
2014 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM
SYSTEMS ENGINEERING (SE) TECHNICAL SESSION

AUGUST 12-14, 2014 – NOVI, MICHIGAN

PROPER USE OF OPEN STANDARDS FOR COMMONALITY AND
COMPETITION

Mr. David Jedynak

Chief Technology Officer, COTS Solutions
Curtiss-Wright Defense Solutions

Austin, TX

ABSTRACT
This paper will describe layers of open standards, demonstrate the problems of standard top-down

requirements flow-down and derivation, and show how the standard Analysis-of-Alternatives, as used at highest

levels of Department of Defense acquisition, is appropriate for use at lower levels. Examples of how to (and not

to) use open-standards in systems engineering specifications for best commonality and competition will be

provided, intended for use as templates in specifications.

INTRODUCTION
Today’s open standards, either developed specifically for

embedded military commercial-off-the-shelf (COTS)

applications or for adjacent markets such as the commercial

High Performance Computing (HPC) market, provide

today’s rugged deployed military system designer with well-

known, well supported of Open Systems Architecture

(OSA)-based methods for addressing the full range of

system specifications including Power, Environmental,

Network, Thermal, and Physical. Increased use of well-

established and broadly supported open standards enables

the design and manufacture of subsystems using off-the-

shelf building blocks that deliver today’s most advanced

computing technologies while reducing design risk,

development schedule, and cost.

Following the Weapon Systems Acquisition Reform Act of

2009, the U.S. Government takes a much greater role in

defining the high level technical requirements for new

system designs. The updated acquisition process also

strengthened the mandate to increase the use of OSA design

strategies that, when applied effectively, enable the faster,

simpler design of Lowest Price Technically Acceptable

(LPTA) solutions to meet emerging capabilities

requirements.

For the decision-makers now tasked with defining system

requirements, the key to tapping the full potential of OSA

requires knowledge of today’s extensive eco-system of

open-standard interfaces and hardware. By designing

subsystem solutions with proven open standards-based

building blocks, today’s system integrators can achieve great

cost savings and reduced deployment schedules.

One of the most common contributors to added cost in

system design is over-specification, which may exclude or

complicate the use of open-standard systems and

components. COTS vendors who design solutions using

open standards can help Government reduce costs and

optimize system space, weight and Power (SWaP) by

providing architectural input based on their extensive

knowledge and expertise in the proper use of off-the-shelf

building blocks to satisfy the most essential technical

requirements. These standards enable a community of

competitive suppliers to offer cost-effective off-the-shelf

alternatives to proprietary, and frequently over specified,

alternatives.

THE PROBLEM OF SPECIFICATIONS
 Specifications are critical and essential to business and

technology. This is not up for dispute, and the global

transition of economies and capabilities to a highly

interoperable and interchangeable set of businesses,

resources, processes, and technologies is solid proof that the

use of specifications is highly advantageous. Whether

specifications are physical, software, financial, process,

regulatory, they are of immense benefit when applied

correctly.

The problem, however, is in the level of detail in the

application of specifications. Whether too much detail

(over-specification) or not enough detail (under-

specification), inappropriate use can create significant risk,

additional cots, and unwarranted constraints. The system /

product designer (systems engineer) needs to appropriately

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Proper Use of Open Standards for Commonality and Competition, D. Jedynak

APPROVED FOR PUBLIC RELEASE

Page 2 of 14

communicate their intent – no more, no less – through the

specifications.

To illustrate this point, take the simple example of a screw.

If, for whatever system capability reason, the designer wants

a system to be assembled with screws (as opposed to rivets,

nails, welds, or adhesives, etc.), then it’s expected to see a

requirement something along the lines of “Only screws shall

be used for unit construction.” It’s understandable to

immediately ask “what type?” and to further specify the

specific type of screw to be used. It’s here that the

specification problems arise.

Let’s ignore the capability provided by using screws –

perhaps it makes it easier to disassemble and cannibalize

physical parts, perhaps it’s an institutional policy – “screws

are better than glue” – but it doesn’t matter. What matters is

the further intent of the system designer. Consider the

following intent and specifications:

Intent:

Standardize Screws for best purchasing volumes, driving to

lowest cost.

Under-specification:

“Use screws” doesn’t communicate this intent, as it does not

constrain the types to increase volume

Over-specification:

“Use Company X part number 123” also doesn’t

communicate the intent, but tries to cut to the

implementation, with the assumption that Company X part

number 123 will be the type with the best volume pricing.

In this case, the communicating intent via a proper

specification depends on the recipient of the specification. If

it’s an internal design resource, the proper specification

could be “Use screws selected from our company’s high

volume common screw list.” If it’s an external resource (3
rd

party), then the proper specification could be “Use screws

selected from your company high volume screw list.”

What’s interesting here is that there’s actually a potentially

flawed assumption up front, which is “highest volumes

equals lowest cost” which illustrates the danger of

specifying screws when what you really want is a box.

The argument can be made that “a box” is not all you

want. It may be that you want “a box which can be

assembled and disassembled using the standard repair tool-

kit”, at which point, it would be fair to specify “use screws

which are compatible with the standard repair tool-kit”.

Over-specification, in this case, would be to call out the

detailed types of screws, provide drawings of the screws, or

otherwise focus on aspects of the screw which are not

specifically related to the interface between screw and tool

(e.g. “Slotted screwdriver, blade widths of 3/16
th
 through ½

inch”). When over specifying, the implementer of the

design – generally considered the subject matter expert – is

constrained from applying their domain knowledge and best

practices to the implementation.

Screws are an easy example of improper use of

specifications causing problems. Another more complex

example is computer architectures and processors, which

introduce a moving specification target due to constant

improvements in capabilities. Consider the following intent

and specifications:

Intent:

The system needs a computer processor which is capable of

implementing system capability X.

Under-specification:

“The system shall contain a processor” Nothing is provided

with regard to performance figures versus the need of

capability X (e.g. processing capability, memory size, and

data throughput).

Over-specification:

“The system shall contain one Intel 4
th

 Generation Core i7

Model 4690S, with 2 Gigabytes of DDR3-1333 RAM, and

one 100Mbit/s Ethernet port.” The problem here is that the

4690S is a mid-range option out of about 100 model variants

of the 4th Generation Core i7 processor which itself will be

replaced by the more capable 5
th
 Generation within 18

months (and so on), the RAM specification is a mid-range

specification which precludes higher and lower performance

and density variants, and the Ethernet port specification is

actually slower than the standard 1Gigabit/s performance

currently included in modern chipsets. This specification

locks implementation to a very specific design configuration

that may meet the performance needs today, but constrains

everything else severely, potentially to a highly non-optimal

design with regard to cost and performance.

