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ABSTRACT 
This paper will describe layers of open standards, demonstrate the problems of standard top-down 

requirements flow-down and derivation, and show how the standard Analysis-of-Alternatives, as used at highest 

levels of Department of Defense acquisition, is appropriate for use at lower levels.  Examples of how to (and not 

to) use open-standards in systems engineering specifications for best commonality and competition will be 

provided, intended for use as templates in specifications. 

 

INTRODUCTION 
Today’s open standards, either developed specifically for 

embedded military commercial-off-the-shelf (COTS) 

applications or for adjacent markets such as the commercial 

High Performance Computing (HPC) market, provide 

today’s rugged deployed military system designer with well-

known, well supported of Open Systems Architecture 

(OSA)-based methods for addressing the full range of 

system specifications including Power, Environmental, 

Network, Thermal, and Physical.  Increased use of well-

established and broadly supported open standards enables 

the design and manufacture of subsystems using off-the-

shelf building blocks that deliver today’s most advanced 

computing technologies while reducing design risk, 

development schedule, and cost.  

Following the Weapon Systems Acquisition Reform Act of 

2009, the U.S. Government takes a much greater role in 

defining the high level technical requirements for new 

system designs. The updated acquisition process also 

strengthened the mandate to increase the use of OSA design 

strategies that, when applied effectively, enable the faster, 

simpler design of Lowest Price Technically Acceptable 

(LPTA) solutions to meet emerging capabilities 

requirements. 

For the decision-makers now tasked with defining system 

requirements, the key to tapping the full potential of OSA 

requires knowledge of today’s extensive eco-system of 

open-standard interfaces and hardware. By designing 

subsystem solutions with proven open standards-based 

building blocks, today’s system integrators can achieve great 

cost savings and reduced deployment schedules. 

One of the most common contributors to added cost in 

system design is over-specification, which may exclude or 

complicate the use of open-standard systems and 

components. COTS vendors who design solutions using 

open standards can help Government reduce costs and 

optimize system space, weight and Power (SWaP) by 

providing architectural input based on their extensive 

knowledge and expertise in the proper use of off-the-shelf 

building blocks to satisfy the most essential technical 

requirements. These standards enable a community of 

competitive suppliers to offer cost-effective off-the-shelf 

alternatives to proprietary, and frequently over specified, 

alternatives. 

 

THE PROBLEM OF SPECIFICATIONS 
  Specifications are critical and essential to business and 

technology.   This is not up for dispute, and the global 

transition of economies and capabilities to a highly 

interoperable and interchangeable set of businesses, 

resources, processes, and technologies is solid proof that the 

use of specifications is highly advantageous.  Whether 

specifications are physical, software, financial, process, 

regulatory, they are of immense benefit when applied 

correctly. 

The problem, however, is in the level of detail in the 

application of specifications.   Whether too much detail 

(over-specification) or not enough detail (under-

specification), inappropriate use can create significant risk, 

additional cots, and unwarranted constraints.  The system / 

product designer (systems engineer) needs to appropriately 
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communicate their intent – no more, no less – through the 

specifications. 

To illustrate this point, take the simple example of a screw.  

If, for whatever system capability reason, the designer wants 

a system to be assembled with screws (as opposed to rivets, 

nails, welds, or adhesives, etc.), then it’s expected to see a 

requirement something along the lines of “Only screws shall 

be used for unit construction.”  It’s understandable to 

immediately ask “what type?” and to further specify the 

specific type of screw to be used. It’s here that the 

specification problems arise.  

Let’s ignore the capability provided by using screws – 

perhaps it makes it easier to disassemble and cannibalize 

physical parts, perhaps it’s an institutional policy – “screws 

are better than glue” – but it doesn’t matter.  What matters is 

the further intent of the system designer.  Consider the 

following intent and specifications: 

 

Intent: 

Standardize Screws for best purchasing volumes, driving to 

lowest cost. 

 

Under-specification: 

“Use screws” doesn’t communicate this intent, as it does not 

constrain the types to increase volume 

 

Over-specification: 

“Use Company X part number 123” also doesn’t 

communicate the intent, but tries to cut to the 

implementation, with the assumption that Company X part 

number 123 will be the type with the best volume pricing. 

 

In this case, the communicating intent via a proper 

specification depends on the recipient of the specification.  If 

it’s an internal design resource, the proper specification 

could be “Use screws selected from our company’s high 

volume common screw list.” If it’s an external resource (3
rd

 

party), then the proper specification could be “Use screws 

selected from your company high volume screw list.”  

What’s interesting here is that there’s actually a potentially 

flawed assumption up front, which is “highest volumes 

equals lowest cost” which illustrates the danger of 

specifying screws when what you really want is a box. 

The argument can be made that “a box” is not all you 

want.  It may be that you want “a box which can be 

assembled and disassembled using the standard repair tool-

kit”, at which point, it would be fair to specify “use screws 

which are compatible with the standard repair tool-kit”.   

Over-specification, in this case, would be to call out the 

detailed types of screws, provide drawings of the screws, or 

otherwise focus on aspects of the screw which are not 

specifically related to the interface between screw and tool 

(e.g. “Slotted screwdriver, blade widths of 3/16
th
 through ½ 

inch”).  When over specifying, the implementer of the 

design – generally considered the subject matter expert – is 

constrained from applying their domain knowledge and best 

practices to the implementation. 

Screws are an easy example of improper use of 

specifications causing problems.  Another more complex 

example is computer architectures and processors, which 

introduce a moving specification target due to constant 

improvements in capabilities.  Consider the following intent 

and specifications: 

 

Intent: 

The system needs a computer processor which is capable of 

implementing system capability X. 

 

Under-specification: 

“The system shall contain a processor” Nothing is provided 

with regard to performance figures versus the need of 

capability X (e.g. processing capability, memory size, and 

data throughput). 

 

Over-specification: 

“The system shall contain one Intel 4
th

 Generation Core i7 

Model 4690S, with 2 Gigabytes of DDR3-1333 RAM, and 

one 100Mbit/s Ethernet port.” The problem here is that the 

4690S is a mid-range option out of about 100 model variants 

of the 4th Generation Core i7 processor which itself will be 

replaced by the more capable 5
th
 Generation within 18 

months (and so on), the RAM specification is a mid-range 

specification which precludes higher and lower performance 

and density variants, and the Ethernet port specification is 

actually slower than the standard 1Gigabit/s performance 

currently included in modern chipsets.  This specification 

locks implementation to a very specific design configuration 

that may meet the performance needs today, but constrains 

everything else severely, potentially to a highly non-optimal 

design with regard to cost and performance. 

