
DISTRIBUTION STATEMENT A. Approved for public release; distribution unlimited.

2018 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY
SYMPOSIUM

SYSTEMS ENGINEERING (SE) TECHNICAL SESSION
AUGUST 7-9, 2018 - NOVI, MICHIGAN

SET-BASED DESIGN AND OPTIMIZATION.... CAN THEY LIVE
TOGETHER AND MAKE BETTER TRADE SPACE DECISIONS?

Stephen Rapp, PhD
Tank Automotive

Research Development
Engineering Center

(TARDEC)
Warren, MI

Norbert Doerry, PhD
Naval Sea Systems

Command
Washington, DC

Ratna Chinnam, PhD
Leslie Monplaisir, PhD

Alper Murat, PhD
Gary Witus, PhD

Industrial & Systems Engineering Department
Wayne State University

Detroit, MI

ABSTRACT
Often during Product Development, externalities or requirements change,

forcing design change. This uncertainty adversely affects program outcome,

adding to development time and cost, production cost, and can compromise system

performance. We present a development approach that minimizes impacts, by

proactively considering the possibility of changes in the externalities and mid-

course design changes. The approach considers the set of alternative designs and

the burdens of a mid-course change from one design to another in determining the

relative value of a specific design through the set-based design methodology. The

approach considers and plans parallel (redundant) development of alternative

designs with progressive selection of options, including time-versus-cost tradeoffs

and the impact change-costs. The approach includes a framework of the

development process addressing design and integration lead-times, their

relationship to the time-order of design decisions, and the time-dependent burden

of design changes. We also compare set-based and single point design schemes.

INTRODUCTION
Product Development (PD) remains uncertain and

fraught with risk in development as outside factors

change over time. Changing requirements during

PD play havoc with program budgets, resources

and schedule. Stakeholders with different

concerns, constraints and changeable priorities

coupled with cost and engineering technical

fulfilment uncertainty impact system choices

through design and development in PD programs.

A Government Accounting Office (GAO) audit of

Navy Destroyer Programs addressed this issue

Page 2 of 13

DISTRIBUTION STATEMENT A. Approved for public release; distribution unlimited.

(Anti-Air Warfare requirements in this case) and

proposed the need for expanded design space in

future programs [1]. Set-Based Design (SBD) as a

candidate engineering development approach,

holds promise to add resiliency into the PD process

by expanding the design space to consider set

design solutions. SBD considers a set of design

solutions and does not move to a point solution

until PD uncertainty is resolved.

SBD is based on satisficing given multiple

constraints (requirements). <Note: Satisficing is a

decision-making technique that entails searching

alternatives until the threshold is met.> Different

stakeholders source different constraints and

requirement thresholds change over time. The

relative priorities, i.e., the willingness of

stakeholders to relax one requirement to be able to

restrict another requirement and still have feasible

solutions, also change over time. SBD is an

iterative process where design and requirements

evolve in parallel and stakeholders restrict and

relax requirements regarding feasible design space

solutions [2]. It is a concurrent engineering process

that helps stakeholders understand requirement

interdependencies and impact on design as they

work to develop the performance specification and

preliminary design.

LITERATURE REVIEW INSIGHTS
SBD lacks a rigorous mathematical, quantitative

formalization. Emergence of computational,

combinatorial design generation and evaluation

tools and methods continue, but there are

limitations in their use and application as they

mainly focus on “point solutions” even with pareto

multi-criteria design. Optimal point solutions early

in the design, are faced with unknowns that affect

design fulfilment and success. Point designs are

“brittle” as they must react to technical, time and

cost changes. Ongoing requirements changes, in

thresholds and priorities, also force point solution

modification when expectations fall short of target.

SBD however, creates set solutions, where set

contains multiple point solutions in a region of the

design space itself. These set solutions offer the

potential to improve design resilience since set

solutions increase confidence that a single design

from the set will better meet requirements and are

more tolerant to parameter changes over time.

Thus, a solution contained in a region, compared to

a point solution, and also being allowed to change

over time, increases PD process resilience.

The general body of knowledge supports the

theoretical foundation that uncertainty and risk

severely impact designs as they change in the PD

cycle. Multiple foundational examples of failed

programs, particularly complex and high cost

programs, are directly linked to a lack of rich

alternatives in a robust design space. Furthermore,

failures are tied to point design process brittleness,

which is unable to deal with subsystem, assembly

or component design failures associated with

uncertainty over time in PD. SBD can expand and

contract its set solution, in the face of uncertainty.