In this case, proper specification boils down to specifying

the expected computing needs of an algorithm, its memory

requirements, and its data paths using industry standard

performance benchmarks and standards to constrain the

solution appropriately. For example, rather than specifying a

particular processor models and architectures, specify

computing performance using such standards as the various

benchmarks published by the non-profit Standard

Performance Evaluation Corporation (e.g. SPEC CPU2006),

and requirements such as “1.5 Gigabytes of RAM reserved

for program executable and heap”, and “80 Megabit/second

of UDP data throughput with packets of 4096 bytes.” With

these sort of requirements, the implementer is free to select

amongst multiple different computer architectures (e.g. Intel

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Proper Use of Open Standards for Commonality and Competition, D. Jedynak

APPROVED FOR PUBLIC RELEASE

Page 3 of 14

x86 or 64 bit, ARM, PowerPC, etc.) as long as it can host the

application and provide it with the appropriate resources.

A typical argument is that perhaps the specific computer

architecture is needed because the legacy algorithms make

use of specific hardware acceleration features (e.g. AltiVec

in PowerPC), and that, as a result, the same architecture is

required moving forward. The problem with this is that

when the algorithm was written, the hardware acceleration

features were used to achieve algorithm performance levels,

but a more modern, faster processor may be able to outpace,

in software alone, the older architecture with hardware

acceleration. This again illustrates the danger of just

specifying a specific architecture when actually a

performance level is the real concern.

What’s underlying both of these examples is the concept of

layers and interfaces. At some point, building blocks are

assembled, via interfaces, and those assembled building

blocks become the foundation for additional layers, and

interfaces exist between those layers of additional building

blocks.

What matters is the performance of the building blocks,

and the interfaces to them, and specifications need to stay

focused purely on these aspects, rather than the specific

implementations. It’s with this that open standards have

significant impact on commonality and competition.

LAYERS OF OPEN STANDARDS
Ultimately, everything is a mix of interfaces and building

blocks, whether physical or virtual. When presenting layers

and interfaces, a fundamental question is the context and

perspective – what’s the bottom layer? What’s the top layer?

The specific subject domain (e.g. defense) helps define those

layers and interfaces. Figure 1 present a framework for

definitions specifically focused on the most complex

systems – mixed hardware and software.

Figure 1: Layers of Open Standards

From an acquisition and typical requirements management

perspective, the platform sits on top, with requirements

flowing down. In this case, however, it’s important to break

that perspective and recast into performance / capability

layers, with higher layers of capability depending on the

performance of layers below. This forces a different

perspective on use of specifications, and assists with the

concept of using Analysis of Alternatives.

The sections below provide descriptions and insight to the

various layers, their complexities, and where open standards

can be of benefit.

The Platform
Although the highest level when it comes to acquisition

and capability definitions (e.g. a tank, jet, destroyer, radar),

it’s far more instructive and useful to think of the platform as

the foundation upon which to build capability.

The platform has specific performance characteristics

which everything above / on it must fit (this is a recurring

theme) in order to deliver the desired capability, usually

thought of as top-down budgets, including physical size,

weight, power, and cost to accommodate subsystems. Given

that platforms are very unique and physical in nature, it’s

understandable that only a few open-standard interfaces exist

for the platform interface, as shown in Table 1.

Table 1: Platform-Level Applicable Open Standards

Type of

Interface

Applicable Open

Standards
Notes

General

Equipment

Mounting

Screw / Bolt sizes

(English and Metric)

Only the holes are

standard, not the

patterns of holes

Display

Mounting
VESA standards

Standard display

back 4-hole mounts

Commercial

Rack Mount

Various from EIA,
CEA, IEC

19 inch “relay rack”
or “telco rack”

LRU Chassis

sizes

Various ARINC
Standards (ATR),

VITA 58, VITA 75

This is really just a

standardization of
physical space and

mounting

Power

MIL-STD-1275 / 704,
Standard Single and 3-

phase 110/220VAC

50/60Hz, 5V USB,

12V Automotive,
Power-over-Ethernet

Noteworthy that all
standards except

MIL-STD-1275/704

have physical

connector standards
associated with them

Cabling

Various cable

standards, wire gauge,

standards such as

EIA/TIA Cat-5

Twisted Pair, RG-6U

Coax, etc.

Note that cabling
standards may be

tightly coupled with

connector standards

(e.g. Coax)

Connectors

MIL-STD-38999,

USB, RJ-45 (IEC
8P8C), Coax, Various

Power (as above)

Note that many of

these connector types

are tightly associated
with the signal and

cable types, except

MIL-STD-38999

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Proper Use of Open Standards for Commonality and Competition, D. Jedynak

APPROVED FOR PUBLIC RELEASE

Page 4 of 14

For the platform itself, there are a number of other

standards which are more domain specific, e.g. standard fuel

types, lubricants, ammunition types, battery sizes, wheel and

track sizes, etc. What’s interesting about these is that they

are consumable / replaceable items, which recognize the

benefits of commonality and competition quickly, as

purchases and use occur on a regular basis. Many of the

interfaces in Table 1 have been in significantly longer design

/ purchase / replace cycles, which means the benefits of

commonality and competition have not been as readily

apparent. This is an important historical distinction, and

needs to be considered given the significant change in pace

of technology / capability cycles in broader markets, and the

need for significant up-tempo of capability updates in the

defense market.

An office-building provides and good analogy for

illustration of the benefits of well-defined open standard

interfaces. The building provides standard interfaces, such

as power and network wiring. This infrastructure serves a

broad range of end-uses, allowing the use of the building to

evolve and change over time and the end-users’ desired

purpose. It also decouples the specific technologies within

the office building from the building itself. No one would

ever buy a new office building just because they need to

upgrade the printers, computers, and phones. In fact, those

items don’t need to be purchased with the building in the

first place. As long as the necessary infrastructure is

present, the technologies can move, evolve, change, or

upgrade as desired.

