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ABSTRACT 
The increasing application of sensors, actuators, and complex algorithms for delivering artificial 

intelligence and connectivity in products and product-systems will drive an unprecedented growth in design 

complexity and software content, making it increasingly more difficult to ensure dependability in an economical 

manner. Much learning about the dependability of such new and innovative products is likely to happen as they 

are conceived and designed.  Consequently, accelerated verification and validation iterations supported by easy 

and rapid storage and retrieval of failure knowledge must be enabled. No single software solutions provider 

effectively covers all three critical areas required for developing and delivering dependable smart connected 

products, namely, reliability engineering, systems engineering, and failure knowledge management. This paper 

mainly presents a potential map of the commonly used reliability engineering tools overlaid on the systems 

engineering technical processes.  The paper recommends including a formal knowledge storage and retrieval 

system in the closed-loop between systems engineering and reliability engineering so that the details observed in 

past failures are not missed in future design iterations.   

 

 

INTRODUCTION 
Connectivity and artificial intelligence are major features 

of many upcoming products that are increasingly likely to be 

systems-of-systems.  A large set of complex algorithms is 

needed for estimating accurately the instantaneous states of 

these systems and their operational environments and for 

exercising robust control over the systems to deliver the 

benefits desired by the end users.  Intricate algorithms are 

used for sensor data fusion, remote diagnostics, remote 

repair, autonomous control, timely hand-off to humans, and 

many other functions.  The increasing application of sensors, 

actuators, and the associated algorithms in products and 

product-systems will drive an unprecedented growth in 

design complexity and software content, making it 

increasingly more difficult to ensure dependability in an 

economical manner. 

Even without connectivity and artificial intelligence, the 

launch delays and recalls associated with today’s less 

sophisticated electronically controlled mechanical systems, 

due to performance issues, can very often be traced to design 

complexity and software-content.  In case of connected, 

automated or autonomous systems, the problem can be 

expected to worsen. 

A US FDA study [1] has determined that software-related 

recalls measured as a percentage of all recalls in the medical 

devices industry have gone up from 14% in 2005 to 25% in 

2011.  This percentage has been trending upwards since 

1983, with software-related recalls as a percentage of overall 

recalls averaging 6% between 1983 and 1991, 8% between 

1992 and 1998, 11% between 1999 and 2004, and 19% 

between 2005 and 2011. 

The relationship between the number of recall events in a 

period of time and the number of units impacted by the 

recalls can be vastly different between industries [2].  For 

example, 150 recall events in the medical device industry 

may amount to 300,000 affected units but in the automotive 

industry, 30 recall events could impact 2 million vehicles. 

A financial advisory blog [3] mentions that there has been 

a substantial increase in software-related recalls in the 

automotive industry since 2012.  The authors cite 32 

software-related recalls that affected 3.6 million light 

vehicles between 2005 and 2012.  However, they mention 

6.4 million additional vehicles affected by 63 additional 

software-related recalls between 2013 and 2015.  The blog 

also mentions going from 0.3% of recalls being software-

related in 2005 to 4.3% of recalls being software-related 

within the first 6 months of 2015, and this trend the authors 

state, is showing no signs of reversing.  The authors of the 

blog also report a similar trend seen in NHTSA’s complaint 

data.  Over the period covering 2005 to 2009, 55 software-
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related complaints were logged with NHTSA, whereas, over 

the period 2010 to 2014, 197 complaints contained the same 

reference to software related-issues, highlighting the 

increased role of software in automotive safety. 

Notable software-related issues in recent times, from the 

aerospace industry have been in connection with the Boeing 

787 and the F-35 Joint Strike Fighter.  A software bug in the 

Boeing 787 was found to be capable of shutting down the 

plane’s electric generators every 248 days because a 

software counter, internal to the generator control units 

(GCUs) could overflow after 248 days of continuous power.  

This could cause the GCU to go into failsafe mode, resulting 

in a loss of all electrical power regardless of the flight phase.  

The F-35 Joint Strike Fighter is expected to be further 

behind in its combat-readiness due to issues with its 

RADAR software and vulnerability to cyber-attacks, and 

these require the system to be rebooted every four hours of 

flight time while the desired reboot interval of the F-35 is 

eight to ten hours of flight time. 