There are multiple, successful SBD qualitative

examples of this process resiliency. SBD is also

directly linked to PD programs that are effectively

using it to remove design process brittleness.

However, the literature points to the need of

coupling quantitative mathematical analysis into

the PD process to create not just more process

resiliency, but cost-effective, adaptive and

technically improved solutions. The need for a

framework that couples SBD with mathematical

analytics is both real and overdue. Additionally,

the concept to optimize, while keeping solution

variance in concept sets has been proposed.

SBD is a proven qualitative process associated

with organizational conference room decision

making. This is not disparaging, but rather it is

encouraging, in that SBD has proven itself in

decision making. Therefore, designing a

quantitative form of SBD that keeps the richness of

SBD facing and agilely dealing with uncertainty in

PD, is unique and novel. Furthermore, the novel

approach and framework presented in this paper,

goes beyond using uncertainty to expand design

Page 3 of 13

DISTRIBUTION STATEMENT A. Approved for public release; distribution unlimited.

space around point solutions, to actually creating

true set solutions with their total uncertainty [3].

PROBLEM OVERVIEW
 Many systems, especially military systems, have

protracted development lifecycles. During

development, various external factors that

influence design decisions often change. The

challenge is to develop a system that ends up being

cost-effective and is cost effective to develop,

despite changes in the externalities during

development. A development process that meets

these challenges is resilient with respect to changes

in the externalities.

The externalities we are considering are: (1) the

relative values of system performance, system

burden, and unit production cost, and (2) the

development cost, time and uncertainties of

candidate technologies/ options. The external

factors have a known value at any point in time, but

their final value, when the development is over and

the system enters production, are unknown until the

end. They are indeed “random” variables.

Traditional point design treats the externalities as

“deterministic”. As a result, reactions to changes

can incur greater costs and/or performance

compromises than if the development program had

considered potential variability of the externalities.

The approach we are pursuing is Set-Based

Design (SBD). SBD carries a (redundant) set of

options and alternatives forward during

development, incrementally winnowing and

adjusting the set as development proceeds and in

response to changes in the externalities, leading to

a final point design for production. The principle

of SBD is to keep a broad range of options under

consideration “as long as possible” to provide

resiliency to changes in the externalities.

FRAMEWORK FORMULATION
The high-level framework process uses a

stochastic process to define the value, i.e.

Contribution-to-Design, of developing multiple

options, in a set from PD milestone/epoch to epoch.

Contribution-to-Design is a combination of system

performance, production cost, development time

and cost. We treat the Contribution-to-Design as a

black box treatment (allowing flexibility of

application) to seed the values required to develop

a Markov Decision Process. This is standard

stochastic automata with utilities that presume the

“memoryless” property, where actions taken in a

state depend only on that state and not prior history.

We then recursively solve the problem as a

Dynamic Programming model utilizing Bellman’s

Equation with no discount to determine the optimal

action (Bellman 1956). It is worth noting that this

is neither direct discrete optimization of a design’s

characteristics, nor Pareto combinatorial

optimization that yields a non-dominated set of

point solutions. The three methods will be

compared using example problem data.

THE DECISION PROBLEM
We assume a system consists of several

subsystems. Each subsystem has alternative

technologies and design options to meet the system

requirements. A final point design consists of

exactly one choice of an option for each subsystem.

In the general case, not all the subsystems will be

present in the final design, so the option of “none”

is a realization option for each subsystem.

During development, technologies and design

options are selected or rejected, subsystems are

designed, and integrated in a task network

organization leading to complete prototype

production and testing. Subsystem design and

integration takes time and incurs cost, and the time

and costs depend on the technology and design

option choices. The end system performance,

production cost, and the development time and cost

all depend on: (1) which subsystem technologies

and design options are chosen, and (2) when the

selection/rejection decisions are made.

During development, information regarding the

distribution of the external factors changes. Over

time, as more data becomes available, estimates of

the means change and uncertainty generally

Page 4 of 13

DISTRIBUTION STATEMENT A. Approved for public release; distribution unlimited.

decreases – although it is possible that uncertainty

can increase.

