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ABSTRACT 
An endgame, vulnerability/lethality code, TurboPK was developed to take 

advantage of parallel processing of multi-core, modern-day desktop and laptop 

computers.  TurboPK is used to simulate and analyze weapon-related kinetic 

energy and blast effects of military vehicles.  It implements Department of 

Defense (DoD)-approved algorithms and is compatible with the DoD design 

trade-off process.  Its speed advantage is commensurate with the increase in 

number of cores used.  A quad-core processor results in run times that are four 

times faster than using a single core.  The heart of endgame analysis calculates 

geometric intersections of projectiles or fragments with vehicle components using 

ray-tracing algorithms.  For example, literally thousands of rays are used to 

accurately model the fragment ejecta from a warhead in a burst point analysis.  

Algorithms originally written for a single processor have been rewritten to exploit 

an open-source, parallel process ray tracer called Embree, provided by Intel 

Corporation. 

 

INTRODUCTION 
In support of ground vehicle vulnerability 

assessment efforts, a highly optimized code for 

modern desktop and laptop central processing 

units (CPUs) has been developed and is currently 

being implemented.  The code, named TurboPK, 

was developed by the SURVICE Engineering 

Company.  It exploits multicore, superscalar, 

hyperthreaded, and vectorized processes and is a 

traditional endgame code that runs on both 

Microsoft Windows and Linux platforms. 

The code can be used to simulate and analyze 

weapon-related kinetic energy and blast effects, 

including armor-piercing projectiles, fragments, 

exploding munitions, and air blast.  

Simultaneously, it is integrated within the 

traditional design trade-off process, ultimately 

resulting in an optimized ground vehicle, 

providing the user with a rapid ability to determine 

a system’s probability of kill (Pk), and ensuring 

traceability to DoD and industry standard 

methodologies and algorithms. 

The analysis implementation takes advantage of 

numerous familiar input formats, including 

Geometric Model, COVART4 Component 

Damage Functions, COVART4 Fault Tree, 

Projectile File, and Warhead File formats.  In 

implementation, the geometric model is directly 

derived from standard computer-assisted design 

(CAD) geometry using the STereoLithography 
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(STL) format.  Using the failure mode and effects 

analysis (FMEA)/failure modes, effects, and 

criticality analysis (FMECA) approach and 

resulting fault trees, multiply vulnerable 

components are addressed.  Component damage 

functions are input via empirical probability of kill 

given a hit (Pk/h) curves. 

In a TurboPK analysis, all vulnerable 

components are included, including crew, 

engine/propulsion system, suspension, steering, 

hydraulic, pneumatic, cooling, and lubrication 

systems.  The analysis process is greatly 

streamlined, as TurboPK has a built-in library of 

materials for the penetration equations.  

SURVICE also has a library of empirical Pk/h 

curves for vulnerable components. 

Within TurboPK, widely accepted algorithms are 

implemented, such as those that originate from the 

Joint Technical Coordinating Group for Munitions 

Effectiveness (JTCG/ME) Penetration Equations 

Handbook and that use the COVART4 

Component Damage Functions and the 

COVART4 Fault Trees.  In addition, cases have 

been run using an integrated third-order 

polynomial equation for air blast. 

 

EXPLOITING PARALLEL PROCESSING 
Today, virtually every desktop, laptop, and 

notebook computer is built for parallel processing.  

But most legacy endgame software were not 

originally written for parallel processing, so the 

full power of these multi-core CPUs went unused. 

Fortunately for weapons analysts, endgame 

codes are highly amenable to parallel processing 

and can take full advantage of multi-core CPUs to 

increase modeling and simulation (M&S) speed.  

New capabilities that were not practically feasible 

before, such as near-real-time design optimization, 

can now be developed. 

Through investigation and implementation of 

various parallelization schemes and employment 

of various software development tools, SURVICE 

was able to demonstrate that parallelizing 

endgame codes is practical in terms of providing 

impressive reductions in simulation run times and 

that these improvements scale linearly over a 

small number of cores. 

In the course of vulnerability/lethality analysis, 

an analyst might be interested in the damage 

effects of fragments from a warhead detonation on 

a target.  In this case, a burst-point analysis can be 

conducted in TurboPK.  Multiple burst points can 

be run quickly where a Pk contour can be 

generated over a geometric plane relative to the 

target.  In a burst-point scenario, one obvious way 

to speed up the analysis is to subdivide it into 

subsets that then run in parallel on multiple cores. 

The scheme employed in TurboPK is illustrated 

in Figure 1.  To implement this scheme, TurboPK 

creates a separate computational thread for each 

core, asks the operating system to launch the 

threads, waits for all the threads to complete their 

work, and then merges the results from all the 

threads.  Each thread is a complete point-burst 

program.  Point-burst simulations model a 

fragment warhead burst in Monte Carlo fashion as 

a set of fragment rays whose directions and speeds 

are randomized according to a prescribed 

distribution function. 

 

 
Figure 1:  Typical multi-core parallelization scheme. 



Proceedings of the 2017 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Endgame Simulation Using an All-Inclusive, Ultra-Fast Vulnerability and Lethality Code, Bernardo, et al. 