The failure modes of software-intensive, control systems 

driven products are difficult to guess a priori due to the 

complexity of their functions and information flow, and 

consequently, crucial failure modes can easily be missed.  

Much learning about the dependability of such new and 

innovative products is likely to happen as they are conceived 

and designed.  Consequently, accelerated verification and 

validation iterations supported by easy and rapid storage and 

retrieval of failure knowledge must be enabled. 

Today, enterprise level reliability engineering tools and 

systems engineering are not well-connected, preventing 

many lessons learned in reliability engineering from helping 

drive robust designs via systems engineering.  This situation 

is further aggravated when we consider the silos of expertise 

and data among mechanical, electrical, and software 

disciplines.  The product development tools used in these 

disciplines’ silos are very different and most often not 

connected with each other, rendering the ability to carry out 

systems engineering very difficult.  A major challenge arises 

due to improper channeling of prior experience and 

knowledge about reliability into design, leading to repeated 

dependability issues of complex products. 

No single software solutions provider effectively covers all 

three critical areas required for developing and delivering 

dependable smart connected products, namely, reliability 

engineering, systems engineering, and knowledge 

management.  Further, given the complexity of the 

development of the large number of specialty tools required 

to do this, it is perhaps unrealistic to expect that a 

completely integrated suite of solutions will be available 

from a single software solutions provider. 

The most practical solution for developing dependable, 

connected, and intelligent products could come through the 

application of specialty software tools that conform to 

applicable interoperability standards so that the enterprise 

level system integrators can seamlessly connect the tools 

needed for reliability engineering, systems engineering, and 

knowledge management. 

This paper mainly presents a potential map of the 

commonly used reliability engineering tools overlaid on the 

systems engineering technical processes.  The paper adheres 

to the technical process of systems engineering described by 

INCOSE [4] and the commonly known tools and processes 

used in design-for-six-sigma and reliability engineering [5, 

6].  The paper recommends including a formal knowledge 

storage and retrieval system in the closed-loop between 

systems engineering and reliability engineering so that the 

details observed in past failures are not missed in future 

design iterations. 

 

RELIABILITY ENGINEERING MEETS SYSTEMS 
ENGINEERING 

To enable fast learning cycles that will help identify 

potential failure modes of complex systems, a seamless 

enterprise level connection between the systems engineering 

technical processes, the reliability engineering tools, and a 

knowledge management system is needed, so that efficient 

storage and retrieval of failure modes information is 

possible. 

To accomplish the development of the enterprise level 

connection mentioned above, the activities related to the 

thirteen technical processes of systems engineering [4] have 

been considered in this work as a higher-level product 

lifecycle structure.  Those thirteen systems engineering 

technical processes are: 

• Stakeholders’ Requirements Identification 

• System Requirements Definition 

• System Architectural Design 

• System Elements Definition 

• System Analysis 

• System Elements Realization 

• System Elements Integration 

• System Design Verification 

• Verified System Transition 

• System Performance Validation 

• System Operation 

• System Maintenance 

• System Disposal 

In the following section the diverse tools used in design-

for-six-sigma and reliability engineering that should support 

the systems engineering technical processes are briefly 

described.   

Beyond the next section, each activity associated with the 

thirteen technical processes of systems engineering are 

associated with a set of design-for-six-sigma and reliability 

engineering tools, wherever those tools are likely to have a 

beneficial impact.  The purpose is to present a connection 



Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Bridging Reliability Engineering & Systems Engineering 

 

Page 3 of 6 

between the tools used in reliability engineering and design-

for-six-sigma, and the main technical process activities of 

systems engineering that need to be accomplished by 

enterprise level software systems integration so as to 

adequately deal with the complexity of designing and 

delivering smart connected products. 

 

Reliability Engineering Tools 
A wide variety of tools are used in reliability engineering 

and design-for-six-sigma.  These help prevent failures and 

increase the operational life of systems, subsystems, and 

components.  

1. Affinity Diagrams (KJ Analysis)—for clustering similar 

items to get a higher level view of a large number of 

entities being analyzed, e.g., VOC. 