The decision problem is to select or reject

subsystem options at the appropriate milestone or

epoch to achieve “best value”, the Contribution-to-

Design at the end of the development program,

despite adapting to changes in the externalities.

For the illustrative example below, we will

assume that we only have three total system designs

{D1, D2 and D3} from any unique and allowable

combination of subsystem option. These three

designs enumerate into seven “Set Solutions” (SS1

to SS7). Additionally, we also show the possibility

of skipping design work.

In Figure 1, the PD milestones/Epochs are

arranged in time order, such that Epoch Α is first

and Epoch Ω is last. The set solutions are all of the

possible combinations of the three designs and are

shown up to Epoch Ω. At Epoch Ω, the last epoch,

the final design must be selected, so only the

designs are shown. This is a visual representation

of the Set-Based Design Process for considering

which designs to develop. The colored arcs below

represent one (yellow) or two (red) designs from

not developing a design in the previous epoch. In

most programs, these are possible but unlikely. For

example, SS1 in B going to SS2 in Γ requires

catching up all the work for D2 missed before B.

Figure 1: Example Problem – Total Set Solutions

DECISION SITUATIONS AND DESIGN
DECISION STRATEGIES

There are four macro decision situations the

framework supports (a – d below):

When new information regarding the distributions

of the externalities becomes available,

When an option enters the critical path, i.e., if the

design and integration of the option does not begin

immediately, but has begun later, it increases the

total development time,

When an option reaches the point at which

keeping it under consideration, development or

integration begins to incur costs at a higher rate, and

When new information indicates that a new

option is no longer feasible.

Situation (a) involves reconsideration of the entire

set-solution. Situations (b) and (c) involve only the

decision to keep (b) or reject (c) the specific option.

Situation (d) requires the problem to be restructured

without the option by removing any system design

choices that included the option.

Design decision strategies for a point solution are

restricted to either modifying the current point

solution or replacing it with a new point solution.

For set solutions, the choices are more resilient.

One can choose to neck down (i.e., reduce the set

size), open up, or completely modify the set

solution.

The following are examples of design decision

strategy changes:

Neck-Down Example: Epoch 𝐴: SS7 to Epoch 𝐵:

SS6. D2 dropped at Epoch 𝐵.

Open-Up Example: Epoch 𝐴: SS3 to Epoch 𝐵:

SS5. D1 added at Epoch B with recovery costs.

Complete Modify Example: Epoch 𝐴: SS4 to

Epoch 𝐵: SS3. D1 and D2 dropped and D3 added

at Epoch 𝐵 with recovery costs.

FRAMEWORK DIMENSIONS
Epochs aka Milestones (E) – Discrete Time points

from 𝐴 to 𝛺 where:

𝛺 = total number of epochs (𝛺 =3 in the

illustrative example):

𝑡 is the epoch index

Page 5 of 13

DISTRIBUTION STATEMENT A. Approved for public release; distribution unlimited.

Design Data is updated, reviewed and then used

to make forward programmatic decisions from 𝐴,

𝐵, 𝛤… 𝑡 + 1, … 𝛺

System Designs (𝛥) – the allowable individual

system designs possible from the system trade

space from 1 to 𝐷 where:

𝐷 = total number of allowable system designs

(𝐷=3 in the illustrative example):

𝑑 is the design index

A design must include exactly one option for

every subsystem or technology under consideration

in the trade space

Each System Design, 𝛥𝑑 is a unique combination

of technology options of exactly one per subsystem

and is both a point solution and a singleton set

solution

Other set solutions are the combinations of

multiple system designs (see Figure 1)

Subsystems or Technology types (SS) – The

discrete technology subsets that are required to

frame a complete system choice where:

𝐼 = total number of technology subsets or

subsystems (𝐼 =3 in the illustrative example)

𝑖 is the technology subset or subsystem index

Options (O) – for every technology subset or

subsystem there are a set of options available

where:

𝐽𝑖 = total number of options per 𝑖th subsystem

((𝐽1, 𝐽2, 𝐽3) = (2,2,2) in the illustrative example)

𝑗 is the 𝑖th subsystem option sub-index

𝐾 = total number of options in the trade space (𝐾

=6 in the illustrative example)

𝑘 is the iterative vector transformation index

taken from of the (𝑖,𝑗) option pairings

TOTAL DEVELOPMENT COSTS
The framework calculates Development Costs for

every option epoch to epoch. Recovery Costs are

calculated for options not developed in prior

phases. Finally, System Integration costs are

calculated for all phases. The framework considers

the following:

Options may share certain costs with other

options,

Reduce or Increase System Integration costs

dependent on the shared development,

Recovery Costs are calculated for all options

where the timeline permits option recovery,

There are no recovery costs if the new Set

Solution is the same as the old,

Recovery costs are lower if the new Set Solution

shared development with the old, and

Recovery costs are higher if development needs

to be made up.