Subsystem / Line Replaceable Units (LRUs)
Whether as a single LRU or a collection of associated

LRUs, the platform is filled with various Subsystems which

are intended to perform various functions to enable certain

capabilities, e.g. provide satellite communications, stabilize

a turret, or cook MREs. Regardless of the functions they

perform and capabilities they provide, the LRUs are installed

within the platform, which really means they must interface

to the platform in accordance with particular specifications,

while performing their intended functions to provide system

level capabilities. To that end, the list of applicable Platform

Open Standards is a significant part of the list of applicable

LRU Open Standards. For example, power provided by the

platform is power consumed by the LRU, and they must

match.

Two critical points follow from this:

• The internal interfaces of a Subsystem are not

necessarily dictated by the external Platform interfaces

• The capability of a Subsystem is not necessarily

dictated by the Platform performance

It’s these two points that are important to remember when

applying open standards – they’re not all-inclusive and

comprehensive, often orthogonal, and more importantly, the

use of an open standard does not preclude the use of

proprietary interfaces within an externally open standard

subsystem. Following from that, it’s important to realize

that a platform’s performance (e.g. can provide only a

maximum supply of 2 Amps of 28VDC MIL-STD-1275

power) allocated to a subsystem doesn’t mean the subsystem

should be considered a fixed capability over time, as LRUs

from competing vendors or next generation LRUs may have

significantly more capability than the baseline.

The corollaries to these points are:

• External Platform interfaces may constrain the set of

applicable internal Subsystem interfaces

• Platform performance may constrain the current

capability of a Subsystem

To the first point: a physical standard based on 10 inch

long parts won’t fit in a box that’s limited to only 5 inches

long. What’s critical about the second point is the example

above – the platform’s performance (e.g. Power capacity)

may limit the capability of a subsystem at the current time,

but not necessarily tomorrow’s more power-efficient

implementation.

The take-away is that although interface and capability are

interrelated, they aren’t tightly correlated, having more of a

“bracketing” relationship. Interface standards typically

support a range of parameters (e.g. “up to 15 Amps”, “up to

125MHz signaling”, “from 6 to 128 pins”). Capability of a

subsystem is more of a continuum which will eventually find

boundaries at the edge of an interface range, for example, a

limited amount of data processing capability because of the

limits of the external data interface speeds, not the internal

processing horsepower.

It’s important to remember that increased capability may

help drive interface requirements to a lower bracket. For

example, more capable and efficient electronics mean lower

power consumption for the desired capability, resulting in

the applicability of another external interface which was not

previously useable, such as lower capacity USB power or

Power-over-Ethernet versus MIL-STD-1275 power.

This loosely-coupled relationship between interfaces and

capabilities is important to using open standards, which are,

by their nature, adaptable to a range of designs and

applications, not just point designs.

LRUs have many different applicable open standards,

beyond those of external platform interfaces. Some of these

are shown in Table 2.

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Proper Use of Open Standards for Commonality and Competition, D. Jedynak

APPROVED FOR PUBLIC RELEASE

Page 5 of 14

Table 2: Subsystem / LRU Applicable Open Standards

Type of

Interface

Applicable Open

Standards
Notes

General

Mounting

Screw / Bolt sizes

(English and Metric)

Just like the platform,

not all hole patterns

are standardized

Internal Circuit

Board

accommodation

Various standards,

including VME,
VPX, cPCI, PC-104,

COMExpress, AT/X

families, etc.

Many different
standardized form-

factors

Cooling

provisions

Standardized fan

sizes / mounting,

IEEE standardized

conduction cooling
standards, other

VITA standards for

cooling mechanisms

Often these standards

are a part of a form-

factor standard, or

called-out and
referenced by those

standards (e.g. VPX

calls out IEEE cooling

standards)

Power

Various standards

based on various

board form-factors
like ATX power

supply, VPX power

supply, etc.

These standards

typically collected a

number of voltages,
current ratings, noise

parameters into

standardized pin-outs,

etc.

Data interfaces

Various interfaces,

such as Ethernet,
USB, SATA, Serial,

Infiniband, Rapid

I/O, etc.

Each of these is a mix

of physical, data, and

other network layers.
Some include

connector standards,

but can be used

without.

Internal

Cabling

Various cable

standards, wire

gauge, standards such
as EIA/TIA Cat-5

Twisted Pair, RG-6U

Coax, etc.

Note that cabling

standards may be
tightly coupled with

connector standards

(e.g. Coax)

Connectors

Various connector

types with different

levels of

performance, like
VME, cPCI, VPX,

xTCA, MXM,

DIMM, etc.

Many of these are

produced by single

companies, but

licensed under
industry standard

organizations to

insure “openness”

The internals of a subsystem may or may not use various

open standards. A box may have open standard external

interfaces (e.g. MIL-STD-1275 power), but internally it

could be an application specific point design (e.g. various

application-specific power circuits) or it could leverage

additional open standards (e.g. VPX standardized power

supply to feed VPX standard modules in a VPX standard

backplane). The important point here is that the particular

internal implementation is isolated from the interfaces of the

external box. Either way, the box does what it is supposed

to do, and to the end-user, it’s just a black box which does

X, regardless of how it has actually been implemented.

Some LRUs utilize open standards internally, for multiple

reasons such as modularity, serviceability, upgradeability,

ease of development, etc. It’s important to understand the

concept involved in these, and some of the key standards

available. For the defense industry, a number of standards

have been used for over 30 years, including variants of

various computer board standards like VME, Compact PCI,

and most recently, VPX. The standards group, VITA, which

governs VME and its replacement, VPX, is comprised of

many companies who are actively engaged and supplying

solutions in the defense industry, including component

suppliers, prime contractors, and government funded

university labs.

The family of VPX standards, including the subsystem-

focused OpenVPX standard, defines a number of critical

concepts useful in illustrating the concept of backplanes,

slots, and Line Replaceable Modules. The backplane is

either a passive or active electrical interconnect between

multiple modules, with various connectors. OpenVPX

defines backplanes according to:

• Form-factor / size of slots

• Types of slots

• Number of slots

• Topology (how everything is interconnected)

• Performance capabilities (e.g. maximum signaling

bandwidth)

The backplane can be fully defined through the simple

call-out of backplane specifications in accordance with the

open standard. The backplane contains multiple slots, and

each slot is defined with regard to various parameters,

including:

• Form-factor / size of slots

• Connector types

• Common signals (e.g. Power, management, etc.)

• Slot type specific signal pin-out arrangements (e.g.

number and groupings of differential signal pairs)

• Vendor or user-defined pin-out arrangements

The slots are connected to each other in accordance with

the topology of the backplane specification. Note that the

slots define pin-outs, but not the actual data types. Taken

together, the backplane and slots are similar to the office

building example at the platform level – it’s the

infrastructure, largely agnostic to what is being plugged into

it as long as things fit within the general constraint brackets.