 

In this case, proper specification boils down to specifying 

the expected computing needs of an algorithm, its memory 

requirements, and its data paths using industry standard 

performance benchmarks and standards to constrain the 

solution appropriately. For example, rather than specifying a 

particular processor models and architectures, specify 

computing performance using such standards as the various 

benchmarks published by the non-profit Standard 

Performance Evaluation Corporation (e.g. SPEC CPU2006), 

and requirements such as “1.5 Gigabytes of RAM reserved 

for program executable and heap”, and “80 Megabit/second 

of UDP data throughput with packets of 4096 bytes.”  With 

these sort of requirements, the implementer is free to select 

amongst multiple different computer architectures (e.g. Intel 
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x86 or 64 bit, ARM, PowerPC, etc.) as long as it can host the 

application and provide it with the appropriate resources.   

A typical argument is that perhaps the specific computer 

architecture is needed because the legacy algorithms make 

use of specific hardware acceleration features (e.g. AltiVec 

in PowerPC), and that, as a result, the same architecture is 

required moving forward.  The problem with this is that 

when the algorithm was written, the hardware acceleration 

features were used to achieve algorithm performance levels, 

but a more modern, faster processor may be able to outpace, 

in software alone, the older architecture with hardware 

acceleration.  This again illustrates the danger of just 

specifying a specific architecture when actually a 

performance level is the real concern. 

What’s underlying both of these examples is the concept of 

layers and interfaces.  At some point, building blocks are 

assembled, via interfaces, and those assembled building 

blocks become the foundation for additional layers, and 

interfaces exist between those layers of additional building 

blocks. 

What matters is the performance of the building blocks, 

and the interfaces to them, and specifications need to stay 

focused purely on these aspects, rather than the specific 

implementations.  It’s with this that open standards have 

significant impact on commonality and competition. 

 

LAYERS OF OPEN STANDARDS 
Ultimately, everything is a mix of interfaces and building 

blocks, whether physical or virtual.  When presenting layers 

and interfaces, a fundamental question is the context and 

perspective – what’s the bottom layer? What’s the top layer?  

The specific subject domain (e.g. defense) helps define those 

layers and interfaces.  Figure 1 present a framework for 

definitions specifically focused on the most complex 

systems – mixed hardware and software.  

 

 
Figure 1: Layers of Open Standards 

 

From an acquisition and typical requirements management 

perspective, the platform sits on top, with requirements 

flowing down.  In this case, however, it’s important to break 

that perspective and recast into performance / capability 

layers, with higher layers of capability depending on the 

performance of layers below.  This forces a different 

perspective on use of specifications, and assists with the 

concept of using Analysis of Alternatives.  

The sections below provide descriptions and insight to the 

various layers, their complexities, and where open standards 

can be of benefit. 

 

The Platform 
Although the highest level when it comes to acquisition 

and capability definitions (e.g. a tank, jet, destroyer, radar), 

it’s far more instructive and useful to think of the platform as 

the foundation upon which to build capability. 

The platform has specific performance characteristics 

which everything above / on it must fit (this is a recurring 

theme) in order to deliver the desired capability, usually 

thought of as top-down budgets, including physical size, 

weight, power, and cost to accommodate subsystems.  Given 

that platforms are very unique and physical in nature, it’s 

understandable that only a few open-standard interfaces exist 

for the platform interface, as shown in Table 1. 

 

Table 1: Platform-Level Applicable Open Standards 

 

Type of 

Interface 

Applicable Open 

Standards 
Notes 

General 

Equipment 

Mounting 

Screw / Bolt sizes 

(English and Metric) 

Only the holes are 

standard, not the 

patterns of holes 

Display 

Mounting 
VESA standards 

Standard display 

back 4-hole mounts 

Commercial 

Rack Mount 

Various from EIA, 
CEA, IEC 

19 inch “relay rack” 
or “telco rack” 

LRU Chassis 

sizes 

Various ARINC 
Standards (ATR), 

VITA 58, VITA 75 

This is really just a 

standardization of 
physical space and 

mounting 

Power 

MIL-STD-1275 / 704, 
Standard Single and 3-

phase 110/220VAC 

50/60Hz, 5V USB, 

12V Automotive, 
Power-over-Ethernet 

Noteworthy that all 
standards except 

MIL-STD-1275/704 

have physical 

connector standards 
associated with them 

Cabling 

Various cable 

standards, wire gauge, 

standards such as 

EIA/TIA Cat-5 

Twisted Pair, RG-6U 

Coax, etc. 

Note that cabling 
standards may be 

tightly coupled with 

connector standards 

(e.g. Coax) 

Connectors 

MIL-STD-38999, 

USB, RJ-45 (IEC 
8P8C), Coax, Various 

Power (as above) 

Note that many of 

these connector types 

are tightly associated 
with the signal and 

cable types, except 

MIL-STD-38999 
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For the platform itself, there are a number of other 

standards which are more domain specific, e.g. standard fuel 

types, lubricants, ammunition types, battery sizes, wheel and 

track sizes, etc. What’s interesting about these is that they 

are consumable / replaceable items, which recognize the 

benefits of commonality and competition quickly, as 

purchases and use occur on a regular basis.   Many of the 

interfaces in Table 1 have been in significantly longer design 

/ purchase / replace cycles, which means the benefits of 

commonality and competition have not been as readily 

apparent.  This is an important historical distinction, and 

needs to be considered given the significant change in pace 

of technology / capability cycles in broader markets, and the 

need for significant up-tempo of capability updates in the 

defense market. 

An office-building provides and good analogy for 

illustration of the benefits of well-defined open standard 

interfaces.  The building provides standard interfaces, such 

as power and network wiring.  This infrastructure serves a 

broad range of end-uses, allowing the use of the building to 

evolve and change over time and the end-users’ desired 

purpose.  It also decouples the specific technologies within 

the office building from the building itself.  No one would 

ever buy a new office building just because they need to 

upgrade the printers, computers, and phones.  In fact, those 

items don’t need to be purchased with the building in the 

first place.  As long as the necessary infrastructure is 

present, the technologies can move, evolve, change, or 

upgrade as desired. 

 

Subsystem / Line Replaceable Units (LRUs) 
Whether as a single LRU or a collection of associated 

LRUs, the platform is filled with various Subsystems which 

are intended to perform various functions to enable certain 

capabilities, e.g. provide satellite communications, stabilize 

a turret, or cook MREs.  Regardless of the functions they 

perform and capabilities they provide, the LRUs are installed 

within the platform, which really means they must interface 

to the platform in accordance with particular specifications, 

while performing their intended functions to provide system 

level capabilities.  To that end, the list of applicable Platform 

Open Standards is a significant part of the list of applicable 

LRU Open Standards.  For example, power provided by the 

platform is power consumed by the LRU, and they must 

match.   

