
2013 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM
SYSTEMS ENGINEERING (SE) MINI-SYMPOSIUM

AUGUST 21-22, 2013 – TROY, MICHIGAN

REDUCE PROJECT SCHEDULES AND INCREASE QUALITY USING MODEL
DRIVEN DEVELOPMENT FOR DESIGN, VERIFICATION AND TEST

John Vargas

Systems Architect
Mentor Graphics
Philadelphia, PA

ABSTRACT

As contracts move from cost plus to fixed deliverables, total project cost and reducing schedules

become more important. This paper will show how Model Driven Development can address common challenges

in the system design, verification & testing of complex systems and systems of systems. Project success requires

that hardware, software, and test teams fluently integrate application software, controlling firmware, analog and

digital hardware, and mechanical components, which often proves to be costly in terms of time, money, and

engineering resources. Model Driven Development and virtual prototyping using a tools flow emphasizing

requirements tracing, UML / SysML system modeling, and linking to functional FPGA, IC, PCB and cabling

domains supports system engineering teams along with software, digital hardware, analog hardware, system

interconnect algorithm development, hardware / software co-simulation, and virtual system integration. This

paper covers such solutions that reduce project schedule while improving product release quality.

INTRODUCTION
Sixty-seven percent of government weapons contracts

were found to be behind schedule, with 30% of them more

than two years behind schedule in a Government Accounting

Office Report [1], and an Aberdeen Group study found that

even well-run companies struggle in their development

programs because overwhelming complexity is rendering

previous best practice process outdated and ineffective [2].

Compounding the challenges are the recent economic

conditions affecting total spend and new and existing funded

programs with a focus on cost controls and a trend towards

increasing competition in DOD and DHS programs with a

move away from award-fee and fixed-fee contracts with a

11.9% 3-year CAGR growth in fixed-price contracts and

13.4% growth in competed contracts with multiple offers

over the same period [3,4].

At the same time, product and program complexity has

continued to increase exponentially over the last decades [5];

therefore the stakes are very high (and growing). A single

miscalculation, miscommunication, or misunderstanding in

program development can lead to cost overruns, schedule

delays, reliability problems, or even field failures. As the

DARPA research indicates, industries such as Integrated

Circuit design have managed to keep the cost in check even

as the complexity increased while other industries such as

Aerospace and Defense have had cost growth increases of

8%-12% per year over the last 40 years. This paper will

detail some of the ways that methods from the IC design

industry, such as Model Driven Development, can address

common challenges in the system design, verification &

testing of complex systems and systems of systems, reducing

project schedules and improving quality.

Figure 1: Historical Complexity and Cost Trends [5]

TRADITIONAL METHODS
The traditional system design process begins with a

requirements-driven system definition and proceeds into a

preliminary design or architecture phase, which feeds into

designing and implementing the components that make up

Proceedings of the 2013 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Reduce project schedules and increase quality using Model Driven Development for design, verification & test.

Page 2 of 7

the system (chips, printed circuit boards, firmware,

algorithms, application software, and mechanical elements).

Once these are implemented, they are verified, proceeding

in succession from the component to each subsystem,

grouped subsystems, and finally the “serial #0” candidate

production system, which is verified against the system

requirements and validated against the top-level customer

and marketing requirements. This is typically visualized as

the “V” diagram.

Figure 2 : Traditional V diagram flow

This is an inherently sequential process where verification

and validation is not complete until the end, as the “time”

axis indicates (see figure 2). Since for DOD programs and

other large deliverables the customer almost always requires

“serial #0” physical system verification and validation, most

companies have tried to implement the V process with the

goal of minimizing the time from design to physical system

and eliminating any steps not essential to the direct

manufacture of the physical system. Writing requirements

down in a document based on previous experience and

expert knowledge is viewed as faster than creating a

behavioral model of the requirements, executing them, and

performing simulations and dynamic analysis.

The result is a “paper-driven” front end process. The

requirements and system architectures are done on “paper”

elements such as documents, static diagrams, and

requirement lists which, of course, are electronically created,

stored, indexed, and linked, but are not qualitatively

different from what was done many decades ago with a

pencil, ruler, typewriter, and paper. It is likely that

simulation and analysis is incorporated at some point, but

usually within a specific domain and focused on aspects

essential for implementation or regulatory compliance.

