
2016 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM
SYSTEMS ENGINEERING (SE) TECHNICAL SESSION

AUGUST 2-4, 2016 – NOVI, MICHIGAN

BRIDGING RELIABILITY ENGINEERING AND SYSTEMS ENGINEERING

Venkatesh Agaram
Quality & Reliability Engineering Practice

CIMdata Inc, Ann Arbor, MI

ABSTRACT
The increasing application of sensors, actuators, and complex algorithms for delivering artificial

intelligence and connectivity in products and product-systems will drive an unprecedented growth in design

complexity and software content, making it increasingly more difficult to ensure dependability in an economical

manner. Much learning about the dependability of such new and innovative products is likely to happen as they

are conceived and designed. Consequently, accelerated verification and validation iterations supported by easy

and rapid storage and retrieval of failure knowledge must be enabled. No single software solutions provider

effectively covers all three critical areas required for developing and delivering dependable smart connected

products, namely, reliability engineering, systems engineering, and failure knowledge management. This paper

mainly presents a potential map of the commonly used reliability engineering tools overlaid on the systems

engineering technical processes. The paper recommends including a formal knowledge storage and retrieval

system in the closed-loop between systems engineering and reliability engineering so that the details observed in

past failures are not missed in future design iterations.

INTRODUCTION
Connectivity and artificial intelligence are major features

of many upcoming products that are increasingly likely to be

systems-of-systems. A large set of complex algorithms is

needed for estimating accurately the instantaneous states of

these systems and their operational environments and for

exercising robust control over the systems to deliver the

benefits desired by the end users. Intricate algorithms are

used for sensor data fusion, remote diagnostics, remote

repair, autonomous control, timely hand-off to humans, and

many other functions. The increasing application of sensors,

actuators, and the associated algorithms in products and

product-systems will drive an unprecedented growth in

design complexity and software content, making it

increasingly more difficult to ensure dependability in an

economical manner.

Even without connectivity and artificial intelligence, the

launch delays and recalls associated with today’s less

sophisticated electronically controlled mechanical systems,

due to performance issues, can very often be traced to design

complexity and software-content. In case of connected,

automated or autonomous systems, the problem can be

expected to worsen.

A US FDA study [1] has determined that software-related

recalls measured as a percentage of all recalls in the medical

devices industry have gone up from 14% in 2005 to 25% in

2011. This percentage has been trending upwards since

1983, with software-related recalls as a percentage of overall

recalls averaging 6% between 1983 and 1991, 8% between

1992 and 1998, 11% between 1999 and 2004, and 19%

between 2005 and 2011.

The relationship between the number of recall events in a

period of time and the number of units impacted by the

recalls can be vastly different between industries [2]. For

example, 150 recall events in the medical device industry

may amount to 300,000 affected units but in the automotive

industry, 30 recall events could impact 2 million vehicles.

A financial advisory blog [3] mentions that there has been

a substantial increase in software-related recalls in the

automotive industry since 2012. The authors cite 32

software-related recalls that affected 3.6 million light

vehicles between 2005 and 2012. However, they mention

6.4 million additional vehicles affected by 63 additional

software-related recalls between 2013 and 2015. The blog

also mentions going from 0.3% of recalls being software-

related in 2005 to 4.3% of recalls being software-related

within the first 6 months of 2015, and this trend the authors

state, is showing no signs of reversing. The authors of the

blog also report a similar trend seen in NHTSA’s complaint

data. Over the period covering 2005 to 2009, 55 software-

Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Bridging Reliability Engineering & Systems Engineering

Page 2 of 6

related complaints were logged with NHTSA, whereas, over

the period 2010 to 2014, 197 complaints contained the same

reference to software related-issues, highlighting the

increased role of software in automotive safety.

Notable software-related issues in recent times, from the

aerospace industry have been in connection with the Boeing

787 and the F-35 Joint Strike Fighter. A software bug in the

Boeing 787 was found to be capable of shutting down the

plane’s electric generators every 248 days because a

software counter, internal to the generator control units

(GCUs) could overflow after 248 days of continuous power.