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Proper Use of Open Standards for Commonality and Competition, D. Jedynak

APPROVED FOR PUBLIC RELEASE

Page 6 of 14

Line Replaceable Modules are intended to drop into the

slot of the backplane. They may be of various types, such as

storage modules, network switch modules, and processing

modules. They have similar definitions to slots, but add:

• Cooling methodology (e.g. conduction cooled, air

cooled, liquid cooled)

• Type of standardized data interfaces on the various

signal pin-outs (e.g. Ethernet, PCI Express)

• Vendor-defined signals for vendor defined pins.

The “line replaceable” aspect of modules is actually part of

the definition as well. Some modules may not require

support for line replacement, instead requiring removal and

replacement within a controlled maintenance environment.

In the VPX family of standards example, VPX-REDI (VITA

48) specifically defines the provisions required on a module

to make it line replaceable.

Operating Systems
Not all subsystems are electronic in nature, and not all of

those have an element of programmability; however, the

high availability of very small and low-cost microprocessors

means that more and more subsystems on a platform will

include some level of electronics, and that electronics

module will include some level of programmability. For

example, a pump may have a small controller built into it

which monitors status, provides control, and performs

diagnostics. As subsystems become more sophisticated, the

presence of operating systems of one type or another will

become increasingly common.

Operating systems, whether they are stereotypical full-

fledged user operating systems like Windows, Linux, or

VxWorks, or are little more than a handful of initialization,

I/O, and interrupt routines along with a simple task

management loop, provide one very significant task – they

abstract the hardware so that application logic and

algorithms can execute without direct and specialized

interaction with the underlying hardware.

Like other layers, operating systems use a number of open

standard interfaces to provide better interoperability,

software portability, and lower risk development cycles. A

number of the standardized interfaces are shown in Table 3.

Table 3: Operating System Applicable Open Standards

Type of

Interface

Applicable Open

Standards
Notes

Graphics

Interfaces

OpenGL, DirectX

(Windows), others

Allows complete

abstraction of

graphics processing

hardware from
graphics software

Audio

Interfaces

ALSA (Linux), DirectX

(Windows), others

Allows audio

abstraction

Storage

Interfaces

Various File system

standards layered on top

of various physical
device interfaces

(SATA, Flash,

Network)

Allows abstraction
and virtualization

Peripheral /

Expansion

Interfaces

USB and PCI/PCI

Express including

multiple device classes

for different types of
devices

Standard and

vendor classes

available

Network

Multiple standards for

network access,
including low-level

Ethernet, various

Internet-based protocols

(TCP/UDP over IP,
etc.)

Ubiquitous

standards with

significant maturity

Computing

acceleration

OpenCL for

heterogeneous
computing

This is a

development
standard

General

Operating

System

standards

POSIX, Sockets, etc.

Note that many of

these are more than
just things

supported by

operating systems,

but also integral to
the software

development

process

Middleware
The term “Middleware” has evolved, and continues to

evolve. Regardless of a particular definition, Middleware is

a “helper” layer of software which serves to simplify,

abstract, connect, or otherwise help in the development,

performance, and maintenance of applications. Depending

on complexity of the desired functions, multiple middleware

packages may be employed. In some cases, the middleware

is full defined and does specific tasks, and in other cases, it

may provide an agnostic framework for doing specific tasks.

In practice, the middleware is usually embodied as a

software library, or in some cases, it is a simply a network

style service to communicate with.

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Proper Use of Open Standards for Commonality and Competition, D. Jedynak

APPROVED FOR PUBLIC RELEASE

Page 7 of 14

One of the keys about middleware is that it can provide an

abstraction between applications and the operating system

itself, allowing an application written on one operating

system to move easily to another as long as the middleware

is implemented on both. Rather than presenting the types of

middleware interfaces, various types of middleware

functionalities are provided in Table 4.

Table 4: Middleware Applicable Open Standards

Type of

Middleware
Examples Notes

Scripting

Engines

Bash, Lua, Ruby,

Perl, Python, etc.

Many different types

ranging from thin layers on

top of operating systems to

full-fledged application
development environments

Application

Development

Frameworks

Java, QT, SDL

Java is unique in that it

provides a portable Virtual
Machine which may or

may not require an

operating system below it

Message

Passing /

Oriented

DDS, AMQP,

XMPP, STOMP,

OFED,

MPI/OpenMPI,

etc.

Some are well-defined by

standards organizations. In

the case of OFED, it

includes optimization of
drivers for performance as

well

Parallel /

Cloud

Computing

HADOOP
Also thought of as a

“distributed file system”

Databases

Multiple variants
of SQL, various

other databases,

with standard

connectivity

“SQL” as an interface is

quite common, regardless

of the vendor

Web Servers
Many various,

including Apache

Massive ecosystem

around web standards

App

Ecosystems

Android, Tizen,

FACE, etc.

Note that Apple iOS and

Windows are similar, but

proprietary

Applications
Ultimately, software applications sit at the top of the stack

of layers and integrate the various functions into the desired

capabilities. Although a turret may have completely manual

controls (sights, hand cranks, triggers) for degraded-use, the

turret stabilization and ballistics computation algorithms of a

fire control application is what leverages the underlying

hardware subsystems to provide the platform its desired

capability.

The applications need to be written to a well-defined set of

application programming interfaces (API). The layering,

abstraction, and rigor are critical to software engineering,

and have the benefit of now multiple decades of experience

and evolution. The use of open standard API allows

applications continual upgrades, enhancements, and

refinements without requiring change to the underlying

layers.

APPLYING ANALYSIS OF ALTERNATIVES
The Analysis-of-Alternatives (AoA) is a well-established

and understood process within the defense acquisition

processes; however, its use is only mandated at the top level

of the acquisition process (capability to platform). General

suitability, operational effectiveness and life-cycle cost for

various alternatives are compared to determine if they meet

the required capabilities. The concept and philosophy of

AoA is applicable to all levels of abstracted design.

A direct top down requirements flow is illustrated in

Figure 2.