A complete analysis and virtual simulation of the entire

complex system is not undertaken as it is viewed as too time

consuming or impractical; instead efforts are focused on

getting to an early physical prototype quickly. With this

approach, the first real visibility of complex system

integration problems is reserved for the very final stage of

the process – testing the physical, integrated system.

This traditional “paper–based” approach to implementing

the V process may have worked in the past, but as sources

listed in the introduction indicate, it is no longer working

well. With today‟s complex system developments of

integrated, inter-related mechatronic elements interacting in

non-obvious ways, the time to verify the physical integrated

system can quickly destroy the original schedule if any re-

design is required and repeated candidate serial #0 units are

produced and run through the verification cycle. The more

complex the system, the less likely this approach will result

in a design developed within schedule and budget.

MODEL DRIVEN DEVELOPMENT

Imagine instead a process where concepts and

requirements from all disciplines could be easily tested from

the very start using software modeling techniques and, once

proven, would pass from step to step in the process. Teams

of experts would work concurrently throughout the

technical, system, and process levels, with individual

designers concentrating on their specific tasks using the best

available tools for their individual task while able to

seamlessly fit into a complete virtual system environment.

Verification would proceed in parallel, with design

occurring at first completely virtually; these same virtual

tests then would be re-used when the system is physically

verified. Monitoring of compliance with regulatory

requirements and customer specifications would be integral

to every step. Ultimately all the pieces would be efficiently

integrated into a system that works the first time and does

not need physical re-designs. This is the vision that gave rise

to the innovative Model Driven Development (MDD) tools

and processes that are fast gaining favor among system

developers. MDD lays the groundwork for an integrated

design flow that addresses the complexity challenge once

and for all.

Model Driven Development Approach
So how does the MDD approach help move a development

program from sequential design and verification to a

concurrent process? It does it by replacing “paper-based”

static documents with a dynamic data-centered approach. In

an MDD environment, the information about a program is

the model data. The whole process is driven by the data,

which is always synchronized with the current stage of

development. This gives developers and management a

much clearer and realistic view of the program‟s status and

is an easy way to assess the impact of changes, which has

both business and regulatory benefits.

Requirements are a critical aspect of program data. Many

companies understand the importance of requirements, but,

too often, requirements are kept in documents or databases

that exist outside the everyday world of the designers. When

changes occur in a requirement, this may or may not be

Proceedings of the 2013 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Reduce project schedules and increase quality using Model Driven Development for design, verification & test.

Page 3 of 7

communicated effectively to the design or verification

teams. This is a common struggle and a cause of many

problems often not found until final testing.

In an MDD approach, requirements are connected into the

models and their verification suites. Changes to

requirements necessitate changes to the models, and this is

highlighted immediately in an automated way. The same can

be said for interface controls. Instead of existing outside the

development environment in some sort of document, in a

modeling environment these become active properties of the

design itself. Artifacts of the process are another aspect of a

program‟s documentation. Instead of reports being created

by hand (and therefore immediately out of date), the

pertinent data from an MDD environment can at any time be

viewed, audited, or even automatically generated into a

report.

The shift with an MDD approach is to a focus on virtual

validation and verification (V&V) at the front of the „V‟

instead of physical V&V at the end of the „V.‟ Physical

V&V does not disappear but is much reduced and

streamlined due to the extensive virtual V&V performed

earlier and the testbenches and artifacts from the virtual

V&V leveraged for the physical V&V.

Figure 3: Model Driven Development Approach

Define Phase  Concept Validation

Figure 4: Shift from Sequential Define  Design to Concept

Validation

At the very earliest stages of design, the initial idea and its

requirements can be captured in a high-level conceptual

model, using graphical languages such as UML or SysML.

Customer and Marketing requirements remain in a

requirements database, but these models link directly to

them and start to implement the engineering system-level

requirements as models instead of another large list of

derived requirements. This blends the initial idea,

requirements capture, and conceptual design stages into one

new “concept validation” stage. This initial conceptual

model can be dynamically executed and tested against a

comprehensive suite of verification tests and ultimately help

clarify and validate the idea, requirements, and concept. This

conceptual model, which initially defines only the function‟s

required behavior, can then be broken down further into a

closer representation of the real design at the next level.

