
2012 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY

SYMPOSIUM
SYSTEMS ENGINEERING AND INTEGRATION (SE) MINI-SYMPOSIUM

AUGUST 14-16, MICHIGAN

Challenges Faced By System Integrators: From a System Simulation
Approach

Karthikeyan Radhakrishnan

Ramesh Padmanaban
Ravindra Paike

Hari Vijay
LMS International

Troy, MI

ABSTRACT
In today’s competitive market, OEMs are racing towards developing more efficient

vehicles without sacrificing on its performance. In this process, they’re forced to evaluate new

technologies and designs in various subsystems. Most of the sub-systems today have become

“intelligent”, which means that the controllers have become quintessential for the system’s

behavior. Equally important are the physical behavior of the plant that needs to be controlled.

These two independent groups have their own design and development cycle and the challenge for

the companies have been in bridging the gap so as to identify potential failure modes. This paper

discusses an Architecture-driven Model Based Development process that can address the

challenges posed during the development. Three key enabling technologies – Imagine.Lab System

Synthesis, Imagine.Lab SysDM & Imagine.Lab AMESim are leveraged in this process.

INTRODUCTION
Embedded systems in commercial and military vehicles

are becoming increasingly complex in the functionality they

support. Safety and security are very critical. Innovative

approaches are needed to develop such systems efficiently

without compromising on quality. A growing trend in

development of complex embedded systems is the use of

model-based development (MBD) techniques. MBD

involves capturing the behavior of physical system as

mathematical models that can be used for analysis,

optimization, and verification and validation against desired

functionality. MBD has proven effective in reducing

development time and increasing product quality &

reliability. MBD supported by CAE tools facilitates early

V&V before the mechanical and electronic hardware

become available.

A growing trend in model-based development of systems

is that development has moved from being practiced by

single or small group to large and globally distributed groups

working in production environment. The processes, tools

and work products continuously evolve during the

development. Integration of different aspects/parts and re-

usability of a work product becomes a challenge. MBD is

focused on authoring, analyzing and simulating behavioral

models. While this is essential for development, they prove

incapable of addressing larger needs such as model & data

sharing between plant and controller development cycles,

variation management etc.

Figure 1: Concurrent Development Cycles

This leads to the idea of Architecture Driven Development

(ADD), underpinning description of a system, with variant

management built around this architecture and use of an

Proceedings of the 2012 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Challenges Faced By System Integrators: From a System Simulation Approach

Page 2 of 6

effective tools/platform for model & data sharing, role based

access control, intuitive retrieval, version tracking, etc. from

a system simulation perspective.

In this paper we discuss the challenges faced during the

development of large systems. Section 2 describes some of

the challenges faced in the areas of model management, data

management, knowledge management, variant management

and system integration. Section 3 describes processes and

tool chain that can help in addressing the challenges

described in section 2. Section 4 describes a case study and

finally concludes in section 5.

CHALLENGES
 Following are some of the challenges in the development

process,

Figure 2: Challenges

1. Change Management – Many of the modern

systems are large and involve big and globally

distributed teams. The final product keeps changing

throughout the life cycle. While we know MBD is

necessary ingredient in any development, managing

the change in work product is a big challenge. The

change can be caused due to multiple reasons. Once

the changes are made then it is important to convey

the changes to the appropriate set of users at the

right time. Another dimension of the change

management is keeping track of intricate

dependencies between model and data files.

Figure 3: Change Management Challenge

2. Traceability and Re-use – As the complexity of

engineered system grows thus grows the

involvement of large, global and distributed teams

of engineers. Another dimension of the traceability

is keeping track of dependencies between model

and data files. Distributed development makes it

really challenging to trace and re-use core artifacts

across various vehicle programs.

Figure 4: Traceability Challenge

3. Scalability and Share – Traditionally control system

development used to happen after physical system

development but to enable early Verification &

Validation (V&V) in development phase and

reduce the development time, most of the OEM’s

are frontloading the controls development through

MBD. In recent times physical system and control

system are developed concurrently in order to speed

up the development time. In this case challenge for

the company is to develop scalable models and to

share these models across team. Early V&V leads

in identifying design issues earlier in the

development phase and increase the design

confidence.

Proceedings of the 2012 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Challenges Faced By System Integrators: From a System Simulation Approach

Page 3 of 6

4. Openness and Efficiency – To facilitate the testing

of the system at different stages in the V cycle

models needs to work with different tools. A

significant challenge then it becomes in managing

the models from various domain specialized tools

across the enterprise.

5. Time and Resource intensive System Integration –

In Industry, due to complexity of the large system

and to reduce the development time, systems are

often decomposed into logical units whose

development is then distributed across multiple

teams and integrated at a later stage. For example,

in the automotive industry, the engine system

development is distributed in terms of some

actuators such as the Electronic Throttle, Fueling

System, the torque production system etc.

Specifications for the smaller components should

be well developed otherwise this will lead to

system integrator spending large amount of time

bothering with low-level implementation details

instead focusing on system behavior. System

integration problems could be very expensive to

resolve at later stage in the development.