Contribution-to-Design (CTD)

We assume that a PD program will consider an

initial set solution at the beginning and then will

potentially modify that set solution at the different

program milestones/epochs based on new

information as time progresses and uncertainty

clears. The Contribution-to-Design (CTD) is

calculated for each set solution at each epoch. The

framework supports the natural PD cycle where

subsystem options are typically developed

independently early and then require system

integration later. The following Table 1 shows the

relationships between the framework dimensions as

PD advances through the epochs and phases.

Table 1: Framework Dimensional Relationships

In Table 1, we show what the key dimensions,

values and costs are that the framework must track

and calculate to data populate the Markov Decision

Process algorithm. We also show, what the

required cost balance equations are for each phase

of work, i.e. epoch to epoch. At Epoch Ω, we down

select to the final design. At Ω, the option

development is complete, so the point values of the

designs are all that remains. It is assumed that only

SI costs remain at this point in the process.

Epochs Key Dimensions Value Calculations Development Costs (DC)

A Options Set Solution CTD Options Dev (A to B)

B to (Ω - 1) Options Set Solution CTD Options Dev + Recovery Costs (B to B+1)

Ω - 1 Options Set Solution CTD Options Dev + SI Costs (Ω-1 to Ω) *** Final Design Set

Ω Designs Point Design Value Options SI Costs (Ω to TP) for the Optimal Design (∆*)

Test/Production (TP) Final Design NA NA

Phases Cost Control Equations for Phase (Et to Et+1)

EA to EB

EB ... to … EΩ-1

EΩ-1 to EΩ

EΩ to ETP Final Design SI Costs <= Pre-Test Development Budget

 𝐷 𝑘

 1 <= Phase Development Budget

 𝐷 𝑘

 1 <= Phase Development Budget

 𝐷 𝑘

 1 + 𝑑 𝐼

𝑑 1 <= Phase Development Budget

Page 6 of 13

DISTRIBUTION STATEMENT A. Approved for public release; distribution unlimited.

General Control Equations: (1) Reject options

development that exceeds the phase budgets, and

(2) Select exactly one Design at Epoch Ω.

THE CONTRIBUTION-TO-DESIGN
FUNCTION: OPTION, SUBSYSTEM AND
SET

The Contribution-to-Design (CTD) for an option

includes both the performance/burden to target

difference of the technology/option and the

expected variance of the developing

technology/option. The framework formulation

measures the expected confidence of the specific

technology/option to meet Design Readiness

Levels during the phases. The Design Readiness

Level is an expansion of the DOD’s Technical and

Material Readiness Levels. In the context of

framework, the Design Readiness Level reflects the

maturity of the design relative to each of required

target levels in a program. Without loss of

generality, in the illustrative example, we employ

three levels for design readiness: 1-Least Ready; 2-

Somewhat Ready; and 3-Fully Ready. While the

estimated confidence is based on estimates, the

framework allows for continuous updating as

uncertainty in the estimates lessens over time. With

the inclusion of variance, uncertainty can be

properly modeled. Additionally, this approach has

significant computational advantages since it

permits meta-heuristic optimization techniques.

We calculate CTD (s) for: options, subsystem and

set solution.

This is the Contribution-to-Design formulation

for an option at a specific Epoch looking forward:

CTD = 𝜔𝑖 ∙ 𝑃[𝑍𝑖]
𝑛
1 (1)

where 𝑃 is the probability lookup of the 𝑍𝑖 value

(defined below), 𝜔𝑖 is the weight of the externality

(performance or burden parameter), and 𝑖 is the

index for all 𝑛 externalities.