This could cause the GCU to go into failsafe mode, resulting

in a loss of all electrical power regardless of the flight phase.

The F-35 Joint Strike Fighter is expected to be further

behind in its combat-readiness due to issues with its

RADAR software and vulnerability to cyber-attacks, and

these require the system to be rebooted every four hours of

flight time while the desired reboot interval of the F-35 is

eight to ten hours of flight time.

The failure modes of software-intensive, control systems

driven products are difficult to guess a priori due to the

complexity of their functions and information flow, and

consequently, crucial failure modes can easily be missed.

Much learning about the dependability of such new and

innovative products is likely to happen as they are conceived

and designed. Consequently, accelerated verification and

validation iterations supported by easy and rapid storage and

retrieval of failure knowledge must be enabled.

Today, enterprise level reliability engineering tools and

systems engineering are not well-connected, preventing

many lessons learned in reliability engineering from helping

drive robust designs via systems engineering. This situation

is further aggravated when we consider the silos of expertise

and data among mechanical, electrical, and software

disciplines. The product development tools used in these

disciplines’ silos are very different and most often not

connected with each other, rendering the ability to carry out

systems engineering very difficult. A major challenge arises

due to improper channeling of prior experience and

knowledge about reliability into design, leading to repeated

dependability issues of complex products.

No single software solutions provider effectively covers all

three critical areas required for developing and delivering

dependable smart connected products, namely, reliability

engineering, systems engineering, and knowledge

management. Further, given the complexity of the

development of the large number of specialty tools required

to do this, it is perhaps unrealistic to expect that a

completely integrated suite of solutions will be available

from a single software solutions provider.

The most practical solution for developing dependable,

connected, and intelligent products could come through the

application of specialty software tools that conform to

applicable interoperability standards so that the enterprise

level system integrators can seamlessly connect the tools

needed for reliability engineering, systems engineering, and

knowledge management.

This paper mainly presents a potential map of the

commonly used reliability engineering tools overlaid on the

systems engineering technical processes. The paper adheres

to the technical process of systems engineering described by

INCOSE [4] and the commonly known tools and processes

used in design-for-six-sigma and reliability engineering [5,

6]. The paper recommends including a formal knowledge

storage and retrieval system in the closed-loop between

systems engineering and reliability engineering so that the

details observed in past failures are not missed in future

design iterations.

RELIABILITY ENGINEERING MEETS SYSTEMS
ENGINEERING

To enable fast learning cycles that will help identify

potential failure modes of complex systems, a seamless

enterprise level connection between the systems engineering

technical processes, the reliability engineering tools, and a

knowledge management system is needed, so that efficient

storage and retrieval of failure modes information is

possible.

To accomplish the development of the enterprise level

connection mentioned above, the activities related to the

thirteen technical processes of systems engineering [4] have

been considered in this work as a higher-level product

lifecycle structure. Those thirteen systems engineering

technical processes are:

• Stakeholders’ Requirements Identification

• System Requirements Definition

• System Architectural Design

• System Elements Definition

• System Analysis

• System Elements Realization

• System Elements Integration

• System Design Verification

• Verified System Transition

• System Performance Validation

• System Operation

• System Maintenance

• System Disposal

In the following section the diverse tools used in design-

for-six-sigma and reliability engineering that should support

the systems engineering technical processes are briefly

described.

Beyond the next section, each activity associated with the

thirteen technical processes of systems engineering are

associated with a set of design-for-six-sigma and reliability

engineering tools, wherever those tools are likely to have a

beneficial impact. The purpose is to present a connection

Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Bridging Reliability Engineering & Systems Engineering

Page 3 of 6

between the tools used in reliability engineering and design-

for-six-sigma, and the main technical process activities of

systems engineering that need to be accomplished by

enterprise level software systems integration so as to

adequately deal with the complexity of designing and

delivering smart connected products.

Reliability Engineering Tools
A wide variety of tools are used in reliability engineering

and design-for-six-sigma. These help prevent failures and

increase the operational life of systems, subsystems, and

components.