At this phase, the key difference with the traditional

approach is that instead of the paper documents containing

the whole design specification, a federated set of data

contains the specification and it is not duplicated so where

there are models--“The model is the requirement.” It does

not mean traditional documentation disappears or is no

longer needed, instead, possible executable models are used

rather than English language specification as the source of

truth for the system design. Where is it possible to do this? It

used to be that it was practical mostly in the software and

digital logic domains, which left a whole pile of paper

documents for the rest of the system. But, with modern

MDD approaches, this is no longer the case, and, at the

functional level, the behaviors can be validated and verified

while the implementation decision on hardware vs. software

is postponed.

At the functional level of the model hierarchy, system-

level engineers create executable functions with measurable

behaviors that correspond to functional specifications for the

design as derived from the system requirements. Interactions

and tradeoffs between specifications are explored virtually

using functional-level models. Theoretical behaviors are

modeled at this level without concern about whether a

function will be implemented in hardware or software or

which specific components will be used in the design. At

this level the models constitute a mix of further broken down

UML or SysML combined with algorithmic or physics-

based continuous time models in high level behavioral

VHDL-AMS or similar languages, along with rough 3D

models of the mechanical aspects of the design.

It is important to note that the reality of very complex

system designs means that no single language or integrated

toolset can capture the entire system design from 3D

physical aspects to algorithmic models; it requires an

interconnected and cooperating set of domain-appropriate

tools.

In order to deliver on the MDD promise, each of these

tools needs to be able to support three core functions: (a)

operate on executable models that can be fully verified and

tested, (b) cooperate in a federated system of appropriate

information exchange to enable requirements tracing,

Proceedings of the 2013 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Reduce project schedules and increase quality using Model Driven Development for design, verification & test.

Page 4 of 7

workflow and project management linkages, and (c)

integrate with a co-simulation environment.

With this MDD functional architecture complete and

having gone through several rounds of validation against use

cases, concept of operations scenarios, marketing

requirements, and customer reviews, then and only then are

these new executable requirements really ready to pass down

to the next design phases.

It is highly likely that through this process the

requirements have changed significantly and both the

customer (whether internal or external) and the engineering

team have a much richer understanding of the desired

operation of the system. Waiting for a physical prototype to

have these revisions and reviews would have certainly cost a

lot of time and money and would have been wasteful as

effort would have been expended designing and fabricating

something that was not fit for the intended purpose.

Design Phase  Virtual Design Verification

Figure 5: Shift from sequential Define  Design to Iterative

Early Validation & Verification

Figure 6: Shift from Sequential Define  Design to Virtual

Design Verification

At the architectural or logical level, teams of system

architects along with domain experts use model simulations

to explore options for implementing the system architecture.

Each team can operate in parallel, exploring different aspects

of the architecture while feeding into and testing against a

cohesive complete system model. Different teams start to

create more detailed models that are more domain specific

(mechanical, continuous time, discrete, processor

scheduling, algorithmic, etc.) as appropriate but remain able

to verify them against a cohesive virtual view of the system

that is revision controlled and can be traced to the earlier

functional level requirements implemented as functional

models.

Decisions are then made about which functions will be

implemented in embedded software, which in electronic

hardware, which functions will communicate virtually via

network layers, which will be implemented with a discrete

interconnect, and which using other physical disciplines.

System engineers test the interfaces between different parts

of the design virtually before the design is fully

implemented. These tested interfaces are passed down to the

implementation level as requirements that each domain must

adhere to or request a review by the system engineers. This

reduces errors and allows integration issues to be identified

and addressed early in the design process.

Implementation Phase and Virtual Design

Verification

During the first phase of the implementation or physical

level, each domain-specific engineering team drills down

into critical areas of functionality, while dealing with the

less critical areas more abstractly until the design is closer to

completion.

In some cases, parts of the implementation such as

software, digital hardware, and cabling designs can be

automatically synthesized from the architectural models into

a lower-level implementation (e.g., C, VHDL, wires, etc.) of

the actual design, reducing the implementation work to a

simple verification task for these cases. For other parts of the

implementation, such as analog hardware and mechanical

design, there are currently no practical synthesis methods

and more manual effort is required.

Figure 7: Implementation First Phase – Independent-Domain

Verification

Proceedings of the 2013 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Reduce project schedules and increase quality using Model Driven Development for design, verification & test.

Page 5 of 7

In this first phase, design engineers perform detailed

simulation and verification of their own components and

verify their subsystems are operating correctly before going

onto the next phase. Still there is no need for physical

prototypes; all these tasks can be performed with virtual

representations of the system in MDD Cad-type tools.