Figure 2: Typical top-down requirements flow

The problem here is that a technically correct solution

(operational effectiveness and suitability) can be developed

from a top-down process, but it may be fiscally incorrect

with regard to lifecycle costs and commonality with other

acquisition programs. It’s important to realize the two

things opposed here aren’t “technical” and “fiscal”, but

“correct” and “incorrect”. The correct solutions are

infinitely outnumbered by incorrect solutions. The

challenge here is to drive to the most correct technical and

fiscal solution, in appropriate balance, rather than one or the

other. These concepts are already embodied in the

acquisition terms such as “Lowest Price Technical

Acceptable”, “Best Value”, and “Best Performance”, and

“Not-to-Exceed” when an acquisition program evaluates

bids. Similar to the many dimensions of technical

performance (e.g. Size, speed, cargo capacity, etc.), fiscal

performance has multiple dimensions: schedule (time is

money), risk (representing statistical money), recurring cost,

development cost, operational cost, maintenance cost,

retirement cost, management cost, etc. All of these are

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Proper Use of Open Standards for Commonality and Competition, D. Jedynak

APPROVED FOR PUBLIC RELEASE

Page 8 of 14

summed into the general terms of life-cycle cost or total cost

of ownership (TCO).

The AoA specifically requires a balance of both technical

and fiscal, is already applied from the capability to Platform

/ System level, and should also be applied at all levels as

illustrated in Figure 3.

Figure 3: Analysis of Alternatives utilized at multiple

requirements levels

With the AoA at all layers, the trade-off of technical

capability and fiscal takes on a new challenge. As a major

system is in consideration for acquisition to serve a

capability, it is expected to have some interrelation with

existing systems (e.g. different vehicles co-existing or

cooperating in formations). Depending on desired

capabilities, the AoA will take this into consideration and

will make it part of the evaluation. The challenge is to

continue the consideration of interrelation and synergies

when evaluating subsystems, hardware designs, and

software designs, rather than continuing in a stove-piped

top-down manner.

In the absence of availability of open standards to leverage

across multiple acquisitions, coordination would have to

occur in the development of point-design specifications for

different levels of abstraction. This is an extremely difficult

task as each development would require highly coordinated

working groups, or leader/follower policies which forced

subsequent acquisitions to utilize previous work with the

hope that it was generalized enough to reuse. On the other

hand, the use of open standards means that program agnostic

technical specifications are leveraged without concern that

they were developed for one program or another, or by one

commercial interest or another (e.g. two competing prime

contractors).

This point needs to be emphasized. Open Standards are

developed without isolated interest by a single company or

organization. The very “open” nature of the standard is to

encourage the growth of an ecosystem and business market,

through increased adoption and straightforward usage. As

the market and adoption grows, competitive forces drive

evolutionary improvements into product offerings, resulting

in more alternatives for both technically and fiscally correct

solutions. Organizations will seek to share the market space

by meeting the common open standard at the interface level

while differentiating through various parameters, such as

performance, cost, schedule, risk, or value-add support.

Nevertheless, a traditional conceptual disconnect is the

assertion that commercial – or more generally “non-defense”

– standards aren’t suitable for defense usage. This is a

fiscally dangerous and incorrect perception, which eschews

the modern demands of adjacent markets with significant

number of congruent requirements and environments, and

further ignores the encapsulation and isolation afforded by a

well-layered approach.

Figure 4 illustrates the path forward, highlighting critical

interfaces levels for focus in order to ensure technical and

fiscal success.

Figure 4: Critical AoA Interface Levels

The defense platform or system is just that – something

defined specifically to provide set of defense capabilities. It

must meet operational and other requirements specific to the

domain; however, this does not mean that subsystems and

components must be, from the ground up, specifically

defined to meet defense capabilities. In some cases, a

particular subsystem – for example stealth-enabling coatings

or specific armor compositions – are designed specifically

for the defense end-use as they are the capability providing

subsystem (e.g. stealth or a certain level of survivability),

but their use doesn’t mean that other subsystems must also

have an equivalent level of ground-up clean-sheet design.

This is the heart of the Analysis-of-Alternatives, and as it

applies through the various levels, these key questions need

to be asked:

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Proper Use of Open Standards for Commonality and Competition, D. Jedynak

APPROVED FOR PUBLIC RELEASE

Page 9 of 14

Moving from Platform / System to Subsystems

How can defense requirements be reconciled with industrial

capabilities? Is there a high level of congruence which can

be used directly, some adaptation or refinement needed to a

good starting point, or is there nothing even close?

Moving from Subsystems / LRU to Hardware Designs

How does internal modularity and SWaP-C balance against

Total Cost of Ownership? Does it cost more to make a

subsystem modular (for serviceability, etc.) than it would if

it was just replaced? Is the SWaP-C burden of modularity

worth it given the cost of the internal modules / backplanes?

Moving from Hardware Designs to Software Designs

What’s more important, the reusability, portability, and long

term maintenance cost of an architecture, or highly

optimized point-designs? What’s the focus: cost to develop,

cost to maintain, cost to reuse, or cost to optimize

performance?

With an understanding of the above questions, open

standards can be evaluated in a succinct way: Is an open

standard approach (subsystem, hardware, software) more or

less suitable to the performance and cost requirements than a

custom / proprietary approach?

Although this is a simple evaluation criterion, it relies on a

very significant assumption. Open Standards, to meet their

potential, must be used properly and as intended. Failure to

understand or use properly will negate benefits, eliminate

potential for competition, and destroy any chance of open

standard based commonality.

EXAMPLES OF HOW TO USE OPEN STANDARDS
Unfortunately, not all Open Standards documents come

with a “how to use” tutorial. Nevertheless, supporters of

open standards have a vested interest in providing

information how to properly use them. Information and

guidance is available, and must be leveraged.

Returning to the example of a screw provides a simple

example of how to and how not to use an open standard.

Note that this is oversimplified for clarity.

How to use:

“The screw shall be 6-32 x 1 inch in accordance with the

referenced screw standards.”

How not to use:

“The screw shall be type #6 (root diameter 3/32) with 32

threads per inch and 1 inch long as measured from the point

to the underside of the head, as shown in the attached vendor

drawing.”

The first example clearly calls out the pertinent

information as needed in the screw standard – the gauge,

thread spacing, and overall length, and uses the

nomenclature as intended by the open standard. In the

second example, additional information is provided in the

form of additional measurements, spelled-out dimensions,

measurement baselines, and reference to a vendor drawing,

yet no reference to the screw standards are provided.

The first example limits information to what’s needed, and

leaves the rest to the standard. The intent communicated

here is: “I want an open standard screw that fits.”

The second example provides additional, potentially

conflicting, information. The intent here is very unclear.