Two critical points follow from this: 

 

• The internal interfaces of a Subsystem are not 

necessarily dictated by the external Platform interfaces 

• The capability of a Subsystem is not necessarily 

dictated by the Platform performance 

 

It’s these two points that are important to remember when 

applying open standards – they’re not all-inclusive and 

comprehensive, often orthogonal, and more importantly, the 

use of an open standard does not preclude the use of 

proprietary interfaces within an externally open standard 

subsystem.  Following from that, it’s important to realize 

that a platform’s performance (e.g. can provide only a 

maximum supply of 2 Amps of 28VDC MIL-STD-1275 

power) allocated to a subsystem doesn’t mean the subsystem 

should be considered a fixed capability over time, as LRUs 

from competing vendors or next generation LRUs may have 

significantly more capability than the baseline. 

The corollaries to these points are: 

 

• External Platform interfaces may constrain the set of 

applicable internal Subsystem interfaces 

• Platform performance may constrain the current 

capability of a Subsystem 

 

To the first point: a physical standard based on 10 inch 

long parts won’t fit in a box that’s limited to only 5 inches 

long.  What’s critical about the second point is the example 

above – the platform’s performance (e.g.  Power capacity) 

may limit the capability of a subsystem at the current time, 

but not necessarily tomorrow’s more power-efficient 

implementation. 

The take-away is that although interface and capability are 

interrelated, they aren’t tightly correlated, having more of a 

“bracketing” relationship.  Interface standards typically 

support a range of parameters (e.g. “up to 15 Amps”, “up to 

125MHz signaling”, “from 6 to 128 pins”).  Capability of a 

subsystem is more of a continuum which will eventually find 

boundaries at the edge of an interface range, for example, a 

limited amount of data processing capability because of the 

limits of the external data interface speeds, not the internal 

processing horsepower. 

It’s important to remember that increased capability may 

help drive interface requirements to a lower bracket. For 

example, more capable and efficient electronics mean lower 

power consumption for the desired capability, resulting in 

the applicability of another external interface which was not 

previously useable, such as lower capacity USB power or 

Power-over-Ethernet versus MIL-STD-1275 power. 

This loosely-coupled relationship between interfaces and 

capabilities is important to using open standards, which are, 

by their nature, adaptable to a range of designs and 

applications, not just point designs. 

LRUs have many different applicable open standards, 

beyond those of external platform interfaces.  Some of these 

are shown in Table 2. 
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Table 2: Subsystem / LRU Applicable Open Standards 

 

Type of 

Interface 

Applicable Open 

Standards 
Notes 

General 

Mounting 

Screw / Bolt sizes 

(English and Metric) 

Just like the platform, 

not all hole patterns 

are standardized 

Internal Circuit 

Board 

accommodation 

Various standards, 

including VME, 
VPX, cPCI, PC-104, 

COMExpress, AT/X 

families, etc. 

Many different 
standardized form-

factors 

Cooling 

provisions 

Standardized fan 

sizes / mounting, 

IEEE standardized 

conduction cooling 
standards, other 

VITA standards for 

cooling mechanisms 

Often these standards 

are a part of a form-

factor standard, or 

called-out and 
referenced by those 

standards (e.g. VPX 

calls out IEEE cooling 

standards) 

Power 

Various standards 

based on various 

board form-factors 
like ATX power 

supply, VPX power 

supply, etc. 

These standards 

typically collected a 

number of voltages, 
current ratings, noise 

parameters into 

standardized pin-outs, 

etc. 

Data interfaces 

Various interfaces, 

such as Ethernet, 
USB, SATA, Serial, 

Infiniband, Rapid 

I/O, etc. 

Each of these is a mix 

of physical, data, and 

other network layers.  
Some include 

connector standards, 

but can be used 

without. 

Internal 

Cabling 

Various cable 

standards, wire 

gauge, standards such 
as EIA/TIA Cat-5 

Twisted Pair, RG-6U 

Coax, etc. 

Note that cabling 

standards may be 
tightly coupled with 

connector standards 

(e.g. Coax) 

Connectors 

Various connector 

types with different 

levels of 

performance, like 
VME, cPCI, VPX, 

xTCA, MXM, 

DIMM, etc. 

Many of these are 

produced by single 

companies, but 

licensed under 
industry standard 

organizations to 

insure “openness” 

 

The internals of a subsystem may or may not use various 

open standards.  A box may have open standard external 

interfaces (e.g. MIL-STD-1275 power), but internally it 

could be an application specific point design (e.g. various 

application-specific power circuits) or it could leverage 

additional open standards (e.g. VPX standardized power 

supply to feed VPX standard modules in a VPX standard 

backplane).  The important point here is that the particular 

internal implementation is isolated from the interfaces of the 

external box.  Either way, the box does what it is supposed 

to do, and to the end-user, it’s just a black box which does 

X, regardless of how it has actually been implemented. 

Some LRUs utilize open standards internally, for multiple 

reasons such as modularity, serviceability, upgradeability, 

ease of development, etc.  It’s important to understand the 

concept involved in these, and some of the key standards 

available.  For the defense industry, a number of standards 

have been used for over 30 years, including variants of 

various computer board standards like VME, Compact PCI, 

and most recently, VPX.  The standards group, VITA, which 

governs VME and its replacement, VPX, is comprised of 

many companies who are actively engaged and supplying 

solutions in the defense industry, including component 

suppliers, prime contractors, and government funded 

university labs. 

The family of VPX standards, including the subsystem-

focused OpenVPX standard, defines a number of critical 

concepts useful in illustrating the concept of backplanes, 

slots, and Line Replaceable Modules.  The backplane is 

either a passive or active electrical interconnect between 

multiple modules, with various connectors.  OpenVPX 

defines backplanes according to: 

 

• Form-factor / size of slots 

• Types of slots 

• Number of slots 

• Topology (how everything is interconnected) 

• Performance capabilities (e.g. maximum signaling 

bandwidth) 

 

The backplane can be fully defined through the simple 

call-out of backplane specifications in accordance with the 

open standard.  The backplane contains multiple slots, and 

each slot is defined with regard to various parameters, 

including: 

 

• Form-factor / size of slots 

• Connector types 

• Common signals (e.g. Power, management, etc.) 

• Slot type specific signal pin-out arrangements (e.g. 

number and groupings of differential signal pairs) 

• Vendor or user-defined pin-out arrangements 

 

The slots are connected to each other in accordance with 

the topology of the backplane specification.  Note that the 

slots define pin-outs, but not the actual data types.  Taken 

together, the backplane and slots are similar to the office 

building example at the platform level – it’s the 

infrastructure, largely agnostic to what is being plugged into 

it as long as things fit within the general constraint brackets. 
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Line Replaceable Modules are intended to drop into the 

slot of the backplane.  They may be of various types, such as 

storage modules, network switch modules, and processing 

modules.  They have similar definitions to slots, but add: 

 

• Cooling methodology (e.g. conduction cooled, air 

cooled, liquid cooled) 

• Type of standardized data interfaces on the various 

signal pin-outs (e.g. Ethernet, PCI Express) 

• Vendor-defined signals for vendor defined pins. 