Figure 8: Implementation Second Phase – Virtual Integration

In a second phase of the implementation, a virtual

integration is performed and the domain engineers then feed

their implementation designs into another more detailed

view of the complete virtual system, which allows

verification engineers to test the interfaces between different

parts of the design virtually and ensure that the design

engineers are adhering to the required interfaces specified by

the system engineers.

It is not usually feasible to simulate the complete, final

implementation-level design of the entire system in a

reasonable time; this causes many groups to give up

completely and head straight for the physical prototype.

Others use this fact as an excuse to not perform very much

early system-level modeling ahead of time with a sense of

despair that in the end it is intractable, too complex, and just

better to get the “real” prototype and not “waste” any more

time with the virtual verification since it won‟t be “accurate

enough” or the inability to “model reality close enough.”

However, it is really not necessary to simulate every last

transistor, mechanical spring, and line of code of the entire

system at the same time.

 The goals of virtual system integration and verification

can be achieved by following a process from the beginning

and creating executable requirements that bound the

behavior of the sub-systems. The naysayers miss the point of

proceeding through a methodical and sequential system

validation, verification, and virtual integration at each step

of the process. After having performed complete virtual

system verifications at each prior level, all that remains to

verify at the physical level is that each of the component‟s

detailed implementation continues to operate within the

bounds of the previous higher level model requirements

correctly while it is connected to the rest of the system. If no

prior architectural-level system models and verification steps

were performed, then complete system virtual verification at

the physical level is not tractable. However, if an MDD

approach was followed from the start, it is very possible and

tractable.

Sometimes called a checkerboard approach, the

architectural-level models of the complete system are used,

replacing one or a few components at a time at the detailed

level.

Figure 9: Tractable Virtual System Verification &

Integration

This process is in use every day with great success at IC

design groups that design the world‟s largest and most

complex semiconductors, such as CPUs, GPUs and massive

systems on a chip. Even with the most advanced simulators

and emulators, it is intractable to verify the entire IC design

at the most detailed semiconductor level while running the

application-level software such as Windows or Linux.

But do they then just give up and wait for first silicon to

test the system out? Due to market pressures they cannot

afford the cost of a mistake or the time to wait so they use

the architectural-level models to verify the system operation

and then rigorously compare the behavior of each

architectural model to the behavior of the isolated block-

level, detailed implementation simulation. After success,

then they plug in one or a few critical detailed components

into the system verification at a time for a final system

integration check.

Physical Construction, Integration & Test

Figure 10: Physical V&V

Proceedings of the 2013 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Reduce project schedules and increase quality using Model Driven Development for design, verification & test.

Page 6 of 7

The traditional physical construction, integration and test

processes remain part of the MDD flow; they are just

reduced in time and complexity. By the time the physical

system is built, the system and every sub-system have been

tested separately and together in a virtual environment. This

means that the verification & validation group has been

involved from the beginning and has already created the

tests for the virtual phase; so not only are they created, but

appropriate test access has been built into the system

because of this. Therefore, when the subsystems start to

arrive to be tested, most of the infrastructure is in place and

physical V&V proceeds at an accelerated pace with very few

surprises.

This happens because, at each step of this process, the

original system requirements are traced to measurable

attributes of the design and verified. This is supported by the

virtual system integration platform, which combines

multiple models and levels of abstraction and provides a

way to exercise the behavior of a design at a functional,

architectural, or fully-implemented level of abstraction or a

combination of these levels. While following the process of

virtual verification, the verification group is also designing

and developing their final physical verification tests against

the virtual platform. This test set can run on the system

model at any time during the development. Then, when run

at the final stages of physical system integration, this “final”

test stage (which so often in traditional flows is the

beginning of a very long process of debug) becomes merely

a sanity check that the system was built correctly.

ORGANIZATIONAL EFFECT & IMPACT

Collaborative MDD

It is important to note that the MDD flow does not require

all the participants to use the same tool or the same modeling

language. The MDD flow allows the experts to work

independently in their own domains, using their own

languages (e.g., UML, SysML, Verilog, VHDL, VHDL-

AMS, C, SystemC, C++, Java, m-script, etc.) and tools, as

they would prefer to do. But, the models they produce can be

integrated into a broader system architecture model and

executed in any simulator that supports all the chosen

standards concurrently or by use of a simulation backplane

that connects multiple domain-specific simulators together

into a live, concurrently executing “meta simulator.”