1. Affinity Diagrams (KJ Analysis)—for clustering similar

items to get a higher level view of a large number of

entities being analyzed, e.g., VOC.

2. Quality Function Deployment (QFD) or House of

Quality (HOQ)—meant to develop the interpretation

matrix for creating functional requirements that will

satisfy the stakeholder requirements—serves as a

traceability matrix.

3. Kano Analysis—way of classifying requirements into

“delighters,” “performance needs,” and “basic needs”

for rank ordering the stakeholder requirements based on

their importance.

4. Functional Flow Block Diagram (FFBD)—multi-tier,

time-sequenced, step-by-step flow diagram of a

system’s functional flow.

5. SysML Diagrams—representation of different aspects

of systems through diagrams, namely, requirements,

activity, block definition, internal block definition,

parametric representation, use cases, system state, and

sequence.

6. Integrated Definition for Functional Modeling Diagrams

(IDEF0)—designed to model the decisions, actions, and

activities of a system.

7. N2 Charts—matrix, representing functional or physical

interfaces between system elements, also applicable to

hardware and/or software interfaces.

8. Specification Tree—specifications of a technical system

under development in a hierarchical order going from

system requirements, to system design specifications, to

subsystem specifications, to assembly specifications,

and to component specifications.

9. Failure Modes Effects & Criticality Analysis

(FMECA)—bottom-up, inductive analysis performed at

the functional or component level, enhanced by the

relationship between the probabilities of occurrence of

failure modes against the severity of their consequences.

10. TRIZ: Theory of Inventive Problem Solving—problem

solving, analysis and forecasting derived from the study

of patterns of invention in the global patent literature.

11. Physics of Failure Analysis—modeling and simulation

based understanding of processes and mechanisms that

lead to failure, to predict reliability and improve product

performance.

12. Robust Optimization—optimization of system

performance while increasing the stability of the system

against product, process, and usage variability.

13. Design of Experiments (DOE)—appropriate choice of

discrete values of independent variables for finding the

corresponding values of the chosen dependent variables

to understand the system response.

14. Response Surface Analysis—expressing the response of

complex systems as a continuous function of chosen

independent variables to cost-effectively generate

insights about systems’ behavior.

15. Monte Carlo Simulations—random sampling of

independent variables and the generation of the

corresponding independent variable values to

understand the behavior of the dependent variables.

16. Conjoint Analysis—ranking of stakeholders’

requirements based on combinations of attributes and

weights representing the relative importance of the

attributes.

17. Kepner-Tregoe Analysis (KTA)—systematic way of

decision making based on wants and must haves,

possible alternative solutions, probability of adverse

effects, and significance.

18. Analytic Hierarchy Process models (AHP)—modeling

the problem as a hierarchy containing the decision goal,

the alternatives for reaching it, and the criteria for

evaluating the alternatives.

19. Multi-Attribute Utility Analysis (MAUA)—a scalar

utility function over the domain of the attribute values

to assess tradeoffs between different attributes.

20. Fault Tree Analysis (FTA)—top down, deductive

failure analysis in which system failure is analyzed

using Boolean logic to combine a set of lower-level

events.

21. Event Tree Analysis (ETA)—bottom up modeling

technique for success and failure which explores

responses through a single initiating event and helps

assess overall probabilistic system response.

22. Reliability Block Diagrams (RBD—for showing how

components and subsystems contribute to the success or

failure of a complex system.

23. Failure Reporting Analysis & Corrective Action System

(FRACAS)—for reporting, classifying, and analyzing

failures, and planning corrective actions in response to

failures.

24. Corrective Action & Preventive Action (CAPA)—

systematic investigation of the root causes of system

problems to correct the situation or prevent it from

occurring.

25. Markov Analysis—breaking the final (or failed) system

state into a number of intermediate states, connected

Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Bridging Reliability Engineering & Systems Engineering

Page 4 of 6

with each other by transition matrices, under the

assumption that each state is memory-less.