Does the designer want that particular screw from that

particular vendor? If so, then just call out the drawing / part

number, and be done with it (“The screw shall be ACME

P/N 1234 as shown in ACME drawing 1234.dwg”). Or do

they just want an open standard screw, but have referenced

additional documentation and measurements in attempt at

“completeness” or to make the requirements specification

stand alone? Regardless, this is a serious impediment to

commonality and competition as it can inadvertently exclude

alternative open standards conformant parts.

If the designer wants a particular vendor and part number,

then the requirements specification has created a de facto

sole-source. While this may be reasonable for a subsystem

for which an open standards based market does not exist

(e.g. stealth coatings), it will require significant sole-source

justification. Why is that particular screw required? Is it

due to a certain strength requirement, perhaps a self-drilling

tip, or some other performance feature? If so, then specify

those separately as additional requirements (e.g. “shall have

self-drilling feature for sheet metal”); however, there needs

to be a very strong justification as to why these additional

non-standardized features are required (e.g. significant

assembly time cost savings when using self-drilling screws

which outweighs the incremental cost of self-drilling

screws). What’s important is that the open-standard be

called out, ensuring that initial commonality and competition

is enabled, and then performance constraints be levied to

refine the selection of available products within the open

standard market.

In the other case, if the requirements are over-specified to

“complete” the specification, or to make it stand alone, then

costs will rise. The number of requirements to be verified

has increased in that example, and will require additional

inspections / analysis. Each requirement needs management

through the process, which equates to significant labor

hours. Had the example simply called out the open standard

nomenclature and parameters, the procurement, intake, and

analysis of the part could be as simple as verification that the

vendor’s part description on a certificate of conformance

matched the requirements (a supplier quality management

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Proper Use of Open Standards for Commonality and Competition, D. Jedynak

APPROVED FOR PUBLIC RELEASE

Page 10 of 14

task, not a design requirements management task). Instead,

the inclusion of additional details and a drawing will require

the inspection of the part versus mechanical drawing itself,

and will also preclude the straightforward cross of the part

by an alternate vendor for various reasons (e.g. a permitted

vendor mark, a difference within tolerances of the standard,

dissimilar part numbers, etc.).

The other problem with this is the concept that a proper

development specification should incorporate or “pull-in”

the language of external documentation to ensure control. In

the absence of open-standards, this is a prudent way to

maintain control in the face of conflicting program

requirements which may diverge at any given time and

without notice. Open standards, however, are governed by

organizations which have a vested interest in stability,

interoperability, transparency, and wide-spread adoption.

The standards are designed to be referenced (rather than

incorporated), and any changes tend to be well publicized

and often backward compatible to ensure continued use. For

this reason, it is sufficient to call out an open standard along

with a version, with the understanding that each version will

be widely supported.

Worth highlight is the common occurrence of open

standards which reference other open standards. This is

increasingly common when open standards build or evolve

upon other stable, well-known, and mature open standards.

For example, the ANSI / VITA standard for OpenVPX

builds upon other ANSI / VITA VPX standards, which

themselves build upon other various ANSI / VITA and IEEE

standards. A common error is to flatten the standards

unnecessarily, calling out the top standard and also calling

out the sub-referenced standards. The requirements

specification may feel more complete, but it introduces

potential confusion, version conflicts, requirements

management, and complication to the systems engineering

process.

Vendor-specific, or proprietary, extensions to standards are

not uncommon. Many standards allow for this as a method

by which innovation and competition is encouraged, but

standards-based interoperability is still ensured. As the

standard evolves, illustrated in Figure 5, various vendor

extensions will often become a part of the standard, while

some may stay outside of it, and other vendors create

extensions to the new standard version. In this way, the

standards are able to evolve and adapt as technologies

advance, while maintaining a core set of compatibility,

interoperability, and competition through the current

standard baseline.

Figure 5: Evolution of Standards and Vendor

Extensions

Ultimately, how to use open standards comes down to

intent. How the open standard is referenced, the requirement

written, and the performance specified must support the

intent of using the standard in the first place. With the clear

admission that the use of open standards may serve

overriding policy (e.g. OSA), technical, and fiscal goals, the

following examples presents a summary template for how

best to use open standards based on intent.

Intent: Meet Policy
If the sole reason to use an open standard is to meet a

policy requirement (e.g. “use Ethernet”), then the

requirements language needs to be kept as broad as possible.

A policy directive to use a specific open standard is not a

technical or fiscal requirement on a specific program. It may

be based on any number of high-level rationales, such as

maintaining or growing an industrial-base capability, jump-

starting a new standard and market, or laying a foundation

for more explicit or specific use of the standard in later

program stages (“if you build it, they will come”).

Note that a policy directive is often required to retire a

technology in favor of a more advanced one. The move

from analog (NTSC) to digital (ATSC) television

transmission in the United States was forced via policy (in

the form of law), as was the move from leaded to unleaded

gasoline. In both cases, multiple business interests serving

the broader market (e.g. television broadcasters, television

manufacturers) were assured that adoption would occur, and

no one part of the industry would be able to hold back, and

no one part of the industry would be forced to assume undue

risk that the market would not follow. When all competitors

within an industry are forced to switch together, the cost and

risk is a neutral to their overall standings, although it does

provide new opportunities for performance differentiations

(e.g. a higher quality digital tuner coming from a company

who previously had mediocre analog tuners).

It’s recommended, at this context, to keep requirement and

verification as broad as possible. Some systems engineers

will not be comfortable with these requirements and

verifications as they are more qualitative than quantitative;

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Proper Use of Open Standards for Commonality and Competition, D. Jedynak

APPROVED FOR PUBLIC RELEASE

Page 11 of 14

however, that is the nature of policy. See the examples in

Table 5 for policy requirements at multiple layers.

Table 5: Using Open Standards to Meet Policy

Requirement Verification

The Subsystem shall leverage

Open Standard A

Analysis describing how Open

Standard A was used in the

Subsystem.

The Operating System shall

accommodate Open Standard B

Analysis describing how the

Operating System

accommodated the use of

Open Standard B

The Middleware shall adhere to

Open Standard C

Analysis describing how the

middleware adhered to Open

Standard C

The Application shall be

compatible with Open Standard

D

Analysis describing how the

application is compatible with

Open Standard D

Intent: Ensure Interoperability
Ensuring interoperability may be for a number of different

reasons. These could range from pure interoperability

between functions, to reducing unique test equipment needs,

to reducing integration risks. Regardless of the need, the

open standard itself needs to be analyzed for interoperability

statements, e.g. between versions, forward / backward

compatibility.