Next section describes by adopting Architecture Driven

Development (ADD) methodology/process challenges of,

a. Seamless interface between plant and controls

group can be addressed.

b. Time and Resource intensive System Integration

can be addressed.

ARCHITECTURE DRIVEN DEVELOPMENT (ADD)
APPROACH

System architecture is essentially the classification of the

system defined by the hierarchy of subsystems, the

interfaces and the connectivity between subsystems.

Architecture may be elaborated with many additional

properties, such as functional behavior, associated

requirements, data, documents, etc. which can be used at

different stages in the development lifecycle for different

purposes. However, the essence of the architecture will

provide the base information that enables consistency

through the development lifecycle, and addresses the

challenges described in section 2 above.

The ADD approach usually consists of two major

activities. First the system architecture needs to be defined

and functional models (Executable Specifications) be

developed that are consistent with the system architecture.

Second the functional models should be integrated with the

architecture in a plug and play mode for various types of

simulations.

Figure 5: ADD Approach

The following sequence of steps is essential in

implementing Architectural Driven Model Based

Development:

1. Architecture Creation - The first key step is to

develop the system architecture. The architecture is

topology of the system describing the structural

hierarchy of the subsystems/components, their

interfaces and connections. Several stakeholders are

involved in this step – System Architect, Domain

specialist (Plant Modelers), Control engineers,

Software engineers, System Analyst and Managers.

Based on the end goal, of the type of simulations

that would be performed by the System Analyst, a

comprehensive set of interfaces (mechanical ports,

thermal ports, control ports) are defined. This

architecture can then be used to communicate the

integration requirements to the teams who are

responsible for individual components in the

system.

2. Build Component Functional Model – Modular

component model needs to be developed over a

period of time to enable maximum re-use and have

to be stored in a centralized repository which is

accessible to all the engineers. For efficient

reusability of those component models, the

engineers will add standardized set of metadata

attributes. The engineers should be able to perform

the search on the repository based on these

metadata attributes and system characteristics

(Interfaces, Hierarchy etc.). To develop the

Proceedings of the 2012 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Challenges Faced By System Integrators: From a System Simulation Approach

Page 4 of 6

application model which will be consistent with

system architecture, identify component models

that match the architecture requirements such as

interface, hierarchy, metadata criteria, etc.

3. System Integration – Final step is to generate the

executable application model that can be simulated

in a target native domain such as AMESim

/Simulink. The simulation results can be used to

confirm the functionality of the system.

The idea of ADD is to front load the system modeling

activity by focusing on architecture construction with right

set of interface definition to support various types of

simulation downstream. The benefits of this approach are

multiple,

a. Significantly reduce the System Integration time &

effort.

b. Streamline the system development process to

enable global distributed & concurrent

development.

c. Modularize and have a few generic System

Architectures from which multiple system

simulation models can be generated and simulated.

Any change in the architecture can be easily

propagated to all the simulation models.

ENABLING TOOL CHAIN

The tool chain enabling Architecture Driven Model Based

Development process is LMS Imagine Lab Platform,

comprising of 3 solutions: IL System Synthesis, IL SysDM

& IL AMESim.

Imagine.Lab System Synthesis
This solution is a “Tool-Neutral” Environment for

simulation architecture and simulation configuration

management. In this environment, a system analyst could

• Import System Architectures from AMESim,

Simulink and SysML based Magic Draw.

• Populate the architecture with models or libraries

from AMESim, Simulink, C and various native

platforms etc.

• Create multiple System configurations to execute

simulations in target platform of AMESim,

Simulink or both.

Imagine.Lab SysDM
This solution is a Tool-Neutral collaborative framework

for Model & Data Management to enhance System

Simulation Process efficiency. Some of the key capabilities

of this product are:

• Complete life cycle management of Model and

Data

• Organize Model , Data, Architecture and other

artifacts in a domain-relevant structure

• Role based access control to enable collaborative

workflows

• Comprehensive Search & Retrieve capabilities to

enable re-use of Models, Data, Architectures etc.

Imagine.Lab AMESim
This solution simplifies multi-domain integration thanks to

its easy-to-use simulation platform. All an engineer needs to

do is connect various validated components to simply and

accurately predict multi-disciplinary system performance.

With extensive dedicated libraries, LMS Imagine.Lab

AMESim actually saves enormous amounts of time by

eliminating the need for extensive modeling. Thanks to

application-specific simulation, engineers can assess a

variety of subsystems in multiple physical domains. This

way design and engineering teams can carefully balance

product performance according to various brand-critical

attributes to achieve the best possible design way before

committing to expensive and time-consuming prototype

testing. Since LMS Imagine.Lab AMESim actually

frontloads system simulation early in the development cycle,

it truly allows mission-critical design functionality to drive

new product development.