26. Weibull Analysis—makes predictions about the life of

products by fitting statistical distributions to product life

data (performance over product lifetime).

27. System Maintainability Analysis—determines the ease

and speed with which a system can be restored to

operational status after a failure occurs. It is calculated

based on time-to-repair as the random variable instead

of time-to-failure for estimating system reliability.

28. System Availability Analysis—probability of a unit

being available in a fully functional state, calculated

based on mission duration and observed or simulated

mission downtime.

29. Asset Performance Management (APM)—condition

monitoring, predictive forecasting, and reliability-

centered maintenance of systems based on data capture

and analytics.

30. Accelerated Life Testing (ALT)—subject systems to

stress, strain, temperatures, voltage, vibration rate,

pressure, etc., in excess of their service levels for

quickly uncovering potential modes of failure.

In the Table I, each of the thirty tools described above

have been mapped to the thirteen technical processes of

systems engineering where they are likely to be most

beneficial. The purpose is to present a connection between

the tools used in reliability engineering and design-for-six-

sigma, and the main technical processes of systems

engineering that needs to be accomplished through

enterprise level software systems integration.

FAILURE KNOWLEDGE CAPTURE AND REUSE
Systems engineering through its technical processes has

traditionally been applied for realizing highly complex

systems where chances for unreliability of designs abound.

Systems engineering begins with the discovery of the real

problems that need to be solved and identification of highest

impact failures that can occur, and then, through an

interdisciplinary approach to engineering, attempts to find

solutions to those problems and potential failures. However,

many of the systems dependability issues that are likely to

arise have their roots at the intersection of different

disciplines of engineering and at the interfaces between

different subsystems where engineering intuition tends to be

low and rapid learning is imperative.

The rapid learning, which needs to happen over

verification and validation cycles of systems engineering or

over newer instances of products as they evolve from past

designs and configurations, deals with implicit knowledge

which is not immediately accessible; and in particular cannot

be acquired from conventional databases. Further, the useful

knowledge is obfuscated by different subject matter experts

using different terms when addressing the same issue. For

instance, implicit knowledge about failure modes exists in

natural language, and consequently, the meaning depends on

interpretations by the team which is reusing that knowledge.

The problem of reusing pre-existing knowledge about

failure modes could be solved effectively through the

definition of an ontology, which enables a common

understanding of the domain specific concepts without need

for interpretation, while making the ontology-held

knowledge explicit and machine-readable. An ontology

helps to integrate the elements of task-relevant knowledge

by uniformly structuring the domain knowledge.

An ontology, which consists of definitions of concepts,

relationships, and rules, is used in knowledge-based systems

where formalized knowledge is represented in a language

that supports reasoning and inference. The past knowledge

about system failures, which is implicitly contained in

documents, can be made explicit for use in information

systems by an inference engine. Using non-deductive

inference rules, the scope of making implicit knowledge

explicit, can be expanded significantly. By using an

ontology-based information system, as part of the closed-

loop between system failure and performance issue

occurrences, and the upstream design activity, new and fast

learning can be enabled to ensure that the risk of

overlooking failure modes is mitigated.

Although an ontology, as a way of converting implicit

system failure knowledge into machine-readable explicit

knowledge for reuse has often been mentioned in technical

literature, it is not currently offered commercially by

software providers either as part of systems engineering or

reliability engineering tool suites. In view of the

increasingly complex smart, connected products that are

emerging, the lack of understanding about their failure

modes will only increase. In addition, the market pressures

on time-to-launch and product costs will require much faster

learning cycles than ever before regarding product

performance and product failure. Consequently, ontology-

based or similar knowledge reuse tools are needed at the

enterprise level, in earnest, to deliver complex products that

are dependable, affordable, and available on time.

LEARNING SYSTEMS BASED DESIGN-FOR-
RELIABILITY

The technical processes of systems engineering ensure

robust capture of stakeholders’ requirements in the

beginning, followed by a hierarchical flow of those

requirements into system, subsystem, and component design.

Verification and validation activities occur at all three levels

of the system development hierarchy, and they offer learning

opportunities about the system’s performance at different

levels.

Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Bridging Reliability Engineering & Systems Engineering

Page 5 of 6

R
el

ia
b

ili
ty

 E
n

gi
n

ee
ri

n
g

To
o

ls

A
ff

in
it

y
D

ia
gr

am
s

Q
FD

 (
H

O
Q

)

K
an

o
 A

n
al

ys
is

Fu
n

ct
io

n
al

 F
lo

w
 B

lo
ck

 D
ia

gr
am

Sy
sM

L
D

ia
gr

am
s

ID
EF

N
2
 C

h
ar

ts

Sp
ec

if
ic

at
io

n
 T

re
e

FM
EC

A

TR
IZ

P
h

ys
ic

s
o

f
Fa

ilu
re

 A
n

al
ys

is

R
o

b
u

st
 O

p
ti

m
iz

at
io

n

D
es

ig
n

 o
f

Ex
p

er
im

en
ts

 (
D

O
E)

R
es

p
o

n
se

 S
u

rf
ac

e
A

n
al

ys
is

M
o

n
te

 C
ar

lo
 S

im
u

la
ti

o
n

s

C
o

n
jo

in
t

A
n

al
ys

is

K
ep

n
er

-T
re

go
e

A
n

al
ys

is

A
n

al
yt

ic
 H

ie
ra

rc
h

y
P

ro
ce

ss
 (

A
H

P
)

M
o

d
el

s

M
u

lt
i-

A
tt

ri
b

u
te

 U
n

ti
lit

y
A

n
al

ys
is

 (
M

A
U

A
)

Fa
u

lt
 T

re
e

A
n

al
ys

is
 (

FT
A

)

Ev
en

t
Tr

ee
 A

n
al

ys
is

 (
ET

A
)

R
el

ia
b

ili
ty

 B
lo

ck
 D

ia
gr

am
s

(R
B

D
)

FR
A

C
A

S

C
A

P
A

M
ar

ko
v

A
n

al
ys

is

W
ei

b
u

ll
A

n
al

ys
is

Sy
st

em
 M

ai
n

ta
in

ab
ili

ty
 A

n
al

ys
is

Sy
st

em
 A

va
ila

b
ili

ty
 A

n
al

ys
is

A
ss

et
 P

er
fo

rm
an

ce
 M

an
ag

em
en

t

A
cc

el
er

at
ed

 L
if

e
Te

st
in

g

Systems Engineering Technical

Processes
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Stakeholders' Requirements Definition 1

System Requirements Definition 2

System Architectural Design 3

System Elements Definition 4

System Analysis 5

System Elements Realization 6

System Elements Integration 7

System Design Verification 8

Verified System Transition 9

System Performance Validation 10

System Operation 11

System Maintenance 12

System Disposal 13

Table I Relating Reliability Engineering Tools with Systems Engineering Technical Processes
(Copyright © 2016 by CIMdata, Inc., used with permission)

The reliability engineering tools depend on the technical

expertise of subject matter experts to develop robust and

optimum designs that meet the stakeholders’ requirements

and do not run the risk of customer annoyance or unsafe

outcomes. To design against potential performance issues

and failure modes, the subject matter experts need to be able

to identify those failure modes and be knowledgeable about

the potential for their occurrence.

Given the runaway complexity of products today which

often straddle two or more traditional areas such as

automotive, entertainment, information, banking, etc., major

problems can occur when the intuition of the subject matter

experts at the intersections of these domains is lacking. In

fact, we can say that the systems could become so complex

and interrelated that the so-called subject matter experts are

not really subject matter experts any more. The speed of

evolution of products demands a “learning system based

design for reliability” capability in which systems

engineering, as we know it, is seamlessly coupled with

reliability engineering and design-for-six-sigma, supported

by an ontology-based or similar knowledge management

system that can manage implicit knowledge by converting it

into machine-readable explicit knowledge.