 𝜔𝑖
𝑛
1 = 1 (2)

𝑍𝑖 = {(𝜇𝑖 − 𝐿𝑖)/𝜎𝑖} where: (3)

𝐿 = Performance or Burden Requirement Target

Value

{𝜇, 𝛼} = System or Sub-system externality

probability distribution

In Table 2, we show an example of Option 1’s

individual Contribution-to-Design calculations for

meeting Readiness Levels 1 and 2. In this example

we “weight” the three metrics (performance,

physical weight burden and AUPC burden). The

Contribution-to-Design is then a weighted value of

the three probability measures.

Table 2: Individual CTD Calculation

For Set Solutions with more than one option per

subsystem, it is expected that the multiple options

reduce total design uncertainty should a single

option fail to meet targets.

This is the cornerstone of SBD and has been

effectively utilized for over twenty years, even if

not quantitatively proven. For the framework, we

assume that the multiple option designs are

independent since we only calculate the

probabilities of exceeding targets of the readiness

levels. Given independence, the Contribution-to-

Design formulation for multiple options in a

subsystem is:

Epoch A Option 1 Performance Weight Burden AUPC Burden CTD

Weight 0.3 0.3 0.4

Current Mean 350 350 47000

Current SD 50 100 10000

DRL 1 Target 250 400 45000

DRL 2 Target 300 390 44000

P (X > DRL 1 Tgt) 0.9772 0.6915 0.4208 0.6689

P (X > DRL 2 Tgt) 0.8414 0.6554 0.3821 0.6019

Page 7 of 13

DISTRIBUTION STATEMENT A. Approved for public release; distribution unlimited.

 𝑇𝐷𝑖,𝑅𝐿𝑡→𝑅𝐿𝑡+1
= 1

− ∏{1

𝑚𝑖

𝑗 1

− ∑ {1}𝑥𝑖,𝑗,𝑡,𝑅𝐿𝑡
𝑃𝑟𝑖,𝑗{𝑅𝐿𝑡

3

𝑅𝐿𝑡 1

→ 𝑅𝐿𝑡+1} 𝑇𝐷𝑖,𝑗,𝑅𝐿𝑡→𝑅𝐿𝑡+1}

{1}𝑥𝑖,𝑗,𝛺,𝑅𝐿𝑡
: 1 if option 𝑗 of subsystem 𝑖 is selected

and its current state in 𝛺 is 𝑅𝐿𝑡, 0 otherwise.

 (4)

where 𝑇𝐷𝑖 is the subsystem CTD for the 𝑖th
subsystem. 𝑗 is the index for the option members,

from 1 to 𝑚, where 𝑚 is the total number of options

in the same subsystem that are in the set solution.

For the example problem, we will use the data

from Table 3 for the third subsystem in Epoch 𝐵

moving forward to Design Readiness Level of 3.

We assume the set solution has options 5 and 6:

CTD (Subsystem 3, Epoch 𝐵 to Epoch 𝛤, DRL 3)

= {1 − ((1 − 0.7) ∙ (1 − 0.1))} = {0.73}.

The total CTD for the set solution must then

consider the individual subsystem CTD’s at the

epochs. Depending on program situation, it may be

important to weight the subsystem CTD’s

differently. For example, an automotive program

may value its engine subsystem higher than its

entertainment system for its sports car while it

reverses that weight value for its minivan. The

CTD for the entire set solution at an Epoch moving

to given Design Readiness Level during the next

phase is:

 𝑇𝐷 = {𝑊𝑡𝑖 ∙ 𝑇𝐷𝑖}
𝐼
1 (5)

where 𝐼 = the number of subsystems, 𝑖 is the

subsystem index, and 𝑊𝑡 is the relative weight of

the subsystems value.

For the example problem, we will use data from

Table 3 at Epoch 𝐵 for Design Readiness Level 3

and an arbitrary weight vector of {0.4, 0.4, 0.2} for

the subsystems. The example set here includes all

options except for Option 1.

CTD (Set Solution, Epoch 𝐵, DRL 3) = ((0.4 ∙
0.9) + (0.4 ∙ 0.73) + (0.2 ∙ 0.73)) = 0.81.

Table 3: Example Action, State and Transition Matrix

In Table 3, we show examples of the required

action and state spaces to enable the algorithm. The

current Design Readiness Levels are in Row 3 and

Rows 4 to 6 show the probability of the options

moving up if invested in for the phase development

to the next epoch. Any probability distribution

function is allowable as we are only concerned with

the likelihood state changes.