An open standard can have portions which do not

interoperate with each other. For example, the USB

standard has multiple connector types (standard, micro,

mini, etc.) which are electrically compatible, but physically

incompatible. The key is to ensure the proper variants

within the standard are identified and called out. In addition,

standards may discontinue, or deprecate, the use of earlier

provisions in favor of evolved or refined standards.

Standards may also allow vendor specific extensions or

recommended provisions, which are not core to the standard.

All of these variations need to be assessed and accounted for

in the requirements language.

As with policy, it’s recommended that the requirements be

kept broad; however, variations allowed within the standard

must be constrained. To the intent of interoperability, it’s

important that the requirements be levied at the interfaces of

all entities intended to be interoperable.

See the examples in Table 6 for various interoperability

requirements with Subsystems X and Y, built by different

vendors at different points in time. Note the intent on

Subsystem Y requirements.

Table 6: Using Open Standards to Ensure

Interoperability across Vendors and Lifecycle Phase

Requirement

on Subsystem

X

Intent

Requirement

on Subsystem

Y

Subsystem X’s

Interface shall

conform to Open
Standard A,

Revision 1.6

New subsystem which

uses current standard and

has full interoperability
with older versions of the

standard.

Subsystem Y’s

Interface shall

conform to Open

Standard A,
revision 2.0.

Subsystem Y’s

interface shall

provide
backward

compatibility to

Open Standard

A, revision 1.6,
including the use

of any interfaces

deprecated from

1.6 to 2.0.

Subsystem X’s

Interface shall

conform to Open
Standard A,

Revision 1.6

New subsystem which

uses current standard and

has limited constrained

interoperability with
older versions of the

standard

Subsystem Y’s

Interface shall

conform to Open
Standard A,

revision 2.0.

Subsystem Y’s

interface shall
provide

backward

compatibility to

Open Standard
A, revision 1.6

Subsystem X’s
Interface shall

conform to Open

Standard A,

Revision 1.6

New subsystem which

uses current standard will
only interoperate with

the older version of the

standard per any

provisions which are
inherent in the standard.

Subsystem Y’s
Interface shall

conform to Open

Standard A,

revision 2.0.

Subsystem X’s

Interface shall

conform to Open
Standard A,

Revision 1.6,

including

recommended
specifications 2,

3, and 5 and

optional

specification 10.

New subsystem which

uses current standard has
inherent interoperability

with older versions of the

standard, including

recommended
specifications and

optional specifications.

Assume recommended

specifications 2 and 3
were moved to

requirements in version

2.0, and optional

specification 10 moved
to recommended.

Specification 5 remained

at recommended.

Subsystem Y’s

Interface shall
conform to Open

Standard A,

Revision 2.0,

including
recommended

specifications 5

and 10.

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Proper Use of Open Standards for Commonality and Competition, D. Jedynak

APPROVED FOR PUBLIC RELEASE

Page 12 of 14

See the examples in Table 7 for various interoperability

requirements for Subsystems X and Y using an open

standard with variations for different roles. Note the intent

on Subsystem Y requirements.

Table 7: Using Open Standards to Ensure

Interoperability across Different Roles

Requirement on

Subsystem X
Intent

Requirement on

Subsystem Y
Subsystem X’s

Interface shall

conform to Open

Standard B, Revision
3.0, specification

variants 7A and 8A

(transmitter).

A

complementary

subsystem to
the other

Subsystem Y’s

Interface shall conform

to Open Standard B,

Revision 3.0,
specification variants

7B and 8B (receiver).

Subsystem X’s

Interfaces shall

conform to Open

Standard B, Revision
3.0, specification

variant 15A (Optical)

A subsystem
which supports

multiple

variants within

the standard,
and provides

translation

between them.

Subsystem Y’s

Interfaces shall conform

to Open Standard B,

Revision 3.0,
specification variant

15A (Optical) and 15B

(Copper)

Subsystem Y shall
translate signals from

the Optical interfaces to

the Copper interfaces in

accordance with Open
Standard B, Revision

3.0.

Subsystem X’s
Interfaces shall

conform to Open

Standard B, Revision

3.0, specification
variants 20C and 20D

A subsystem

that has some

variant overlap

with the other

Subsystem Y’s
Interfaces shall conform

to Open Standard B,

Revision 3.0,

specification variants
20A and 20C.

Intent: Ensure Competition
Open standards enable competition. The misuse of open

standards prevents it. To be very clear, many companies

supporting open standards will seek competitive value-add

for their products, sometimes extending the standard with

vendor-specific features and capabilities, or implementing

multiple open standards in one product. This is done to

stave-off commoditization (e.g. milk is a commodity),

because a commodity market is typically a “race to the

bottom” in price. This can be a positive and a negative.

Obviously, price is important; however, the level of

investment in product innovation in commodity markets

tends to be low, focused instead of operation costs. This

condition remains until a new dimension for innovation

becomes apparent, or the open standard is disrupted /

abandoned in favor of a significantly more valuable offering,

often proprietary.

Although price is good for discrete acquisitions, lack of

innovation is damaging to overall continuous improvement

in capabilities, and to the health of the industrial base. The

use of open standards must be seen as the foundation for

product evolution, not a constraint which drives

commoditization. To ensure competition, open standard

must be applied so that they only constrain what is

necessary, but leave everything else open for innovation.

Innovation around open standards tends to come in two

variants: Combination and Adaption. Both of these are used

to optimize the value of products according to expected

usage patterns.

In the first, separate functions are combined into one

product that provides multiple functions in accordance with

multiple open standards, often as lower SWaP-C and higher

reliability than separate products. The risk in specifications

preventing the use of competitive products like this is

enforcing a “one box, one function” separation. There may

be perceived reasons to keep functions separated into

multiple boxes, such as survivability; however, depending

on the number of functions in a single product, it may be

better to have two of the product, replicating all the

functions, rather than having a single separate box for each.

For example, three functions combined into a single box,

with two of the boxes providing redundancy across all three

functions.

In the second, various interfaces which may or may not be

open standard are separated from the main product because

they are either low value add (e.g. few customers use it

versus the cost of including it), the interface is legacy with

declining use, or is unique to another 3
rd

 party vendor. In

these cases, a competitive product may remove or not

support a fully integrated implementation of the interface,

instead providing a separate adapter solution (for example, a

USB to Serial adapter). The main product can be optimized

around the newer, more common open standards, reducing

SWaP-C, and the company can offer multiple alternative

solutions for providing support for legacy or 3
rd

 party

interfaces. Requirements need to be flexible enough to

allow for a main solution plus an adapter solution which

meet the originally expected requirements of a single box.

