Coupled

•
•

•
•

•
•

•
•

•
•

•
•

Tear This Mark

D
ev

el
op

m
en

t
P

ro
ce

ss
 (

T
as

k)

S
eq

ue
nc

e

Tear to Reduce Size of Coupling

Figure 9: Partitioned DSM with Proposed Tearing

Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

 A SYSTEMS ENGINEERING & INTEGRATION METHODOLOGY FOR COMPLEX SYSTEMS

Page 5 of 8

Once a mark is torn, the large coupling that existed in
Figures 8 and 9 can be represented by two smaller couplings
to allow a quicker overall process, as depicted in Figure 10.

C

D

A

B

G

H

E

F

K

L

I

J

C DAB GHEFK L IJ

Series

Parallel

Coupled

•

•

•

•

•

•

•

•

•

•

•

•

Control

D
ev

el
op

m
en

t P
ro

ce
ss

 (T
as

k)
 S

eq
ue

nc
e

Tearing Reducing Size of Coupling

Figure 10: DSM with Tearing Effects

Process Architecture DSM Approach:
1. Select a process or sub-process to model.
2. Identify the tasks of the process, identify who is

responsible, and determine the outputs created.
3. Lay out the square matrix with the tasks in the order

they are nominally executed.
4. Ask the process experts what inputs are normally used

for each task. Insert marks representing the
information inputs to each task.

5. Identify the exceptional (unplanned) process flows
and the ways that the process can fail. Include marks
representing these unplanned iterations.

6. Analyze the DSM model to re-sequence tasks,
suggesting a new process by forcing marks below the
matrix diagonal.

7. Draw solid boxes around the coupled tasks
representing the task couplings (iterations).

8. Draw dashed boxes around groups of parallel
(uncoupled) tasks—opportunities for leaning out
process.

9. Highlight the unplanned iterations: risks
10. Further analyze by deep-diving the risks to determine

ways to minimize schedule risks.

In summary, the benefits of applying a Process DSM are as

follows:
– Visualizing processes or information flows
– Interface management representation

– A means of highlighting iteration and rework
– Enables “leaning” out processes
– Analyzing process cost, schedule, and risks
– A framework for knowledge management.

The next section goes in greater detail regarding the

application of static DSMs for both product/system
architecture (component-based DSM) and organization
(team/people-based DSM) and the analysis technique
typically used for managing system complexity.

Product Domain: System Architecture DSM
A definition of System Architecture is “The fundamental

organization of a system embodied in its components, their
relationships to each other and to the environment, and the
principles guiding its design and evolution.” Another
definition is, “The arrangement of functional elements into
physical modules which become the building blocks for the
product of family of products.” [IEEE Std 1471-2000] The
modules employ one of more functions. The interaction
between modules should be well understood and defined. A
modular architecture provides value in its simplicity and
reusability for a platform. System integration needs are
determined by the chosen decomposition and its resulting
architecture. We map the structure of interactions in order to
plan for integration.

The system architecture DSM example employs an
automobile’s climate control system, as shown in Figure 11.

System Architecture DSM Approach:
1. Decompose the system architecture into its components.
2. Document the interactions between the components

using a DSM.
3. Cluster (integrate) the components into “chunks” or

subsystem modules.

Clustering is another technique for manipulating a DSM.
As seen with partitioning (i.e., re-sequencing) in the task-
based DSM, the goal of partitioning was to render the DSM
lower triangular as much as possible. The reason was due to
the significance of upper-diagonal marks, which represented
feedback information flows. This situation arises whenever
the matrix elements represent a set of time-based elements.
On the other hand, when the DSM elements represent design
components (i.e., a component-based DSM), the goal of the
matrix manipulation changes significantly from that of
partitioning algorithms. The new goal becomes finding
subsets of DSM elements (i.e., clusters or modules) that are
mutually exclusive or minimally interacting subsets (i.e.,
clusters as groups of elements that are interconnected among
themselves to an important extent while being little
connected to the rest of the system). This process is referred
to as clustering.

Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

 A SYSTEMS ENGINEERING & INTEGRATION METHODOLOGY FOR COMPLEX SYSTEMS

Page 6 of 8

In other words, clusters absorb most, if not all, of the
interactions internally, and the interactions or links between
separate clusters are eliminated or at least minimized.

Figure 11: Automotive Climate Control System
Component Schematic

Step 2 requires documentation of all component interactions,
beginning with a binary DSM.