THE VALUE FUNCTION: STATE TO
STATE CTD IS THE MDP REWARD

This is the core of the research development. We

begin at the end, Epoch Ω, knowing that we must

down select to a single integrated prototype design.

We accept that there may be some modification,

rework and additional SI during testing. The value

function at the end is simply a single weighted

multi-attribute value of each design. The key

insight of the research is that we only need to solve

the actions of the options themselves and not the

designs. The designs under development prior to

full system integration are an extension of the

option developments prior to the final epochal

decision to design down select.

Epoch A 1 2 3 4 5 6 Epoch B 1 2 3 4 5 6

Action 1 1 1 1 1 1 Action 0 1 1 1 1 1

State DRL 1 1 1 2 1 2 State DRL 1 2 2 2 2 2

P(DRL => 1) 1 1 1 1 1 1 P(DRL => 1) 1 1 1 1 1 1

P(DRL => 2) 0.6 0.7 0.5 1 0.7 1 P(DRL => 2) 1 1 1 1 1 1

P(DRL => 3) 0.3 0.2 0.2 0 0.3 0 P(DRL => 3) 0.2 0.9 0.7 0.1 0.7 0.1

Page 8 of 13

DISTRIBUTION STATEMENT A. Approved for public release; distribution unlimited.

The Dynamic Programming (DP) back solve is

initialized by calculating the CTD values to seed

the MDP and its reward function 𝑅 beginning with

the last epoch just before the system integration.

We use the CTD values, which we calculate at each

state space, to be a “black box” value from which

we can determine a value change, the reward 𝑅,

from state to state. This creates a set of stochastic

automata with utilities for DP solving.

MDP(s) include: (1) a set of possible world spaces

{ }, (2) a set of possible actions {𝐴}, (3) a real

valued reward function 𝑅(, 𝐴) and a description 𝑇

of each action’s effects in each state. For the

framework, this is a weighted selection of all the

options that considers not only the performance and

burdens of each of the options, but also their

likelihood to meet their performance requirements

and burden budgets.

During the phases, we consider budgetary

controls to not exceed the phase budget, which is

standard DOD policy. We consider every possible

action that does not violate the budget. The

recursive DP solves for the optimal action. We

utilize Bellman’s stochastic balance equations to

solve for the optimal initial action [4]. The actual

value optimized recursively is the Expected Value

of all CTD improvements. This modified

optimization approach allows us to focus on which

options are invested in for the optimal actions

determined at each Epoch. We further assume the

memoryless Markov Property: the effects of an

action taken in a state depends only on that state and

not on the prior history and we apply no discount

factor.

THE RESEARCH EXAMPLE PROBLEM
Figure 2 shows the goals hierarchy and value

weights for the example problem. There are two

subsystems and three metrics for the problem itself.

For this simple problem we are able to use the

straight forward Multi-Attribute Utility model to

determine both the discrete single point optimal

design and to also show the full combinatorial

optima solution. Figure 3 shows that D1 is the

single best design as it has the best total weighted

utility.

Figure 2: Problem Goals Hierarchy

Figure 3: Ranking for Best Design

Table 4 shows the CTD Based Expected Values

that come from the main problem. These Expected

Values assume that the Designs would follow the

typical PD process for point based design, i.e. the

options of the design are developed continuously.

Additionally, we show the CTD values at the metric

level so we can determine if there is any pareto

dominance between the designs.

Table 4 – CTD Based Expected Values (Deconstructed

down to metric)

Green represents the maximum metric value.

Although D1 almost dominates D2, and D3 almost

dominates D4, the B2 option is strongest in cost

value, which keeps D2 and D4 as combinatorial

Page 9 of 13

DISTRIBUTION STATEMENT A. Approved for public release; distribution unlimited.

optima. Thus, the combinatorial solution shows no

complete pareto dominance for any design. The

program team would be left to decide its best design

solution to take forward.

The process for defining the optimum or optima

in single point approaches focuses on selecting a

design initially and then developing it. The

framework approach rather determines an optimal

action to initiate a set solution from an initial

optimal action. That action is based stochastically,

to develop a set of options that reduces

developmental risk and allows for uncertainty in

the process. We compare the results from these

methods to the results from proposed framework

method in the next section.