For example, a highly capable modern computing system

may provide a software virtual machine to emulate older

environments to host legacy applications, at a significantly

lower cost than recreating the older processors and

environments for native hosting of legacy applications.

Another example is a smaller LRU with USB or Ethernet

connections providing adaption to legacy interfaces where

the SWaP-C of the combined product plus adapter is less

than that of creating a box which meets the legacy interface

requirements natively. In the case of 3
rd

 party interfaces, it

may be that other vendors are unable to incorporate the

interface (e.g. legally prohibited from incorporating),

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Proper Use of Open Standards for Commonality and Competition, D. Jedynak

APPROVED FOR PUBLIC RELEASE

Page 13 of 14

therefore that interface may have to be kept separate, and

purchased or licensed at the customer level or via customer

authorization.

See the examples in Table 8 for how open standards can

allow for competitive innovation. Note the explicit

permission leaving room for innovation – these can be

omitted if allowed at a global level.

Table 8: Using Open Standards to Ensure Competition

Requirement
Areas for Competitive

Innovation
Subsystem X shall host

applications in accordance

with Open Standard A.

Subsystem Y shall provide an
interface in accordance to

Open Standard B.

Subsystem X and Y may be

combined.

Combination:

Product which hosts applications

in accordance with Open
Standard A and interfaces in

accordance with Open Standard

B.

Subsystem Y shall interface

with existing Subsystem X in

accordance with Open
Standard A.

Subsystem Y may use

adaption / translation to

interface with existing

Subsystem X in accordance

with Open Standard A.

Adaption:

Product which fulfills
requirements of Subsystem Y

and interfaces with Subsystem X

through adaption / translation

mechanisms rather than directly

incorporated interface.

Intent: Ensure Commonality
The intent of commonality is important. If it is for part

number commonality (e.g. part 1234 is used across 5

platforms), then using open standards can be used to support

Fit / Form / Function interchangeability. On the other hand,

if the intent of commonality is to ensure common interfaces,

common tools, and common training, then open standards

are the most important driver.

Using an open standard interface allows a diversity of

products and vendors which are all interchangeable. Two

products from two different vendors may both adhere to

common interfaces as defined by an open standard. If the

configuration item specification is limited to what is in the

open standard, then vendor specific additional interfaces

which aren’t used can be ignored. For example, a 10-pin

connector with 6 open standard defined pins and 4 vendor

defined pins should by specified only using the open

standard pins, with silence on the vendor defined pins,

assuming they are not used. Through this limitation, two

products from two different vendors with differences only

on the irrelevant vendor-defined areas may be considered

interchangeable with regard to Fit / Form / Function.

In addition, constraining the interfaces to open standards,

the various tools for maintaining, testing, and servicing can

be common, even if the various products which plug-in to

the interfaces are different. Most open standards also

provide well-defined testing and diagnostic tools, or at least

procedures, specifically designed to verify the solutions

from multiple vendors. An added benefit when using open

standards for common interfaces is that training for

development or maintenance teams won’t be restricted by

proprietary information concerns. On the contrary, given the

general goal of an open standard to increase its adoption, it

means that training, tools, and information will be readily

available.

The examples in Table 9 show how to use open standards

to ensure commonality.

Table 9: Using Open Standards to Ensure

Commonality

Intent Requirement

Ensure Fit / Form / Function

interchangeability

Subsystem X interfaces shall

adhere to Open Standard A.

Subsystem X interfaces

specified in Open Standard A as
vendor defined shall be left

unused.

Ensure common interfaces
All subsystem interfaces shall
adhere to Open Standard A

Ensure common maintenance

tools

All subsystem maintenance

interfaces shall adhere to Open
Standard A

(Alternatively)

All maintenance tools shall be in

accordance with Open Standard
A.

Ensure common training

All training shall be in

accordance with Open Standard
A.

THE IMPACT ON COMMONALITY AND
COMPETITION

Ultimately, open standards provide vendors and customers

a way to focus on the performance and capabilities that

matter, rather than on common and competitively non-value

add features. It’s easy to understand this when considering a

counter-example: if gasoline formulations and gasoline

nozzles were not standardized, then each automobile

company would need to support its own complete ecosystem

of gasoline types, nozzle types, testing, regulatory

compliance, distribution, and resources. The end result is

that any given automobile company would be forced to

expend significant resources to sell gasoline (a commodity),

thus diverting investment and focus from innovation in their

core focus – designing and selling automobiles. For the

customer base, it means that the decision about the purchase

of an automobile would involve the proximity of company-

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Proper Use of Open Standards for Commonality and Competition, D. Jedynak

APPROVED FOR PUBLIC RELEASE

Page 14 of 14

specific gasoline stations, rather than focusing on the

suitability, effectiveness, and price of the automobile itself.

In order to gain the benefit of open standards, it’s critical

to utilize them correctly, as intended. If the standards are

ignored or misused, the market may actually start to respond

poorly, with vendors starting to abandon the open standards

as a non-value add liability, or at least no longer relevant.

Once this occurs, exclusive, proprietary standards will start

to proliferate, fracturing the marketplace, and virtually

eliminating the opportunity for commonality and

competition.

CONCLUSION
Specifications are critical. Understanding the

specifications which already exist within open standards and

how to leverage them properly is essential to ensuring

commonality and competition. The various layers of open

standards provide foundations upon which to build

capabilities in systems, and through proper use of the

specification language of an open standard, the maximum

amount of flexibility, interoperability, and interchangeability

can be achieved. Using the concept of Analysis-of-

Alternatives at multiple levels (not just platform / system),

various open standards can be evaluated against each other

and proprietary / custom solutions for best technical and

fiscal correctness. It’s important to remember that open

standards are developed and supported by multiple

stakeholders within various markets, including vendors and

user organizations, and that a significant amount of domain-

specific work has been performed to ensure the best

performance and suitability to the particular market when

used as intended. Open standards, by their nature, strive for

widespread adoption. Widespread adoption brings maturity,

strong competition, and well-defined commonality, driving

best value for the end customer. Circumventing open

standards by improper use in specification reduces or

eliminates these benefits, resulting in unnecessary costs,

poor performance, and the risk of proprietary lock-in.