2. Quality Function Deployment (QFD) or House of 

Quality (HOQ)—meant to develop the interpretation 

matrix for creating functional requirements that will 

satisfy the stakeholder requirements—serves as a 

traceability matrix. 

3. Kano Analysis—way of classifying requirements into 

“delighters,” “performance needs,” and “basic needs” 

for rank ordering the stakeholder requirements based on 

their importance. 

4. Functional Flow Block Diagram (FFBD)—multi-tier, 

time-sequenced, step-by-step flow diagram of a 

system’s functional flow. 

5. SysML Diagrams—representation of different aspects 

of systems through diagrams, namely, requirements, 

activity, block definition, internal block definition, 

parametric representation, use cases, system state, and 

sequence. 

6. Integrated Definition for Functional Modeling Diagrams 

(IDEF0)—designed to model the decisions, actions, and 

activities of a system. 

7. N2 Charts—matrix, representing functional or physical 

interfaces between system elements, also applicable to 

hardware and/or software interfaces. 

8. Specification Tree—specifications of a technical system 

under development in a hierarchical order going from 

system requirements, to system design specifications, to 

subsystem specifications, to assembly specifications, 

and  to component specifications. 

9. Failure Modes Effects & Criticality Analysis 

(FMECA)—bottom-up, inductive analysis performed at 

the functional or component level, enhanced by the 

relationship between the probabilities of occurrence of 

failure modes against the severity of their consequences. 

10. TRIZ: Theory of Inventive Problem Solving—problem 

solving, analysis and forecasting derived from the study 

of patterns of invention in the global patent literature. 

11. Physics of Failure Analysis—modeling and simulation 

based understanding of processes and mechanisms that 

lead to failure, to predict reliability and improve product 

performance. 

12. Robust Optimization—optimization of system 

performance while increasing the stability of the system 

against product, process, and usage variability. 

13. Design of Experiments (DOE)—appropriate choice of 

discrete values of independent variables for finding the 

corresponding values of the chosen dependent variables 

to understand the system response. 

14. Response Surface Analysis—expressing the response of 

complex systems as a continuous function of chosen 

independent variables to cost-effectively generate 

insights about systems’ behavior. 

15. Monte Carlo Simulations—random sampling of 

independent variables and the generation of the 

corresponding independent variable values to 

understand the behavior of the dependent variables. 

16. Conjoint Analysis—ranking of stakeholders’ 

requirements based on combinations of attributes and 

weights representing the relative importance of the 

attributes. 

17. Kepner-Tregoe Analysis (KTA)—systematic way of 

decision making based on wants and must haves, 

possible alternative solutions, probability of adverse 

effects, and significance. 

18. Analytic Hierarchy Process models (AHP)—modeling 

the problem as a hierarchy containing the decision goal, 

the alternatives for reaching it, and the criteria for 

evaluating the alternatives. 

19. Multi-Attribute Utility Analysis (MAUA)—a scalar 

utility function over the domain of the attribute values 

to assess tradeoffs between different attributes. 

20. Fault Tree Analysis (FTA)—top down, deductive 

failure analysis in which system failure is analyzed 

using Boolean logic to combine a set of lower-level 

events. 

21. Event Tree Analysis (ETA)—bottom up modeling 

technique for success and failure which explores 

responses through a single initiating event and helps 

assess overall probabilistic system response. 

22. Reliability Block Diagrams (RBD—for showing how 

components and subsystems contribute to the success or 

failure of a complex system. 

23. Failure Reporting Analysis & Corrective Action System 

(FRACAS)—for reporting, classifying, and analyzing 

failures, and planning corrective actions in response to 

failures. 

24. Corrective Action & Preventive Action (CAPA)—

systematic investigation of the root causes of system 

problems to correct the situation or prevent it from 

occurring. 

25. Markov Analysis—breaking the final (or failed) system 

state into a number of intermediate states, connected 
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with each other by transition matrices, under the 

assumption that each state is memory-less. 

26. Weibull Analysis—makes predictions about the life of 

products by fitting statistical distributions to product life 

data (performance over product lifetime). 

27. System Maintainability Analysis—determines the ease 

and speed with which a system can be restored to 

operational status after a failure occurs.  It is calculated 

based on time-to-repair as the random variable instead 

of time-to-failure for estimating system reliability. 