FRAMEWORK STATE AND ACTION
SPACES

The State Space is the set of all possible states for

the problem, which is every possible combination.

The individual state’s dimensions are carried in a

vector of: 𝐾 (total number of options) × (number

of parameters/metrics) + epoch. The non-epoch

cells hold the Design Readiness Levels that can

vary, but for the example we use exactly three

levels per option/metric combination. The

following Table 5, shows the origin and end states.

The state space contains four possible designs. The

possible maximum size of the example state space

is the product of all option Design Readiness Levels

(312) and the number of Epochs (4) or 2,125,764.

Table 5 – Notional Origin and End States

The MDP Network for our example, is much

sparser since we do not start or end at the extremes

and we do not have state to state arcs for every

possibility. The actual example problem state

space is less than 1,000.

In Table 6 below, the Action Space is a matrix of

all possible options length that represents whether

an option is invested in (1) or not invested in (0) for

the next phase’s development. Additionally, the

Action Space can be expanded to cover skipped

investments. A skipped investment would be

marked by a (2) and the Action Space would then

be a maximum in size of 81 possible actions. This

is a rather rare occurrence in the real world, so it

would be easy enough to just add the small set of

skip actions for computation purposes.

Table 6 – Example Problem Action Space

The Transition arcs are stochastic. Most of the

problem model’s transitions are two choices of

either move up one or remain the same Design

Readiness Level for the individual options,

although we did include some other transitions to

test the model’s robustness. The actual set solution

transitions typically numbered 16 or more are

shown below in Table 7. The Rewards as stated

earlier, are state to state changes in the CTD.

Options

Metrics P W C P W C P W C P W C

StateA 1 1 1 1 1 1 1 1 1 1 1 1

Options

Metrics P W C P W C P W C P W C

StateΩ 3 3 3 3 3 3 3 3 3 3 3 3

A1 A2 B1 B2

A1 A2 B1 B2

Actions A1 A2 B1 B2

a1 0 0 0 0

a2 0 0 0 1

a3 0 0 1 0

a4 0 0 1 1

a5 0 1 0 0

a6 0 1 0 1

a7 0 1 1 0

a8 0 1 1 1

a9 1 0 0 0

a10 1 0 0 1

a11 1 0 1 0

a12 1 0 1 1

a13 1 1 0 0

a14 1 1 0 1

a15 1 1 1 0

a16 1 1 1 1

Page 10 of 13

DISTRIBUTION STATEMENT A. Approved for public release; distribution unlimited.

Table 7 – Transition Matrix Example

MDP WITH DP SOLVE
Once the MDP is seeded with the CTD values, we

can conduct the DP recursion. First, we calculate

from Epoch 𝛤 to Epoch Ω the Expected Values of

the CTD’s for every possible action because each

state to state arc for each action has an associated

probability. Once that is accomplished, we have

the optimal action and its Expected Value

calculated for every Epoch 𝛤 state to its children

Epoch Ω states.

For the example problem, this corresponds to

measuring approximately 2,000 arcs to determine

the Optimal Actions and Expected Values for the

108 Epoch 𝛤 states. We continued recursively to

solve the Epoch 𝐵 to Epoch 𝛤 (approximately 500)

arcs to find the optimal actions for the 24 Epoch 𝐵

states and we pass the previous best Expected

Value for those Actions. We then repeat the same

process to calculate the Optimal Action from the

MDP Networks origin node at Epoch 𝐴. Table 8

below is a small subset of the more than 2,500

Expected Value/Optimal Action sets of

calculations.

Table 8 – Best Action and Expected Value Example

SENSITIVITY ANALYSIS OF THE
FRAMEWORK MODEL

Multiple Scenario Models were created to

conduct sensitivity analysis on the proposed

Framework Model. Figure 4 below shows the

variant models.