 

The “line replaceable” aspect of modules is actually part of 

the definition as well.  Some modules may not require 

support for line replacement, instead requiring removal and 

replacement within a controlled maintenance environment.  

In the VPX family of standards example, VPX-REDI (VITA 

48) specifically defines the provisions required on a module 

to make it line replaceable. 

 

Operating Systems 
Not all subsystems are electronic in nature, and not all of 

those have an element of programmability; however, the 

high availability of very small and low-cost microprocessors 

means that more and more subsystems on a platform will 

include some level of electronics, and that electronics 

module will include some level of programmability.  For 

example, a pump may have a small controller built into it 

which monitors status, provides control, and performs 

diagnostics.  As subsystems become more sophisticated, the 

presence of operating systems of one type or another will 

become increasingly common. 

Operating systems, whether they are stereotypical full-

fledged user operating systems like Windows, Linux, or 

VxWorks, or are little more than a handful of initialization, 

I/O, and interrupt routines along with a simple task 

management loop, provide one very significant task – they 

abstract the hardware so that application logic and 

algorithms can execute without direct and specialized 

interaction with the underlying hardware. 

Like other layers, operating systems use a number of open 

standard interfaces to provide better interoperability, 

software portability, and lower risk development cycles.  A 

number of the standardized interfaces are shown in Table 3. 

Table 3: Operating System Applicable Open Standards 

 

Type of 

Interface 

Applicable Open 

Standards 
Notes 

Graphics 

Interfaces 

OpenGL, DirectX 

(Windows), others 

Allows complete 

abstraction of 

graphics processing 

hardware from 
graphics software 

Audio 

Interfaces 

ALSA (Linux), DirectX 

(Windows), others 

Allows audio 

abstraction 

Storage 

Interfaces 

Various File system 

standards layered on top 

of various physical 
device interfaces 

(SATA, Flash, 

Network) 

Allows abstraction 
and virtualization 

Peripheral / 

Expansion 

Interfaces 

USB and PCI/PCI 

Express including 

multiple device classes 

for different types of 
devices 

Standard and 

vendor classes 

available 

Network 

Multiple standards for 

network access, 
including low-level 

Ethernet, various 

Internet-based protocols 

(TCP/UDP over IP, 
etc.) 

Ubiquitous 

standards with 

significant maturity 

Computing 

acceleration 

OpenCL for 

heterogeneous 
computing 

This is a 

development 
standard 

General 

Operating 

System 

standards 

POSIX, Sockets, etc. 

Note that many of 

these are more than 
just things 

supported by 

operating systems, 

but also integral to 
the software 

development 

process 

 

Middleware 
The term “Middleware” has evolved, and continues to 

evolve.  Regardless of a particular definition, Middleware is 

a “helper” layer of software which serves to simplify, 

abstract, connect, or otherwise help in the development, 

performance, and maintenance of applications.  Depending 

on complexity of the desired functions, multiple middleware 

packages may be employed.  In some cases, the middleware 

is full defined and does specific tasks, and in other cases, it 

may provide an agnostic framework for doing specific tasks.  

In practice, the middleware is usually embodied as a 

software library, or in some cases, it is a simply a network 

style service to communicate with.  



Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Proper Use of Open Standards for Commonality and Competition, D. Jedynak 

APPROVED FOR PUBLIC RELEASE 

Page 7 of 14 

One of the keys about middleware is that it can provide an 

abstraction between applications and the operating system 

itself, allowing an application written on one operating 

system to move easily to another as long as the middleware 

is implemented on both.  Rather than presenting the types of 

middleware interfaces, various types of middleware 

functionalities are provided in Table 4. 

 

Table 4: Middleware Applicable Open Standards 

 

Type of 

Middleware 
Examples Notes 

Scripting 

Engines 

Bash, Lua, Ruby, 

Perl, Python, etc. 

Many different types 

ranging from thin layers on 

top of operating systems to 

full-fledged application 
development environments 

Application 

Development 

Frameworks 

Java, QT, SDL 

Java is unique in that it 

provides a portable Virtual 
Machine which may or 

may not require an 

operating system below it 

Message 

Passing / 

Oriented 

DDS, AMQP, 

XMPP, STOMP, 

OFED, 

MPI/OpenMPI, 

etc. 

Some are well-defined by 

standards organizations.  In 

the case of OFED, it 

includes optimization of 
drivers for performance as 

well 

Parallel / 

Cloud 

Computing 

HADOOP 
Also thought of as a 

“distributed file system” 

Databases 

Multiple variants 
of SQL, various 

other databases, 

with standard 

connectivity 

“SQL” as an interface is 

quite common, regardless 

of the vendor 

Web Servers 
Many various, 

including Apache 

Massive ecosystem 

around web standards 

App 

Ecosystems 

Android, Tizen, 

FACE, etc. 

Note that Apple iOS and 

Windows are similar, but 

proprietary 

 

Applications 
Ultimately, software applications sit at the top of the stack 

of layers and integrate the various functions into the desired 

capabilities.  Although a turret may have completely manual 

controls (sights, hand cranks, triggers) for degraded-use, the 

turret stabilization and ballistics computation algorithms of a 

fire control application is what leverages the underlying 

hardware subsystems to provide the platform its desired 

capability. 

The applications need to be written to a well-defined set of 

application programming interfaces (API).  The layering, 

abstraction, and rigor are critical to software engineering, 

and have the benefit of now multiple decades of experience 

and evolution.  The use of open standard API allows 

applications continual upgrades, enhancements, and 

refinements without requiring change to the underlying 

layers. 

 

APPLYING ANALYSIS OF ALTERNATIVES 
The Analysis-of-Alternatives (AoA) is a well-established 

and understood process within the defense acquisition 

processes; however, its use is only mandated at the top level 

of the acquisition process (capability to platform).  General 

suitability, operational effectiveness and life-cycle cost for 

various alternatives are compared to determine if they meet 

the required capabilities.  The concept and philosophy of 

AoA is applicable to all levels of abstracted design.   

A direct top down requirements flow is illustrated in 

Figure 2. 