A B C D E F G H I J K L M N O P

Radiator A A X X

Engine Fan B X B X X

Heater Core C C X X X X

Heater Hoses D X D X

Condenser E X X E X X

Compressor F X F X X X X X

Evaporator Case G X G X X X X

Evaporator Core H X X X X H X X

Accumulator I X X X I X

Refrigeration Controls J X X J X X

Air Controls K X X K X X X X

Sensors L X L X

Command Distribution M X X X X X M X X X

Actuators N X X X N

Blower Controller O X X X O X

Blower Motor P X X X X X P

Figure 12: Preliminary Binary DSM

The next step is to classify and quantify the interactions
based on type of interaction (i.e., Spatial, Energy,
Information, Material) and quantification of each type of
interaction (i.e., it could be a scale of -2 {detrimental to
system functionality} to 0 {does not affect functionality} up
to +2 {required for functionality}).

Analysis of the system architecture identifies functional
modules and distributed subsystems. This knowledge can
support the formation of your IPTs and plans for system
integration. Figure 13 shows the final clustered DSM for our
example. When clustering, one objective should be to
maximize internal interactions while minimizing external
interactions for each module. Another objective when
clustering is to consider the size of your subsystem module,
such that the modular chunk adds system value.

Figure 13: Clustered Interactions Matrix for
Automotive Climate Control Example

In summary, the following are insights gained from the

application of a System (Product) Architecture DSM:
1) DSM is an effective representation for system

components and their relationships.
2) DSM can be analyzed by clustering (integration

analysis).
3) Integration analysis:

a) Can generate alternative views on system
architecture.

b) Help improve architectural understanding.
c) Facilitates architectural innovation.

4) Architecture DSMs also support the following
applications: interface management, functional
integration, portfolio segmentation, knowledge
capture.

The next section goes in greater detail regarding the

application to organizations (team/people-based DSM) and
the analysis technique typically used for managing system
complexity.

Organization Domain: Organization DSM

Organizations are complex systems. An improved
understanding of these complex organizational architectures
enables their ability to innovate and continuously improve.
Organizational decomposition requires an understanding of
the elements and their relationships (interfaces).
Relationships among the elements are what give
organizations their added value. The greatest leverage in
organizational architecting is at the interfaces. Many barriers

Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

 A SYSTEMS ENGINEERING & INTEGRATION METHODOLOGY FOR COMPLEX SYSTEMS

Page 7 of 8

in system development programs are a result of interfacing
problems or the organizations inability to integrate team
structures, which leads to either lack of communication or
information overload. Another problem complex
organizations face is how to design a project or program
organization in a way that facilitates and motivates the
timely flow of appropriate information and regulates
information overload.

Organization Architecture DSM Approach:
1. Decompose the organization into elements or teams

with specific functions, roles, or assignments (it is often
helpful to map teams to product subsystems,
components, etc.).

2. Document the interactions between the elements (teams
or people) using a DSM.

3. Cluster (integrate) the elements into higher-level
elements (organizational modules).

Example: Automobile Engine Design Organization [7]
This next example will show how DSM can be used to
develop organizational team structures for improved
communications and systems integration.

This example was an engine development program by GM.
Figure 14 shows the original organization breakdown
structure for this program.

New Engine System
Program

Short Block
Subsystem Team

Valve Train
Subsystem Team

Induction
Subsystem Team

Emissions &
Electrical

Subsystem Team

Engine Assembly

Engine Block
Crankshaft
Flywheel
Pistons

Connecting Rods
Lubrication

Cylinder Heads
Camshaft/Valve Train
Water Pump/Cooling

Intake Manifold
Fuel System

Accessory Drive
Air Cleaner

AIR
Throttle Body

Exhaust
EGR
EVAP

Ignition
ECM

Electrical System

System/Program

Subsystem Teams

PDTs

Figure 14: Organization Breakdown Structure

The matrix in Figure 15 shows the original organizational
structure and the frequency of interactions of the engine
subsystem teams and product development teams (PDT)
structures. The subsystem teams are as follows: short block
(in red), valve train (in green), induction (in brown), and
emissions/electrical (in blue).

Note the legend below the matrix, which describes the
frequency of interactions between the system elements; the
largest dot depicts daily interactions, the medium size dot
depicts weekly interactions, and the smallest dot represents
monthly interactions. Also note the number of interactions
outside of the team structure and lack of a formal
mechanism to ensure communication and integration of the
system formally within the current team structures.

