

2017 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY

SYMPOSIUM
SYSTEMS ENGINEERING (SE) TECHNICAL SESSION

AUGUST 8-10, 2017 - NOVI, MICHIGAN

ENDGAME SIMULATION USING AN ALL-INCLUSIVE, ULTRA-FAST
VULNERABILITY AND LETHALITY CODE

Alexander Bernardo
SURVICE Engineering Company

Troy, MI

 Patrick Buckley
Matt Perini

SURVICE Engineering Company
PMC Operation

Socorro, NM

ABSTRACT
An endgame, vulnerability/lethality code, TurboPK was developed to take

advantage of parallel processing of multi-core, modern-day desktop and laptop

computers. TurboPK is used to simulate and analyze weapon-related kinetic

energy and blast effects of military vehicles. It implements Department of

Defense (DoD)-approved algorithms and is compatible with the DoD design

trade-off process. Its speed advantage is commensurate with the increase in

number of cores used. A quad-core processor results in run times that are four

times faster than using a single core. The heart of endgame analysis calculates

geometric intersections of projectiles or fragments with vehicle components using

ray-tracing algorithms. For example, literally thousands of rays are used to

accurately model the fragment ejecta from a warhead in a burst point analysis.

Algorithms originally written for a single processor have been rewritten to exploit

an open-source, parallel process ray tracer called Embree, provided by Intel

Corporation.

INTRODUCTION
In support of ground vehicle vulnerability

assessment efforts, a highly optimized code for

modern desktop and laptop central processing

units (CPUs) has been developed and is currently

being implemented. The code, named TurboPK,

was developed by the SURVICE Engineering

Company. It exploits multicore, superscalar,

hyperthreaded, and vectorized processes and is a

traditional endgame code that runs on both

Microsoft Windows and Linux platforms.

The code can be used to simulate and analyze

weapon-related kinetic energy and blast effects,

including armor-piercing projectiles, fragments,

exploding munitions, and air blast.

Simultaneously, it is integrated within the

traditional design trade-off process, ultimately

resulting in an optimized ground vehicle,

providing the user with a rapid ability to determine

a system’s probability of kill (Pk), and ensuring

traceability to DoD and industry standard

methodologies and algorithms.

The analysis implementation takes advantage of

numerous familiar input formats, including

Geometric Model, COVART4 Component

Damage Functions, COVART4 Fault Tree,

Projectile File, and Warhead File formats. In

implementation, the geometric model is directly

derived from standard computer-assisted design

(CAD) geometry using the STereoLithography

Proceedings of the 2017 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Endgame Simulation Using an All-Inclusive, Ultra-Fast Vulnerability and Lethality Code, Bernardo, et al.

Page 2 of 5

(STL) format. Using the failure mode and effects

analysis (FMEA)/failure modes, effects, and

criticality analysis (FMECA) approach and

resulting fault trees, multiply vulnerable

components are addressed. Component damage

functions are input via empirical probability of kill

given a hit (Pk/h) curves.

In a TurboPK analysis, all vulnerable

components are included, including crew,

engine/propulsion system, suspension, steering,

hydraulic, pneumatic, cooling, and lubrication

systems. The analysis process is greatly

streamlined, as TurboPK has a built-in library of

materials for the penetration equations.

SURVICE also has a library of empirical Pk/h

curves for vulnerable components.

Within TurboPK, widely accepted algorithms are

implemented, such as those that originate from the

Joint Technical Coordinating Group for Munitions

Effectiveness (JTCG/ME) Penetration Equations

Handbook and that use the COVART4

Component Damage Functions and the

COVART4 Fault Trees. In addition, cases have

been run using an integrated third-order

polynomial equation for air blast.

EXPLOITING PARALLEL PROCESSING
Today, virtually every desktop, laptop, and

notebook computer is built for parallel processing.

But most legacy endgame software were not

originally written for parallel processing, so the

full power of these multi-core CPUs went unused.

Fortunately for weapons analysts, endgame

codes are highly amenable to parallel processing

and can take full advantage of multi-core CPUs to

increase modeling and simulation (M&S) speed.

New capabilities that were not practically feasible

before, such as near-real-time design optimization,

can now be developed.

Through investigation and implementation of

various parallelization schemes and employment

of various software development tools, SURVICE

was able to demonstrate that parallelizing

endgame codes is practical in terms of providing

impressive reductions in simulation run times and

that these improvements scale linearly over a

small number of cores.

In the course of vulnerability/lethality analysis,

an analyst might be interested in the damage

effects of fragments from a warhead detonation on

a target. In this case, a burst-point analysis can be

conducted in TurboPK. Multiple burst points can

be run quickly where a Pk contour can be

generated over a geometric plane relative to the

target. In a burst-point scenario, one obvious way

to speed up the analysis is to subdivide it into

subsets that then run in parallel on multiple cores.

The scheme employed in TurboPK is illustrated

in Figure 1. To implement this scheme, TurboPK

creates a separate computational thread for each

core, asks the operating system to launch the

threads, waits for all the threads to complete their

work, and then merges the results from all the

threads. Each thread is a complete point-burst

program. Point-burst simulations model a

fragment warhead burst in Monte Carlo fashion as

a set of fragment rays whose directions and speeds

are randomized according to a prescribed

distribution function.

Figure 1: Typical multi-core parallelization scheme.

Proceedings of the 2017 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Endgame Simulation Using an All-Inclusive, Ultra-Fast Vulnerability and Lethality Code, Bernardo, et al.