 

 
Figure 2: Typical top-down requirements flow 

 

The problem here is that a technically correct solution 

(operational effectiveness and suitability) can be developed 

from a top-down process, but it may be fiscally incorrect 

with regard to lifecycle costs and commonality with other 

acquisition programs.  It’s important to realize the two 

things opposed here aren’t “technical” and “fiscal”, but 

“correct” and “incorrect”.  The correct solutions are 

infinitely outnumbered by incorrect solutions.  The 

challenge here is to drive to the most correct technical and 

fiscal solution, in appropriate balance, rather than one or the 

other.  These concepts are already embodied in the 

acquisition terms such as “Lowest Price Technical 

Acceptable”, “Best Value”, and “Best Performance”, and 

“Not-to-Exceed” when an acquisition program evaluates 

bids.  Similar to the many dimensions of technical 

performance (e.g. Size, speed, cargo capacity, etc.), fiscal 

performance has multiple dimensions: schedule (time is 

money), risk (representing statistical money), recurring cost, 

development cost, operational cost, maintenance cost, 

retirement cost, management cost, etc. All of these are 
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summed into the general terms of life-cycle cost or total cost 

of ownership (TCO). 

The AoA specifically requires a balance of both technical 

and fiscal, is already applied from the capability to Platform 

/ System level, and should also be applied at all levels as 

illustrated in Figure 3. 

 

 
Figure 3: Analysis of Alternatives utilized at multiple 

requirements levels 

 

With the AoA at all layers, the trade-off of technical 

capability and fiscal takes on a new challenge.  As a major 

system is in consideration for acquisition to serve a 

capability, it is expected to have some interrelation with 

existing systems (e.g. different vehicles co-existing or 

cooperating in formations).  Depending on desired 

capabilities, the AoA will take this into consideration and 

will make it part of the evaluation.  The challenge is to 

continue the consideration of interrelation and synergies 

when evaluating subsystems, hardware designs, and 

software designs, rather than continuing in a stove-piped 

top-down manner. 

In the absence of availability of open standards to leverage 

across multiple acquisitions, coordination would have to 

occur in the development of point-design specifications for 

different levels of abstraction.  This is an extremely difficult 

task as each development would require highly coordinated 

working groups, or leader/follower policies which forced 

subsequent acquisitions to utilize previous work with the 

hope that it was generalized enough to reuse.  On the other 

hand, the use of open standards means that program agnostic 

technical specifications are leveraged without concern that 

they were developed for one program or another, or by one 

commercial interest or another (e.g. two competing prime 

contractors). 

This point needs to be emphasized.  Open Standards are 

developed without isolated interest by a single company or 

organization.  The very “open” nature of the standard is to 

encourage the growth of an ecosystem and business market, 

through increased adoption and straightforward usage.  As 

the market and adoption grows, competitive forces drive 

evolutionary improvements into product offerings, resulting 

in more alternatives for both technically and fiscally correct 

solutions.  Organizations will seek to share the market space 

by meeting the common open standard at the interface level 

while differentiating through various parameters, such as 

performance, cost, schedule, risk, or value-add support. 

Nevertheless, a traditional conceptual disconnect is the 

assertion that commercial – or more generally “non-defense” 

– standards aren’t suitable for defense usage.  This is a 

fiscally dangerous and incorrect perception, which eschews 

the modern demands of adjacent markets with significant 

number of congruent requirements and environments, and 

further ignores the encapsulation and isolation afforded by a 

well-layered approach. 

Figure 4 illustrates the path forward, highlighting critical 

interfaces levels for focus in order to ensure technical and 

fiscal success. 

 

 
Figure 4: Critical AoA Interface Levels 

 

The defense platform or system is just that – something 

defined specifically to provide set of defense capabilities.  It 

must meet operational and other requirements specific to the 

domain; however, this does not mean that subsystems and 

components must be, from the ground up, specifically 

defined to meet defense capabilities.  In some cases, a 

particular subsystem – for example stealth-enabling coatings 

or specific armor compositions – are designed specifically 

for the defense end-use as they are the capability providing 

subsystem (e.g. stealth or a certain level of survivability), 

but their use doesn’t mean that other subsystems must also 

have an equivalent level of ground-up clean-sheet design.  

This is the heart of the Analysis-of-Alternatives, and as it 

applies through the various levels, these key questions need 

to be asked: 
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Moving from Platform / System to Subsystems 

How can defense requirements be reconciled with industrial 

capabilities?  Is there a high level of congruence which can 

be used directly, some adaptation or refinement needed to a 

good starting point, or is there nothing even close? 

 

Moving from Subsystems / LRU to Hardware Designs 

How does internal modularity and SWaP-C balance against 

Total Cost of Ownership?  Does it cost more to make a 

subsystem modular (for serviceability, etc.) than it would if 

it was just replaced?  Is the SWaP-C burden of modularity 

worth it given the cost of the internal modules / backplanes? 

 

Moving from Hardware Designs to Software Designs 

What’s more important, the reusability, portability, and long 

term maintenance cost of an architecture, or highly 

optimized point-designs?  What’s the focus: cost to develop, 

cost to maintain, cost to reuse, or cost to optimize 

performance? 

 

With an understanding of the above questions, open 

standards can be evaluated in a succinct way:  Is an open 

standard approach (subsystem, hardware, software) more or 

less suitable to the performance and cost requirements than a 

custom / proprietary approach?  

Although this is a simple evaluation criterion, it relies on a 

very significant assumption.  Open Standards, to meet their 

potential, must be used properly and as intended.  Failure to 

understand or use properly will negate benefits, eliminate 

potential for competition, and destroy any chance of open 

standard based commonality. 

 

EXAMPLES OF HOW TO USE OPEN STANDARDS 
Unfortunately, not all Open Standards documents come 

with a “how to use” tutorial.  Nevertheless, supporters of 

open standards have a vested interest in providing 

information how to properly use them.  Information and 

guidance is available, and must be leveraged. 

Returning to the example of a screw provides a simple 

example of how to and how not to use an open standard.  

Note that this is oversimplified for clarity. 

 

How to use: 

“The screw shall be 6-32 x 1 inch in accordance with the 

referenced screw standards.” 

 

How not to use: 

“The screw shall be type #6 (root diameter 3/32) with 32 

threads per inch and 1 inch long as measured from the point 

to the underside of the head, as shown in the attached vendor 

drawing.” 

 

The first example clearly calls out the pertinent 

information as needed in the screw standard – the gauge, 

thread spacing, and overall length, and uses the 

nomenclature as intended by the open standard.  In the 

second example, additional information is provided in the 

form of additional measurements, spelled-out dimensions, 

measurement baselines, and reference to a vendor drawing, 

yet no reference to the screw standards are provided. 

The first example limits information to what’s needed, and 

leaves the rest to the standard.  The intent communicated 

here is: “I want an open standard screw that fits.” 

The second example provides additional, potentially 

conflicting, information.  The intent here is very unclear.  