Original Organizational Architecture

• • • • • •
Air Cleaner N • • • • N • • •

A.I.R. O • • • • • • O • • • • • •
Throttle Body Q • • • • • • • Q • • • • •

Exhaust L • • • • • • • • • L • • • • •
E.G.R. M • • • • • • • • • M • • • •
EVAP R • • • R • •

Ignition

A F G D E I B C J K P H N O Q L M R S T U V
Engine Block A A • • • • • • • • • • • • • • •

Crankshaft F • F • • • • • • • • • • •
Flywheel G • • G • • •

Pistons D • • • D • • • • • • • • •
Connecting Rods E • • • E • • • •

Lubrication I • • • • • I • • • • • • • •
Cylinder Heads B • • • • B • • • • • • • • • • • •

Camshaft/Valve Train C • • • • • C • • • • •
Water Pump/Cooling J • • • • • J • • • • • • • •

Intake Manifold K • • • • • K • • • • • • • • • • •
Fuel System P • • • P • • • • • • • •

Accessory Drive H • • • • • • • • H • • • •

S • • • • • • • • • • • • • • S • • •
E.C.M. T • • • • • • • • • • • • • • • • T • •

Electrical System U • • • • • • • • • • • • • • • • • U •
Engine Assembly V • V

Frequency of Team Interactions

• High (Daily) • Average (Weekly) • Low (Monthly)

Figure 15: Original Organizational Structure

Proposed Organizational Architecture
F G E D I A C B K J P N Q R B K O L M H S T U V

Crankshaft F F • • • • • • • • • • • •

Flywheel G • G • • • •

Connecting Rods E • E • • • • • •

Pistons D • • • D • • • • • • • • •
Lubrication I • • • • I • • • • • • • • •

Engine Block A • • • • • A • • • • • • • • • •

Camshaft/Valve Train C • • • • C • • • • • •

Cylinder Heads B1 • • • • • B1 • • • • • •
Intake Manifold K1 • • • • K1 • • • • •

Water Pump/Cooling J • • • • • • J • • • • • • • • •

Fuel System P • P • • • • • • • • • •

Air Cleaner N • N • • • • • •
Throttle Body Q • • • Q • • • • • • • • •

EVAP R • • R • • •

Cylinder Heads B2 • • • B2 • • • • • • • •
Intake Manifold K2 • • • • • • K2 • • • • • • •

A.I.R. O • • • • • • O • • • • • •

Exhaust L • • • • • • • • L • • • • • •

E.G.R. M • • • • • • • • M • • • • •

Accessory Drive H • • • • • • • • • • • • • • • • H • • • •

Ignition S • • • • • • • • • • • • • • • • S • • •
E.C.M. T • • • • • • • • • • • • • • • • • • T • •

Electrical System U • • • • • • • • • • • • • • • • • • • U •
Engine Assembly V • V

Team 1

Team 2

Team 3

Team 4

Integration
Team

F G E D I A C B K J P N Q R B K O L M H S T U V
Crankshaft F F • • • • • • • • • • • •

Flywheel G • G • • • •

Connecting Rods E • E • • • • • •

Pistons D • • • D • • • • • • • • •
Lubrication I • • • • I • • • • • • • • •

Engine Block A • • • • • A • • • • • • • • • •

Camshaft/Valve Train C • • • • C • • • • • •

Cylinder Heads B1 • • • • • B1 • • • • • •
Intake Manifold K1 • • • • K1 • • • • •

Water Pump/Cooling J • • • • • • J • • • • • • • • •

Fuel System P • P • • • • • • • • • •

Air Cleaner N • N • • • • • •
Throttle Body Q • • • Q • • • • • • •

Team 4

Team 1

Frequency of Team Interactions

• High (Daily) • Average (Weekly) • Low (Monthly)

Figure 16: Proposed Organization After Clustering

The matrix in Figure 16 shows the elements rearranged (or
“clustered”) to minimize interactions outside of the proposed
structures. Note that the number of interactions required
outside of the team structures has been significantly reduced.
Also note the overlapping of teams—requiring that certain
team members support multiple teams—and the formation of
an integration team.

This proposed organization significantly improved its
communication and efficiency and its ability to integrate the
engine system with the creation of the integration team.

Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

 A SYSTEMS ENGINEERING & INTEGRATION METHODOLOGY FOR COMPLEX SYSTEMS

Page 8 of 8

SUMMARY AND FINAL REMARKS
The DSM methodology supports a major need in

engineering design and management of complex systems.
The method provides a visually powerful means for
capturing, communicating, and organizing engineering
design activities and architectural issues such as project team
structures and system architecture.