In a similar way, appropriate information exchange

between the tools for requirements tracing and workflow via

standards (such as Open Standards for Life Cycle

collaboration or OSLC) enable these different tools to

communicate requirements, test cases, tasks, and product

tree views with other software designed for project managers

to track status and regulatory and safety officers to verify

traceability and compliance. This creates a virtual

collaboration environment where the team is collaborating

across divisions and disciplines without everyone being

forced to use the same exact interface or software tool.

This same sort of “virtual” collaboration can extend from

integrators to suppliers to contractors. Models and OSLC

exchange become the mechanism to collaborate and verify

both function and progress at any stage of development.

Collaborative MDD will not literally force systems,

mechanical, electrical, electronic, and software engineers to

sit down in the same room, talk, and jointly work on a

program. Instead, it creates a virtual environment that

automates this collaboration, transparently.

Schedule Re-Alignment

With all these benefits, what is the catch? A significant

barrier for adoption of MDD can be the organization‟s

inertia and prior history with projects and schedules. Past

project timelines and schedules feed the project management

office or management expectations for new schedules.

Schedules that are back-end loaded have been created for so

long and with a feverish determination to get to Critical

Design Review (CDR) and first prototype as soon as

possible that there is typically no allocation for system

modeling and virtual verification in the early part of the

schedule.

Adopting MDD requires that project managers and

executive management be willing to embrace new methods

and commit to a change in schedule alignment. While it may

seem counter-intuitive, adding time to the schedule up front

and delaying the creation of the first physical prototypes of a

system and implementing an MDD process on top of the

traditional V actually reduces the total real-world time from

start to customer-accepted product and increases release

quality. Months are shaved off the backend test development

and test processes, and, due to the significantly higher

probability of the first-pass success, customer acceptance is

achieved earlier.

Figure 11: Cost and Schedule Reduction with MDD

Proceedings of the 2013 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Reduce project schedules and increase quality using Model Driven Development for design, verification & test.

Page 7 of 7

CONCLUSION
Federated Model Driven Development is the enabler of

virtual system verification, validation and integration with

tools that (a) operate on executable models that can be fully

verified and tested, (b) cooperate in a federated system of

appropriate information exchange (OSLC) to enable

requirements tracing, workflow and project management

linkages, and (c) integrate with a co-simulation environment.

Mentor Graphics has a suite of tools for this MDD

approach, covering software, digital and analog hardware,

platform architecture, wire and harness, and supports links

into existing solutions such as The Mathworks Matlab,

National Instrument‟s LabVIEW, and the IBM Doors,

Rational, and Jazz platforms. To read more about the Mentor

tools that enable an MDD flow, please visit mentor.com/sm.

MDD in this manner integrates models from different

domains into a data-centered, collaborative environment.

The model at each stage of refinement is truly a virtual

prototype of the end system. Verifying this model early and

often throughout the process catches issues early (when they

are easy to fix), before they jeopardize project schedules,

budgets, or worst case, lives.

Using new design methodologies, such as model-driven

development with virtual prototyping and federated

information exchange, can help ensure successful product

development on schedule, under budget and with increased

quality. The world is truly connected, and adopting

collaborative processes that leverage this as opposed to

isolated ones that ignore this fact is essential for complex

systems programs. MDD technology gives the system

integrator an effective platform to communicate the overall

system requirements and individual component

specifications. It can also tie project management into

development and automate mundane and time-consuming

tasks, so designers can spend their time doing what they do

best -- designing.

REFERENCES

[1] GAO Report to Congressional Committees (GAO-08-

467SP), “Defense Acquisitions: Assessments of Selected

Weapon Programs”, March 2008.

[2] System Design: New Product Development for

Mechachtronics, Aberdeen Group, January 2008.

[3] Defense Industrial Initiatives Current Issues: Cost-Plus

Contracts, Center for Strategic & International Studies,

csis.org, October, 2008

[4] DHS contract Spending and Supporting Industrial Base,

2004-2011. Center for Strategic & International Studies,

csis.org, Dec 2012

[5] Adaptive Vehicle Make, DARPA,

http://www.darpa.mil/WorkArea/DownloadAsset.aspx?i

d=2147484350