Does the designer want that particular screw from that 

particular vendor? If so, then just call out the drawing / part 

number, and be done with it (“The screw shall be ACME 

P/N 1234 as shown in ACME drawing 1234.dwg”). Or do 

they just want an open standard screw, but have referenced 

additional documentation and measurements in attempt at 

“completeness” or to make the requirements specification 

stand alone?  Regardless, this is a serious impediment to 

commonality and competition as it can inadvertently exclude 

alternative open standards conformant parts. 

If the designer wants a particular vendor and part number, 

then the requirements specification has created a de facto 

sole-source.  While this may be reasonable for a subsystem 

for which an open standards based market does not exist 

(e.g. stealth coatings), it will require significant sole-source 

justification.  Why is that particular screw required?  Is it 

due to a certain strength requirement, perhaps a self-drilling 

tip, or some other performance feature?  If so, then specify 

those separately as additional requirements (e.g. “shall have 

self-drilling feature for sheet metal”); however, there needs 

to be a very strong justification as to why these additional 

non-standardized features are required (e.g. significant 

assembly time cost savings when using self-drilling screws 

which outweighs the incremental cost of self-drilling 

screws).  What’s important is that the open-standard be 

called out, ensuring that initial commonality and competition 

is enabled, and then performance constraints be levied to 

refine the selection of available products within the open 

standard market. 

In the other case, if the requirements are over-specified to 

“complete” the specification, or to make it stand alone, then 

costs will rise.  The number of requirements to be verified 

has increased in that example, and will require additional 

inspections / analysis.  Each requirement needs management 

through the process, which equates to significant labor 

hours.  Had the example simply called out the open standard 

nomenclature and parameters, the procurement, intake, and 

analysis of the part could be as simple as verification that the 

vendor’s part description on a certificate of conformance 

matched the requirements (a supplier quality management 
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task, not a design requirements management task).  Instead, 

the inclusion of additional details and a drawing will require 

the inspection of the part versus mechanical drawing itself, 

and will also preclude the straightforward cross of the part 

by an alternate vendor for various reasons (e.g. a permitted 

vendor mark, a difference within tolerances of the standard, 

dissimilar part numbers, etc.). 

The other problem with this is the concept that a proper 

development specification should incorporate or “pull-in” 

the language of external documentation to ensure control.  In 

the absence of open-standards, this is a prudent way to 

maintain control in the face of conflicting program 

requirements which may diverge at any given time and 

without notice.  Open standards, however, are governed by 

organizations which have a vested interest in stability, 

interoperability, transparency, and wide-spread adoption.  

The standards are designed to be referenced (rather than 

incorporated), and any changes tend to be well publicized 

and often backward compatible to ensure continued use.  For 

this reason, it is sufficient to call out an open standard along 

with a version, with the understanding that each version will 

be widely supported. 

Worth highlight is the common occurrence of open 

standards which reference other open standards.  This is 

increasingly common when open standards build or evolve 

upon other stable, well-known, and mature open standards.  

For example, the ANSI / VITA standard for OpenVPX 

builds upon other ANSI / VITA VPX standards, which 

themselves build upon other various ANSI / VITA and IEEE 

standards.  A common error is to flatten the standards 

unnecessarily, calling out the top standard and also calling 

out the sub-referenced standards.  The requirements 

specification may feel more complete, but it introduces 

potential confusion, version conflicts, requirements 

management, and complication to the systems engineering 

process. 

Vendor-specific, or proprietary, extensions to standards are 

not uncommon.  Many standards allow for this as a method 

by which innovation and competition is encouraged, but 

standards-based interoperability is still ensured. As the 

standard evolves, illustrated in Figure 5, various vendor 

extensions will often become a part of the standard, while 

some may stay outside of it, and other vendors create 

extensions to the new standard version.  In this way, the 

standards are able to evolve and adapt as technologies 

advance, while maintaining a core set of compatibility, 

interoperability, and competition through the current 

standard baseline.   

 
Figure 5: Evolution of Standards and Vendor 

Extensions 

 

Ultimately, how to use open standards comes down to 

intent.  How the open standard is referenced, the requirement 

written, and the performance specified must support the 

intent of using the standard in the first place.  With the clear 

admission that the use of open standards may serve 

overriding policy (e.g. OSA), technical, and fiscal goals, the 

following examples presents a summary template for how 

best to use open standards based on intent. 

 

Intent: Meet Policy 
If the sole reason to use an open standard is to meet a 

policy requirement (e.g. “use Ethernet”), then the 

requirements language needs to be kept as broad as possible.  

A policy directive to use a specific open standard is not a 

technical or fiscal requirement on a specific program.  It may 

be based on any number of high-level rationales, such as 

maintaining or growing an industrial-base capability, jump-

starting a new standard and market, or laying a foundation 

for more explicit or specific use of the standard in later 

program stages (“if you build it, they will come”).  

Note that a policy directive is often required to retire a 

technology in favor of a more advanced one.  The move 

from analog (NTSC) to digital (ATSC) television 

transmission in the United States was forced via policy (in 

the form of law), as was the move from leaded to unleaded 

gasoline.  In both cases, multiple business interests serving 

the broader market (e.g. television broadcasters, television 

manufacturers) were assured that adoption would occur, and 

no one part of the industry would be able to hold back, and 

no one part of the industry would be forced to assume undue 

risk that the market would not follow.  When all competitors 

within an industry are forced to switch together, the cost and 

risk is a neutral to their overall standings, although it does 

provide new opportunities for performance differentiations 

(e.g. a higher quality digital tuner coming from a company 

who previously had mediocre analog tuners). 

It’s recommended, at this context, to keep requirement and 

verification as broad as possible.  Some systems engineers 

will not be comfortable with these requirements and 

verifications as they are more qualitative than quantitative; 
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however, that is the nature of policy.  See the examples in 

Table 5 for policy requirements at multiple layers. 

 

Table 5: Using Open Standards to Meet Policy 

 

Requirement Verification 

The Subsystem shall leverage 

Open Standard A 

Analysis describing how Open 

Standard A was used in the 

Subsystem. 

The Operating System shall 

accommodate Open Standard B 

Analysis describing how the 

Operating System 

accommodated the use of 

Open Standard B 

The Middleware shall adhere to 

Open Standard C 

Analysis describing how the 

middleware adhered to Open 

Standard C 

The Application shall be 

compatible with Open Standard 

D 

Analysis describing how the 

application is compatible with 

Open Standard D 

 

Intent: Ensure Interoperability 
Ensuring interoperability may be for a number of different 

reasons.  These could range from pure interoperability 

between functions, to reducing unique test equipment needs, 

to reducing integration risks.  Regardless of the need, the 

open standard itself needs to be analyzed for interoperability 

statements, e.g. between versions, forward / backward 

compatibility. 