Software solutions providers today offer enterprise

solutions to enable large parts of systems engineering as

described by INCOSE [4]. However, those systems

engineering solutions do not communicate well with

reliability engineering and design-for-six-sigma tools. Too

much manual transfer of information is needed between the

systems engineering and the reliability engineering

solutions, leaving the door open for many quality and

reliability problems to be missed, allowing them to reemerge

during service and operations. In many situations, product

developers and manufacturers have had to custom-develop

the connection between reliability engineering and systems

engineering.

In order to compensate for the limited intuition of subject

matter experts regarding potential failure modes of complex,

software-intensive products, while remaining competitive in

cost and time-to-market, we need a seamless coupling

between reliability engineering tools and systems

engineering processes that leverages ontology-based or

similar failure knowledge capture and reuse in order to

realize rapid, enterprise level learning.

Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Bridging Reliability Engineering & Systems Engineering

Page 6 of 6

CONCLUSION
The need for seamlessly connecting systems engineering

solutions and reliability engineering solutions through a

knowledge management system has received very little

attention. With the growing complexity of software-

intensive products, whose failure modes are difficult to

guess a priori, it is imperative to establish such a connection

in order to realize the “learning system based design-for-

reliability” capability. Given the expansiveness of the

solution that could satisfy such a need, it appears that the

global information technology system integrators could

consider this as a strategic business opportunity. They could

drive the interoperability standards between diverse systems

engineering, reliability engineering, and knowledge

management tools and develop integration offerings that can

be tailored to the specific needs of diverse industry verticals

and businesses of different sizes within those verticals.

One opportunity for driving the interoperability standards

between different systems engineering, reliability

engineering, and knowledge management tools could be

through a user group under the Open Services for Lifecycle

Collaboration (OSLC) [7]. Currently a user group for

Quality Management [8] is working under OSLC towards

defining a common set of resources, formats and RESTful

services for quality management tools to interact with other

application lifecycle management (ALM) tools.

No user groups for reliability engineering and/or

knowledge management exist under OSLC today. However,

that can be remedied through CIMdata’s leadership, once

experts from industry, software solutions providers, and

system integrators agree with CIMdata that the “learning

system based design-for-reliability” capability must be

developed in the near future.

For socializing the contents of this whitepaper with the

experts from industry, software solutions providers, and

systems integrators, CIMdata will organize a series of

webinars in 2016 which will go into the details of several

aspects of this topic. CIMdata also plans to organize a

workshop in 2017 where different viewpoints will be

presented on this subject by the experts from industry,

software solutions providers, and system integrators,

culminating in the strategic direction of proceeding further

within the framework of OSLC or some other framework.

REFERENCES

[1] Simone, Lisa. K., “Software-Related Recalls: An

Analysis of Records”, Biomedical Instrumentation &

Technology, pp. 514-522, November/December 2013.

[2] Edwards, Steve, “The Tech Effect: Examining the Trend

of Software-Related Recalls”, Stericycles Thought

Leadership Blog.”

http://www.stericycleexpertsolutions.com/the-tech-effect-

examining-the-trend-of-software-related-recalls/

[3] Reed, Jake, “The “Softer” Side of Things – The Impact

of the Increasing Software and Complexity on Vehicle

Defects”, SRR Automotive Warranty & Recall Blog,

July 29, 2015.

http://blog.srr.com/automotive-warranty-and-recall/the-

softer-side-of-things-the-impact-of-the-increasing-

software-and-complexity-on-vehicle-defects/

[4] INCOSE, “Systems Engineering Handbook – A Guide

for System Life Cycle Processes and Activities”, 4th Ed.,

Wiley, INCOSE-TP-2003-002-04, 2015.

[5] Maass, McNair and Patricia, “Applying Design for Six

Sigma to Software and Hardware Systems”, Prentice

Hall, 1st Ed., 2009.

[6] Creveling, C. M., Slutsky, J. L., and Antis, Jr. “Design

for Six Sigma in Technology and Product Development”,

Prentice Hall, 2003.

[7] Open Services for Lifecycle Collaboration (OSLC)

http://open-services.net/

[8] Quality Management User Group at OSLC

http://open-services.net/workgroups/quality-management/