28. System Availability Analysis—probability of a unit 

being available in a fully functional state, calculated 

based on mission duration and observed or simulated 

mission downtime. 

29. Asset Performance Management (APM)—condition 

monitoring, predictive forecasting, and reliability-

centered maintenance of systems based on data capture 

and analytics. 

30. Accelerated Life Testing (ALT)—subject systems to 

stress, strain, temperatures, voltage, vibration rate, 

pressure, etc., in excess of their service levels for 

quickly uncovering potential modes of failure. 

In the Table I, each of the thirty tools described above 

have been mapped to the thirteen technical processes of 

systems engineering where they are likely to be most 

beneficial.  The purpose is to present a connection between 

the tools used in reliability engineering and design-for-six-

sigma, and the main technical processes of systems 

engineering that needs to be accomplished through 

enterprise level software systems integration. 

 

FAILURE KNOWLEDGE CAPTURE AND REUSE 
Systems engineering through its technical processes has 

traditionally been applied for realizing highly complex 

systems where chances for unreliability of designs abound.  

Systems engineering begins with the discovery of the real 

problems that need to be solved and identification of highest 

impact failures that can occur, and then, through an 

interdisciplinary approach to engineering, attempts to find 

solutions to those problems and potential failures.  However, 

many of the systems dependability issues that are likely to 

arise have their roots at the intersection of different 

disciplines of engineering and at the interfaces between 

different subsystems where engineering intuition tends to be 

low and rapid learning is imperative. 

The rapid learning, which needs to happen over 

verification and validation cycles of systems engineering or 

over newer instances of products as they evolve from past 

designs and configurations, deals with implicit knowledge 

which is not immediately accessible; and in particular cannot 

be acquired from conventional databases.  Further, the useful 

knowledge is obfuscated by different subject matter experts 

using different terms when addressing the same issue.  For 

instance, implicit knowledge about failure modes exists in 

natural language, and consequently, the meaning depends on 

interpretations by the team which is reusing that knowledge. 

The problem of reusing pre-existing knowledge about 

failure modes could be solved effectively through the 

definition of an ontology, which enables a common 

understanding of the domain specific concepts without need 

for interpretation, while making the ontology-held 

knowledge explicit and machine-readable.  An ontology 

helps to integrate the elements of task-relevant knowledge 

by uniformly structuring the domain knowledge. 

An ontology, which consists of definitions of concepts, 

relationships, and rules, is used in knowledge-based systems 

where formalized knowledge is represented in a language 

that supports reasoning and inference.  The past knowledge 

about system failures, which is implicitly contained in 

documents, can be made explicit for use in information 

systems by an inference engine.  Using non-deductive 

inference rules, the scope of making implicit knowledge 

explicit, can be expanded significantly.  By using an 

ontology-based information system, as part of the closed-

loop between system failure and performance issue 

occurrences, and the upstream design activity, new and fast 

learning can be enabled to ensure that the risk of 

overlooking failure modes is mitigated. 

Although an ontology, as a way of converting implicit 

system failure knowledge into machine-readable explicit 

knowledge for reuse has often been mentioned in technical 

literature, it is not currently offered commercially by 

software providers either as part of systems engineering or 

reliability engineering tool suites.  In view of the 

increasingly complex smart, connected products that are 

emerging, the lack of understanding about their failure 

modes will only increase.  In addition, the market pressures 

on time-to-launch and product costs will require much faster 

learning cycles than ever before regarding product 

performance and product failure.  Consequently, ontology-

based or similar knowledge reuse tools are needed at the 

enterprise level, in earnest, to deliver complex products that 

are dependable, affordable, and available on time. 

 

LEARNING SYSTEMS BASED DESIGN-FOR-
RELIABILITY 

The technical processes of systems engineering ensure 

robust capture of stakeholders’ requirements in the 

beginning, followed by a hierarchical flow of those 

requirements into system, subsystem, and component design.  