An open standard can have portions which do not 

interoperate with each other.  For example, the USB 

standard has multiple connector types (standard, micro, 

mini, etc.) which are electrically compatible, but physically 

incompatible.  The key is to ensure the proper variants 

within the standard are identified and called out.  In addition, 

standards may discontinue, or deprecate, the use of earlier 

provisions in favor of evolved or refined standards.  

Standards may also allow vendor specific extensions or 

recommended provisions, which are not core to the standard.  

All of these variations need to be assessed and accounted for 

in the requirements language. 

As with policy, it’s recommended that the requirements be 

kept broad; however, variations allowed within the standard 

must be constrained.  To the intent of interoperability, it’s 

important that the requirements be levied at the interfaces of 

all entities intended to be interoperable. 

See the examples in Table 6 for various interoperability 

requirements with Subsystems X and Y, built by different 

vendors at different points in time.  Note the intent on 

Subsystem Y requirements. 

Table 6: Using Open Standards to Ensure 

Interoperability across Vendors and Lifecycle Phase 

 

Requirement 

on Subsystem 

X 

Intent 

Requirement 

on Subsystem 

Y 

Subsystem X’s 

Interface shall 

conform to Open 
Standard A, 

Revision 1.6 

New subsystem which 

uses current standard and 

has full interoperability 
with older versions of the 

standard. 

Subsystem Y’s 

Interface shall 

conform to Open 

Standard A, 
revision 2.0. 

Subsystem Y’s 

interface shall 

provide 
backward 

compatibility to 

Open Standard 

A, revision 1.6, 
including the use 

of any interfaces 

deprecated from 

1.6 to 2.0. 

Subsystem X’s 

Interface shall 

conform to Open 
Standard A, 

Revision 1.6 

New subsystem which 

uses current standard and 

has limited constrained 

interoperability with 
older versions of the 

standard 

Subsystem Y’s 

Interface shall 

conform to Open 
Standard A, 

revision 2.0. 

Subsystem Y’s 

interface shall 
provide 

backward 

compatibility to 

Open Standard 
A, revision 1.6 

Subsystem X’s 
Interface shall 

conform to Open 

Standard A, 

Revision 1.6 

New subsystem which 

uses current standard will 
only interoperate with 

the older version of the 

standard per any 

provisions which are 
inherent in the standard. 

Subsystem Y’s 
Interface shall 

conform to Open 

Standard A, 

revision 2.0. 

Subsystem X’s 

Interface shall 

conform to Open 
Standard A, 

Revision 1.6, 

including 

recommended 
specifications 2, 

3, and 5 and 

optional 

specification 10. 

New subsystem which 

uses current standard has 
inherent interoperability 

with older versions of the 

standard, including 

recommended 
specifications and 

optional specifications.  

Assume recommended 

specifications 2 and 3 
were moved to 

requirements in version 

2.0, and optional 

specification 10 moved 
to recommended.  

Specification 5 remained 

at recommended. 

Subsystem Y’s 

Interface shall 
conform to Open 

Standard A, 

Revision 2.0, 

including 
recommended 

specifications 5 

and 10. 
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See the examples in Table 7 for various interoperability 

requirements for Subsystems X and Y using an open 

standard with variations for different roles. Note the intent 

on Subsystem Y requirements. 

 

Table 7: Using Open Standards to Ensure 

Interoperability across Different Roles 

 

Requirement on 

Subsystem X 
Intent 

Requirement on 

Subsystem Y 
Subsystem X’s 

Interface shall 

conform to Open 

Standard B, Revision 
3.0, specification 

variants 7A and 8A 

(transmitter). 

A 

complementary 

subsystem to 
the other 

Subsystem Y’s 

Interface shall conform 

to Open Standard B, 

Revision 3.0, 
specification variants 

7B and 8B (receiver). 

Subsystem X’s 

Interfaces shall 

conform to Open 

Standard B, Revision 
3.0, specification 

variant 15A (Optical) 

A subsystem 
which supports 

multiple 

variants within 

the standard, 
and provides 

translation 

between them. 

Subsystem Y’s 

Interfaces shall conform 

to Open Standard B, 

Revision 3.0, 
specification variant 

15A (Optical) and 15B 

(Copper) 

Subsystem Y shall 
translate signals from 

the Optical interfaces to 

the Copper interfaces in 

accordance with Open 
Standard B, Revision 

3.0. 

Subsystem X’s 
Interfaces shall 

conform to Open 

Standard B, Revision 

3.0, specification 
variants 20C and 20D 

A subsystem 

that has some 

variant overlap 

with the other 

Subsystem Y’s 
Interfaces shall conform 

to Open Standard B, 

Revision 3.0, 

specification variants 
20A and 20C. 

 

Intent: Ensure Competition 
Open standards enable competition.  The misuse of open 

standards prevents it.  To be very clear, many companies 

supporting open standards will seek competitive value-add 

for their products, sometimes extending the standard with 

vendor-specific features and capabilities, or implementing 

multiple open standards in one product.  This is done to 

stave-off commoditization (e.g. milk is a commodity), 

because a commodity market is typically a “race to the 

bottom” in price.  This can be a positive and a negative. 

Obviously, price is important; however, the level of 

investment in product innovation in commodity markets 

tends to be low, focused instead of operation costs.  This 

condition remains until a new dimension for innovation 

becomes apparent, or the open standard is disrupted / 

abandoned in favor of a significantly more valuable offering, 

often proprietary. 

Although price is good for discrete acquisitions, lack of 

innovation is damaging to overall continuous improvement 

in capabilities, and to the health of the industrial base.  The 

use of open standards must be seen as the foundation for 

product evolution, not a constraint which drives 

commoditization.  To ensure competition, open standard 

must be applied so that they only constrain what is 

necessary, but leave everything else open for innovation.   

Innovation around open standards tends to come in two 

variants:  Combination and Adaption.  Both of these are used 

to optimize the value of products according to expected 

usage patterns. 

In the first, separate functions are combined into one 

product that provides multiple functions in accordance with 

multiple open standards, often as lower SWaP-C and higher 

reliability than separate products.  The risk in specifications 

preventing the use of competitive products like this is 

enforcing a “one box, one function” separation.  There may 

be perceived reasons to keep functions separated into 

multiple boxes, such as survivability; however, depending 

on the number of functions in a single product, it may be 

better to have two of the product, replicating all the 

functions, rather than having a single separate box for each.  

For example, three functions combined into a single box, 

with two of the boxes providing redundancy across all three 

functions. 

In the second, various interfaces which may or may not be 

open standard are separated from the main product because 

they are either low value add (e.g. few customers use it 

versus the cost of including it), the interface is legacy with 

declining use, or is unique to another 3
rd

 party vendor.  In 

these cases, a competitive product may remove or not 

support a fully integrated implementation of the interface, 

instead providing a separate adapter solution (for example, a 

USB to Serial adapter).  The main product can be optimized 

around the newer, more common open standards, reducing 

SWaP-C, and the company can offer multiple alternative 

solutions for providing support for legacy or 3
rd

 party 

interfaces.  Requirements need to be flexible enough to 

allow for a main solution plus an adapter solution which 

meet the originally expected requirements of a single box.  