This paper provides an introduction to the DSM method as
an alternative approach to classical project management
techniques for managing complex systems development. The
method is useful by simply building and inspecting the
DSM, and even without further analysis, building a DSM
model of a project/system improves visibility and
understanding of project/system complexity. With the use of
a DSM model, one can more easily convey the process to
others in a single picture (matrix).

This paper introduced the power of DSM by presenting the
application in the three key domains in system design,
development, and management. DSMs have been applied in
numerous industries including automotive design, aerospace
design processes, building construction, microprocessor
development, telecom, electronics, and some military
applications (e.g., U.S. Air Force and U.S. Navy).

REFERENCES
[1] Browning, T. & Eppinger, S., “Modeling Impacts of

Process Architecture on Cost and Schedule Risk in
Product Development,” IEEE Trans. on Eng. Mangt,
49(4): 428-442, 2002.

[2] Browning, T. “Applying the Design Structure Matrix to
System Decomposition and Integration problems: A
Review and New Directions.” IEEE Transactions on
Engineering management, Vol. 48, No. 3, August 2001.

[3] Browning, Tyson R., "Use of Dependency Structure
Matrices for Product Development Cycle Time
Reduction", Proceedings of the Fifth ISPE International
Conference on Concurrent Engineering: Research and
Applications, Tokyo, Japan, July 15-17, 1998c, pp. 89-96

[4] Carrascosa, Maria, Eppinger, Steven D. and Whitney,
Daniel E., "Using the Design Structure Matrix to
Estimate Product Development Time", Proceedings of
the ASME Design Engineering Technical Conferences
Atlanta, GA, Sept. 13-16, 1998.

[5] Eppinger, S., “Innovation at the Speed of Innovation,”
Harvard Business Review, Vol. 79, pp. 149-158, 2001.

[6] Eppinger, S.D., Whitney, D.E., Smith, R.P., and Gebala,
D.A. “A Model-Based Method for Organizing Tasks in
Product Development.” Research in Engineering Design,
Vol. 6, pp. 1-13, 1994.

[7] McCord, K.R. and Eppinger, S.D. Managing the
Integration Problem in Concurrent Engineering. M.I.T.
Sloan School of Management, Cambridge, MA, Working
Paper no.3594, 1993.

[8] Pimmler, T.U. and Eppinger, S.D. “Integration Analysis
of Product Decompositions.” In Proceedings of the
ASME Sixth International Conference on Design Theory
and Methodology, Minneapolis, MN, Sept., 1994.

[9] Rinkevich, D. and Samson, F. P., “An Improved
Powertrain Attributes Development Process With the
Use of Design Structure Matrix”, MIT Master’s Thesis,
Cambridge, MA, Feb. 2004

[9] Sharman, D. and Yassine, A., "Characterizing Complex
Product Architectures," Systems Engineering,
Forthcoming, 2004.

[9] Smith, Robert and Eppinger, Steven, “Identifying
Controlling Features of Engineering Design Iteration,
Management Science, vol. 43, no. 3, pp. 276-293, March
1997.

[9] Steward, D.V. “The Design Structure System: A Method
for Managing the Design of Complex Systems.” IEEE
Transactions on Engineering Management, Vol. 28, pp.
71-74, 1981.

[10] Ulrich, K.T. and Eppinger, Steven D., “Product Design
and Development,” McGraw-Hill, New York, 1995 (1st
edition) and 2000 (2nd edition).

[11] Warfield, John N., "Binary Matrices in System
Modeling" IEEE Transactions on Systems, Man, and
Cybernetics, vol. 3, pp. 441-449, 1973.

[12] Yassine, A., Falkenburg, D., and Chelst, K.
“Engineering Design Management: An Information
Structure Approach.” International Journal of Production
Research, Vol. 37, no. 19, pp. 2957-2975, 1999.

[13] Yassine, A., Whitney, D., Lavine, J. and Zambito, T.,
"DO-IT-RIGHT-FIRST-TIME (DRFT) Approach to
Design Structure Matrix (DSM) Restructuring",
Proceedings of the 12th International Conference on
Design Theory and Methodology (DTM 2000),
September 10-13, 2000 Baltimore, Maryland, USA.

[14] Yu, T., Yassine, A., and Goldberg, D., "A Genetic
Algorithm for Developing Modular Product
Architectures," Proceedings from the 2003 ASME
International Design Engineering Technical Conference,
15th International Conference on Design Theory &
Methodology, September 2-6, 2003. Chicago, Illinois.

[15] Yassine, A., “An Introduction to Modeling and
Analyzing Complex Product Development Processes
Using the Design Structure Matrix (DSM) Method”,
University of Illinois at Urbana-Champain