Verification and validation activities occur at all three levels 

of the system development hierarchy, and they offer learning 

opportunities about the system’s performance at different 

levels. 
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Systems Engineering Technical 

Processes
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Stakeholders' Requirements Definition 1

System Requirements Definition 2

System Architectural Design 3

System Elements Definition 4

System Analysis 5

System Elements Realization 6

System Elements Integration 7

System Design Verification 8

Verified System Transition 9

System Performance Validation 10

System Operation 11

System Maintenance 12

System Disposal 13  
 

Table I Relating Reliability Engineering Tools with Systems Engineering Technical Processes 
(Copyright © 2016 by CIMdata, Inc., used with permission) 

 

The reliability engineering tools depend on the technical 

expertise of subject matter experts to develop robust and 

optimum designs that meet the stakeholders’ requirements 

and do not run the risk of customer annoyance or unsafe 

outcomes.  To design against potential performance issues 

and failure modes, the subject matter experts need to be able 

to identify those failure modes and be knowledgeable about 

the potential for their occurrence. 

Given the runaway complexity of products today which 

often straddle two or more traditional areas such as 

automotive, entertainment, information, banking, etc., major 

problems can occur when the intuition of the subject matter 

experts at the intersections of these domains is lacking.  In 

fact, we can say that the systems could become so complex 

and interrelated that the so-called subject matter experts are 

not really subject matter experts any more.  The speed of 

evolution of products demands a “learning system based 

design for reliability” capability in which systems 

engineering, as we know it, is seamlessly coupled with 

reliability engineering and design-for-six-sigma, supported 

by an ontology-based or similar knowledge management 

system that can manage implicit knowledge by converting it 

into machine-readable explicit knowledge. 

Software solutions providers today offer enterprise 

solutions to enable large parts of systems engineering as 

described by INCOSE [4].  However, those systems 

engineering solutions do not communicate well with 

reliability engineering and design-for-six-sigma tools.  Too 

much manual transfer of information is needed between the 

systems engineering and the reliability engineering 

solutions, leaving the door open for many quality and 

reliability problems to be missed, allowing them to reemerge 

during service and operations.  In many situations, product 

developers and manufacturers have had to custom-develop 

the connection between reliability engineering and systems 

engineering. 

In order to compensate for the limited intuition of subject 

matter experts regarding potential failure modes of complex, 

software-intensive products, while remaining competitive in 

cost and time-to-market, we need a seamless coupling 

between reliability engineering tools and systems 

engineering processes that leverages ontology-based or 

similar failure knowledge capture and reuse in order to 

realize rapid, enterprise level learning. 
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CONCLUSION 
The need for seamlessly connecting systems engineering 

solutions and reliability engineering solutions through a 

knowledge management system has received very little 

attention.  With the growing complexity of software-

intensive products, whose failure modes are difficult to 

guess a priori, it is imperative to establish such a connection 

in order to realize the “learning system based design-for-

reliability” capability.  Given the expansiveness of the 

solution that could satisfy such a need, it appears that the 

global information technology system integrators could 

consider this as a strategic business opportunity.  They could 

drive the interoperability standards between diverse systems 

engineering, reliability engineering, and knowledge 

management tools and develop integration offerings that can 

be tailored to the specific needs of diverse industry verticals 

and businesses of different sizes within those verticals. 

One opportunity for driving the interoperability standards 

between different systems engineering, reliability 

engineering, and knowledge management tools could be 

through a user group under the Open Services for Lifecycle 

Collaboration (OSLC) [7].  Currently a user group for 

Quality Management [8] is working under OSLC towards 

defining a common set of resources, formats and RESTful 

services for quality management tools to interact with other 

application lifecycle management (ALM) tools.   

No user groups for reliability engineering and/or 

knowledge management exist under OSLC today.  However, 

that can be remedied through CIMdata’s leadership, once 

experts from industry, software solutions providers, and 

system integrators agree with CIMdata that the “learning 

system based design-for-reliability” capability must be 

developed in the near future. 

For socializing the contents of this whitepaper with the 

experts from industry, software solutions providers, and 

systems integrators, CIMdata will organize a series of 

webinars in 2016 which will go into the details of several 

aspects of this topic.  CIMdata also plans to organize a 

workshop in 2017 where different viewpoints will be 

presented on this subject by the experts from industry, 

software solutions providers, and system integrators, 

culminating in the strategic direction of proceeding further 

within the framework of OSLC or some other framework. 
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