 

Page 3 of 5 

An example point burst is depicted in Figure 2 as 

a set of fragment shotlines emanating from a point 

located a few meters above the target model of 

interest.  In a point-burst code, each shotline is 

first ray traced against the target geometry model 

in question to determine which geometry objects, 

if any, it intersects.  The ray-tracing step is 

computationally intensive and often consumes 

80% of the runtime in a point-burst code due to 

the large number of potential ray-object 

intersection tests involved. 

 

 
Figure 2:  Example of a warhead point-burst simulation. 

 

Consider, for example, a warhead that ejects 

2,000 fragments and a geometric model that has 

100,000 triangles.  In theory, that results in 

200,000,000 ray-triangle intersection tests to be 

performed per point-burst calculation.  Many such 

calculations are performed in a typical analysis 

session, so it is easy to see why ray tracing 

dominates the run time. 

Fortunately for endgame programmers, ray 

tracing has been the subject of a great deal of 

research, and there are numerous high-quality, 

open-source ray tracers that greatly reduce ray 

tracing times for endgame codes. 

The current default ray tracer is an open-source 

ray tracer called Embree [1], provided by Intel 

Corporation.  Embree fits the scheme illustrated in 

Figure 1 because it is “thread safe.”  That is to say, 

the code manipulates only shared data structures 

in a manner that guarantees safe execution by 

multiple threads at the same time.  Embree also 

employs a low-level type of parallelism in the 

form of single instruction multiple data (SIMD) 

instructions.  Among other things, SIMD enables 

Embree to test one ray against four triangles 

simultaneously.  The result is the addition of a 

layer of low-level parallel processing to the 

high-level multi-core layer. 

 

AN ILLUSTRATIVE EXAMPLE 
So how well does all of this parallel processing 

work?  Consider an example burst-point set 

calculation where the burst-point set is a rectangle 

of burst points located at a fixed height-of-burst 

(HOB) relative to the target model (a typical 

simulation that might be run by legacy endgame 

codes). 

The exercise was performed on a typical laptop 

computer with an Intel i7 four-core CPU.  The 

target is an ground vehicle model that has a set of 

vulnerable components (occupants, hydraulic 

lines, wire bundles, engine controls, etc.) typical 

of industry and DoD standard target geometric 

models (TGMs). 

The warhead ejects 2,000 fragments in a 

20-degree side spray.  Fragment mass is 

240 grains each, and fragment ejection speed is 

6,000 fps.  The missile carrying the warhead is 

approaching in anti-parallel fashion (head-on 

approach direction).  Warhead burst points are 

spaced 1 m apart in a rectangle measuring 10 m by 

10 m.  The HOB is 5 m above the target geometric 

center.  At each burst location, 20 Monte Carlo 

point-burst calculations are performed, each of 

which results in a PK value for the target of 

between 0 and 1 as a statistical indication of the 

likelihood of destroying or disabling the target in 
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such a manner that it cannot perform its intended 

mission. 

Averaging the 20 individual point-burst PK 

values yields a single-shot-average-PK value for 

the burst point.  Figure 3 illustrates the field of 

burst-point markers color-coded by PK (blue 

equaling a probability of 0 and red equaling 1). 

 

 
Figure 3:  Burst-point field PK values. 

 

There were 100 burst locations in this 

calculation, so there was a total of 20,000 

point-burst calculations.  Each point-burst 

calculation involved 2,000 randomized fragment 

shotlines.  It also involves a set of 14,400 “blast 

rays” generated at 3-degree intervals in polar 

angle and roll angle.  Performing 20 Monte Carlo 

samples at each of 100 burst points therefore 

involves simulating a total of 3x107 rays.  

Averaged over all 100 burst points, the PK is 

0.7124 for this example with a runtime of 0.353 s. 

A higher resolution version of the example 

calculation is shown in Figure 4.  In this case the 

spacing between burst points was set to 0.1 m, 

which results in 9,800 burst points.  This 

calculation involves roughly 3x109 fragment rays 

and required 22.5 s of calculation time. 

Figure 5 shows the Windows Task Manager 

during the 9,800 burst-point run.  It shows that 

TurboPK is using 100% of the CPU computing 

power.  Core i7 processors have four full 

computing cores, but each core is “hyperthreaded” 

so two separate computational threads share each 

core’s computing resources.  Hyperthreading 

 

Figure 4:  Burst-point spacing reduced to 0.1 m. 
 

 
Figure 5:  Windows performance monitor. 

 

appears to Windows as eight separate 

computations running simultaneously, so its 

performance window reports the usage of eight 

“CPUs.”  TurboPK was built from the ground up 

to take advantage of multi-core processor designs 

through parallel programming techniques, and 

Figure 6 indicates it is successful in using all cores 

at the same time. 

To illustrate the value of parallelizing the 

calculations, a simulation (describe simulation 

here) was run on a single core and then on two, 

three, and four cores (as indicated in Figure 6.  

Run time for one core was 145 s and for four cores 

was 41 s, or a speedup factor of 3.54.  That result 

is 88.4% of the theoretical maximum speedup 

factor of 4.0. 
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Figure 6:  Simulation results for different numbers  

of CPU cores. 
 

Similar results have been demonstrated for other 

burst-point set problems with different warheads 

types and configurations and different targets, 

including various ground vehicles, aircraft, and 

personnel.  So it is safe to say that parallelizing 

endgame codes through multi-core computing is 

well worth the extra programming effort required. 
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