It offers a complete 1D simulation suite to model and

analyze multi-domain, intelligent systems and predict their

multi-disciplinary performance. Model components are

described using validated analytical models that represent

the system’s actual hydraulic, pneumatic, electric or

mechanical behavior. To create a system simulation model,

all the user has to do is use the various dedicated tools to

access the required pre-defined components from validated

libraries covering different physical domains. LMS

Imagine.Lab AMESim can work with a variety of libraries

to create a physics-based system model. Using libraries like

the Hydraulic Component Design (HCD) and IFP-Engine,

LMS Imagine.Lab AMESim software can accurately

simulate intelligent system behavior long before detailed

CAD geometry is available.

CASE STUDY
The objective of this case study is to showcase the

application of Architecture Driven Model Based

Development Process on a Hybrid Vehicle Energy

Management.

Proceedings of the 2012 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Challenges Faced By System Integrators: From a System Simulation Approach

Page 5 of 6

Figure 6: ADD Process followed for Hybrid VEM

1. Architecture Creation: In this case study, the

architecture was constructed in IL AMESim

(shown in Figure 7).

Figure 7: Architecture constructed in AMESim

During this step, the system architect interacts with

subsystem experts (Engine plant, Electric Motors

(plant & controls), hybrid Vehicle System Expert)

to decide on the logical decomposition of the

system, interfaces definitions (ports, port types,

connections, parameters exchanged etc). In the

sketch mode, the graphical view of the architecture

was constructed and saved as an .ame file. At this

stage, five blocks were marked as configurable

components. These were Engine, Electric Motor,

Electric Motor Controls, Driver and Vehicle.

2. Architecture Import: In this step the System

Architect imported the AMESim based architecture

(from previous step) into System Synthesis through

a Configuration wizard. This wizard guides the user

to select the AMESim Architecture file, Preview

the configurable components and initialize the

Reference Architecture. This Reference

Architecture is then published into a central

repository for sharing with other team members.

During this publish process the user adds attributes

(like Vehicle Platform name, Program Name, Life

Cycle State, etc.). These attributes are meta-

information associated with reference architecture,

which helps during the Search & Retrieve process.

3. Search & Integrate Libraries in Architecture: In this

step the System Analyst uses a process wizard for

integration.

a. The first step in this wizard is to search for

the right set of validated Hybrid Vehicle

Reference Architectures from central

repository. At this point the user has a

choice to use the attributes like Vehicle

Platform name, program name, etc… to

converge on the right architecture. The

user has access to all the versions of the

architecture and could pick the right one.

b. At this point, the list of configurable

components (Engine, Electric Motor,

Electric Motor Controls, driver & vehicle)

in the selected architecture (shown in

Figure 8). For each of these configurable

components, the user searches for

available super-component libraries in the

Central Server and selects a choice. For

Electric Motor Controls a Simulink model

was re-used from the server. The

remaining configurable components were

populated with AMESim super-component

libraries. In the case of Engine component

the user had a choice to configure the

combustion model inside the engine. This

is an example of multi-level configuration

capability.

Proceedings of the 2012 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Challenges Faced By System Integrators: From a System Simulation Approach

Page 6 of 6

Figure 8: System Synthesis Wizard for search & assign

Super-Component Libraries for each configurable

component

c. After populating those five configurable

components in the architecture, this set is

saved as one vehicle configuration. The

user creates multiple configurations by

changing the choice in the above step. For

example, if configuration A has a Mean

Value Engine Model (Version N) as a

choice the configuration B could be a

detailed Engine model (Version M). The

user could create various vehicle

configurations and publish this

information in the server & database.

4. Co-Simulation: In System Synthesis, the system

analyst could select multiple vehicle configurations

and “apply” the configuration. This step opens the

vehicle configuration in the Native Tool (AMESim

in this case) and all the choices are automatically

set (for those 5 configurable components). The user

could click on run to simulate. Another option is to

create a Simulation Run Set for batch simulation of

all the configurations. The user has the option to

select post processing script at the end of batch

runs. In this case the Electric Motor Controller was

a Simulink model and hence a co-simulation was

triggered.

SUMMARY/CONCLUSIONS
In this paper we discussed the challenges faced during

System integration, from a system simulation point of view.

Architecture Driven Development process is a key enabler in

addressing most of the challenges. The enabling technology

for this process is showcased as Imagine Lab Platform with

IL System Synthesis, IL SysDM and IL AMESim as the 3

main products. The application of Architecture Driven

Development with Imagine Lab platform is shown through

Hybrid Vehicle Energy Management case study.

The value addition through Architecture Driven

Development process and Imagine Lab platform offering is

the following:

1. Architecture Driven Development methodology

front loads System Simulation process with

significant focus on Architecture Creation. The

hierarchical breakdown of System / Sub-System /

Components with rich set of interface definition

enables distributed development.

2. Publishing the vehicle architecture with rich set of

interface definition is a very convenient way to

communicate the interface definitions to each sub-

system & component developers. Each developer

would know exactly what I/O needs to be present in

their models / libraries.

3. The search & integrate process enables re-usability

of core component & sub-system models / libraries

across multiple vehicle programs.

4. Traceability is enabled through this process and the

proposed tools. The System Analyst knows exactly

which version of the Mean Value Engine Model

was used for a specific Vehicle Program at different

stages of the program.

5. The last step of System Integration is very efficient

due to consistent interface definitions.