For example, a highly capable modern computing system 

may provide a software virtual machine to emulate older 

environments to host legacy applications, at a significantly 

lower cost than recreating the older processors and 

environments for native hosting of legacy applications.  

Another example is a smaller LRU with USB or Ethernet 

connections providing adaption to legacy interfaces where 

the SWaP-C of the combined product plus adapter is less 

than that of creating a box which meets the legacy interface 

requirements natively.  In the case of 3
rd

 party interfaces, it 

may be that other vendors are unable to incorporate the 

interface (e.g. legally prohibited from incorporating), 
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therefore that interface may have to be kept separate, and 

purchased or licensed at the customer level or via customer 

authorization. 

See the examples in Table 8 for how open standards can 

allow for competitive innovation.  Note the explicit 

permission leaving room for innovation – these can be 

omitted if allowed at a global level. 

 

Table 8: Using Open Standards to Ensure Competition 

 

Requirement 
Areas for Competitive 

Innovation 
Subsystem X shall host 

applications in accordance 

with Open Standard A. 

Subsystem Y shall provide an 
interface in accordance to 

Open Standard B. 

Subsystem X and Y may be 

combined. 

Combination: 

Product which hosts applications 

in accordance with Open 
Standard A and interfaces in 

accordance with Open Standard 

B. 

Subsystem Y shall interface 

with existing Subsystem X in 

accordance with Open 
Standard A. 

Subsystem Y may use 

adaption / translation to 

interface with existing 

Subsystem X in accordance 

with Open Standard A. 

Adaption: 

Product which fulfills 
requirements of Subsystem Y 

and interfaces with Subsystem X 

through adaption / translation 

mechanisms rather than directly 

incorporated interface. 

 

Intent: Ensure Commonality 
The intent of commonality is important.  If it is for part 

number commonality (e.g. part 1234 is used across 5 

platforms), then using open standards can be used to support 

Fit / Form / Function interchangeability.  On the other hand, 

if the intent of commonality is to ensure common interfaces, 

common tools, and common training, then open standards 

are the most important driver. 

Using an open standard interface allows a diversity of 

products and vendors which are all interchangeable.  Two 

products from two different vendors may both adhere to 

common interfaces as defined by an open standard.  If the 

configuration item specification is limited to what is in the 

open standard, then vendor specific additional interfaces 

which aren’t used can be ignored.  For example, a 10-pin 

connector with 6 open standard defined pins and 4 vendor 

defined pins should by specified only using the open 

standard pins, with silence on the vendor defined pins, 

assuming they are not used.  Through this limitation, two 

products from two different vendors with differences only 

on the irrelevant vendor-defined areas may be considered 

interchangeable with regard to Fit / Form / Function. 

In addition, constraining the interfaces to open standards, 

the various tools for maintaining, testing, and servicing can 

be common, even if the various products which plug-in to 

the interfaces are different.  Most open standards also 

provide well-defined testing and diagnostic tools, or at least 

procedures, specifically designed to verify the solutions 

from multiple vendors.  An added benefit when using open 

standards for common interfaces is that training for 

development or maintenance teams won’t be restricted by 

proprietary information concerns.  On the contrary, given the 

general goal of an open standard to increase its adoption, it 

means that training, tools, and information will be readily 

available. 

The examples in Table 9 show how to use open standards 

to ensure commonality. 

 

Table 9: Using Open Standards to Ensure 

Commonality 

 

Intent Requirement 

Ensure Fit / Form / Function 

interchangeability 

Subsystem X interfaces shall 

adhere to Open Standard A. 

Subsystem X interfaces 

specified in Open Standard A as 
vendor defined shall be left 

unused. 

Ensure common interfaces 
All subsystem interfaces shall 
adhere to Open Standard A 

Ensure common maintenance 

tools 

All subsystem maintenance 

interfaces shall adhere to Open 
Standard A 

(Alternatively) 

All maintenance tools shall be in 

accordance with Open Standard 
A. 

Ensure common training 

All training shall be in 

accordance with Open Standard 
A.  

 

THE IMPACT ON COMMONALITY AND 
COMPETITION 

Ultimately, open standards provide vendors and customers 

a way to focus on the performance and capabilities that 

matter, rather than on common and competitively non-value 

add features.  It’s easy to understand this when considering a 

counter-example: if gasoline formulations and gasoline 

nozzles were not standardized, then each automobile 

company would need to support its own complete ecosystem 

of gasoline types, nozzle types, testing, regulatory 

compliance, distribution, and resources. The end result is 

that any given automobile company would be forced to 

expend significant resources to sell gasoline (a commodity), 

thus diverting investment and focus from innovation in their 

core focus – designing and selling automobiles.  For the 

customer base, it means that the decision about the purchase 

of an automobile would involve the proximity of company-
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specific gasoline stations, rather than focusing on the 

suitability, effectiveness, and price of the automobile itself. 

In order to gain the benefit of open standards, it’s critical 

to utilize them correctly, as intended.  If the standards are 

ignored or misused, the market may actually start to respond 

poorly, with vendors starting to abandon the open standards 

as a non-value add liability, or at least no longer relevant.  

Once this occurs, exclusive, proprietary standards will start 

to proliferate, fracturing the marketplace, and virtually 

eliminating the opportunity for commonality and 

competition. 

 

CONCLUSION 
Specifications are critical.  Understanding the 

specifications which already exist within open standards and 

how to leverage them properly is essential to ensuring 

commonality and competition.  The various layers of open 

standards provide foundations upon which to build 

capabilities in systems, and through proper use of the 

specification language of an open standard, the maximum 

amount of flexibility, interoperability, and interchangeability 

can be achieved.  Using the concept of Analysis-of-

Alternatives at multiple levels (not just platform / system), 

various open standards can be evaluated against each other 

and proprietary / custom solutions for best technical and 

fiscal correctness.  It’s important to remember that open 

standards are developed and supported by multiple 

stakeholders within various markets, including vendors and 

user organizations, and that a significant amount of domain-

specific work has been performed to ensure the best 

performance and suitability to the particular market when 

used as intended.  Open standards, by their nature, strive for 

widespread adoption.  Widespread adoption brings maturity, 

strong competition, and well-defined commonality, driving 

best value for the end customer.  Circumventing open 

standards by improper use in specification reduces or 

eliminates these benefits, resulting in unnecessary costs, 

poor performance, and the risk of proprietary lock-in. 

 

 