Page 3 of 5

An example point burst is depicted in Figure 2 as

a set of fragment shotlines emanating from a point

located a few meters above the target model of

interest. In a point-burst code, each shotline is

first ray traced against the target geometry model

in question to determine which geometry objects,

if any, it intersects. The ray-tracing step is

computationally intensive and often consumes

80% of the runtime in a point-burst code due to

the large number of potential ray-object

intersection tests involved.

Figure 2: Example of a warhead point-burst simulation.

Consider, for example, a warhead that ejects

2,000 fragments and a geometric model that has

100,000 triangles. In theory, that results in

200,000,000 ray-triangle intersection tests to be

performed per point-burst calculation. Many such

calculations are performed in a typical analysis

session, so it is easy to see why ray tracing

dominates the run time.

Fortunately for endgame programmers, ray

tracing has been the subject of a great deal of

research, and there are numerous high-quality,

open-source ray tracers that greatly reduce ray

tracing times for endgame codes.

The current default ray tracer is an open-source

ray tracer called Embree [1], provided by Intel

Corporation. Embree fits the scheme illustrated in

Figure 1 because it is “thread safe.” That is to say,

the code manipulates only shared data structures

in a manner that guarantees safe execution by

multiple threads at the same time. Embree also

employs a low-level type of parallelism in the

form of single instruction multiple data (SIMD)

instructions. Among other things, SIMD enables

Embree to test one ray against four triangles

simultaneously. The result is the addition of a

layer of low-level parallel processing to the

high-level multi-core layer.

AN ILLUSTRATIVE EXAMPLE
So how well does all of this parallel processing

work? Consider an example burst-point set

calculation where the burst-point set is a rectangle

of burst points located at a fixed height-of-burst

(HOB) relative to the target model (a typical

simulation that might be run by legacy endgame

codes).

The exercise was performed on a typical laptop

computer with an Intel i7 four-core CPU. The

target is an ground vehicle model that has a set of

vulnerable components (occupants, hydraulic

lines, wire bundles, engine controls, etc.) typical

of industry and DoD standard target geometric

models (TGMs).

The warhead ejects 2,000 fragments in a

20-degree side spray. Fragment mass is

240 grains each, and fragment ejection speed is

6,000 fps. The missile carrying the warhead is

approaching in anti-parallel fashion (head-on

approach direction). Warhead burst points are

spaced 1 m apart in a rectangle measuring 10 m by

10 m. The HOB is 5 m above the target geometric

center. At each burst location, 20 Monte Carlo

point-burst calculations are performed, each of

which results in a PK value for the target of

between 0 and 1 as a statistical indication of the

likelihood of destroying or disabling the target in

Proceedings of the 2017 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Endgame Simulation Using an All-Inclusive, Ultra-Fast Vulnerability and Lethality Code, Bernardo, et al.

Page 4 of 5

such a manner that it cannot perform its intended

mission.

Averaging the 20 individual point-burst PK

values yields a single-shot-average-PK value for

the burst point. Figure 3 illustrates the field of

burst-point markers color-coded by PK (blue

equaling a probability of 0 and red equaling 1).

Figure 3: Burst-point field PK values.

There were 100 burst locations in this

calculation, so there was a total of 20,000

point-burst calculations. Each point-burst

calculation involved 2,000 randomized fragment

shotlines. It also involves a set of 14,400 “blast

rays” generated at 3-degree intervals in polar

angle and roll angle. Performing 20 Monte Carlo

samples at each of 100 burst points therefore

involves simulating a total of 3x107 rays.

Averaged over all 100 burst points, the PK is

0.7124 for this example with a runtime of 0.353 s.

A higher resolution version of the example

calculation is shown in Figure 4. In this case the

spacing between burst points was set to 0.1 m,

which results in 9,800 burst points. This

calculation involves roughly 3x109 fragment rays

and required 22.5 s of calculation time.

Figure 5 shows the Windows Task Manager

during the 9,800 burst-point run. It shows that

TurboPK is using 100% of the CPU computing

power. Core i7 processors have four full

computing cores, but each core is “hyperthreaded”

so two separate computational threads share each

core’s computing resources. Hyperthreading

Figure 4: Burst-point spacing reduced to 0.1 m.

Figure 5: Windows performance monitor.

appears to Windows as eight separate

computations running simultaneously, so its

performance window reports the usage of eight

“CPUs.” TurboPK was built from the ground up

to take advantage of multi-core processor designs

through parallel programming techniques, and

Figure 6 indicates it is successful in using all cores

at the same time.

To illustrate the value of parallelizing the

calculations, a simulation (describe simulation

here) was run on a single core and then on two,

three, and four cores (as indicated in Figure 6.

Run time for one core was 145 s and for four cores

was 41 s, or a speedup factor of 3.54. That result

is 88.4% of the theoretical maximum speedup

factor of 4.0.

Proceedings of the 2017 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Endgame Simulation Using an All-Inclusive, Ultra-Fast Vulnerability and Lethality Code, Bernardo, et al.

Page 5 of 5

Figure 6: Simulation results for different numbers

of CPU cores.

Similar results have been demonstrated for other

burst-point set problems with different warheads

types and configurations and different targets,

including various ground vehicles, aircraft, and

personnel. So it is safe to say that parallelizing

endgame codes through multi-core computing is

well worth the extra programming effort required.

REFERENCES

[1] Intel Corporation. “Embree High Performance

Ray Tracing Kernel.” http://embree.github.io/,

accessed August 2015.

http://embree.github.io/