Figure 4 – Variants to Test Sensitivity

Epoch Pred

A1 A2 B1 B2 In Node

1 13 5 13 3 A Origin

1 13 5 13 3 B 1

2 13 5 13 5 B 1

3 13 5 13 11 B 1

6 13 5 14 3 B 1

7 13 5 14 5 B 1

8 13 5 14 11 B 1

21 13 14 13 3 B 1

22 13 14 13 5 B 1

23 13 14 13 11 B 1

26 13 14 14 3 B 1

27 13 14 14 5 B 1

28 13 14 14 11 B 1

81 14 5 13 3 B 1

82 14 5 13 5 B 1

83 14 5 13 11 B 1

86 14 5 14 3 B 1

87 14 5 14 5 B 1

88 14 5 14 11 B 1

101 14 14 13 3 B 1

102 14 14 13 5 B 1

103 14 14 13 11 B 1

106 14 14 14 3 B 1

107 14 14 14 5 B 1

108 14 14 14 11 B 1

State

Index

Opt Index

A to B B to Γ Γ to Ω Budget - $M

Model 1 a16 a16 a13 72

Model 2 a12 a12 a11 53

Model 3 a8 a8 a7 46

Model 4 a12 a12 a11 53

Model 5 a12 a12 a11 53

Model 6 a12 a12 a11 53

Model 7 a4 a53 a11 51

Model 1
Light Budget
Constraint

1. Tighten Budget

Model 2
Core Model

- All Phases Budget
Constrained

2. Vary
Weights

For
P, W, C

Model 4
Same Budget
Higher C Wt

Model 3
Same Budget
Higher P Wt

Model 6
Modify Origin

DRL

Model 7
Epoch Skip
Scenario

Discussion

Model 5
Same Budget
Flipped SS Wt

Page 11 of 13

DISTRIBUTION STATEMENT A. Approved for public release; distribution unlimited.

Table 9 below the optimal actions.

Table 9 – Sensitivity Analysis - Framework Models

Model 1 had a lightly constrained budget and

correctly picked all options where it could. In

Model 2, the budget was tightened to specifically

force selections between options and it did so

correctly. In model 3, we adjusted the performance

weight much higher, and the model went for the

development of option A2 as it became more

attractive than A1. In Model 4, we adjusted the cost

weight higher and it went back to the same actions

in Model 2, although the EV numbers were

different. If the cost weight would have been

forced even higher a change in actions would have

occurred. In Model 5, we flipped the subsystem

weights. Although the numbers did change, it was

not enough to alter the actions. Model 6 modified

the network origin and had over 90% different arcs.

The same modeling structure was applied as in

Model 2, so that actions mimicked Model 2.

However, the numbers for the EV were completely

different as the state locations were vastly different.

Model 7 covered a skip and recovery. In this

version, we modeled a later start, but with more

attractive metrics and better budget. The model did

take the skip and recovery for this unusual scenario.

Generally, development is required to reduce

uncertainty, but the framework can handle budget

skips.

SUPPORTING FUNCTIONS NEEDED TO
IMPLEMENT THE MODEL

Each externality or parameter/metric must include

a target value and a random value (RV) distribution

of the technology/option to determine the

confidence of the individual design sets

(singletons), and then ultimately the multiple

design sets. That includes: performance and burden

metrics.

Each design must calculate the development costs

from epoch to epoch and the recovery costs from

the previous epoch to catch up if the set solution did

not include that option previously. Additionally,

reductions and increases associated with shared

development and SI costs must be calculated.

Finally, although not shown here in the example

problem, the weights of the externalities

themselves are also RV’s. This framework can be

extended with a Monte Carlo simulation. The

simulation would create a data set of random

externality weights from the weight RV’s. Each

one of these could then be solved individually to

see the impact on the Set Solutions from epoch to

epoch.

COMPARATIVE ANALYSIS OF THE THREE
ANALYTICAL METHODS

We cannot completely compare the three methods

since the framework method employs a DP

recursion to calculate optimal actions vs. the single

point and combinatorial forward models. However,

we can consider what the forward expected CTD

would be for all actions when executing the

methods going forward. Developing the individual

designs from 𝐴 to Ω is a pure set of 𝑎11 actions for

Design 1, 𝑎10 for Design 2, 𝑎7 for Design 3, and 𝑎6

for Design 4. The optimal set of actions,

recursively solved in the framework solution are:

𝑎12, 𝑎12, and 𝑎11. See Table 10 below for the

comparisons.

Arc

Number

Epoch

In

Node

In

Node

Out

Epoch

Out

Γ_Ω Best

Action

Γ_Ω CTD

EV

B_Γ Best

Action

B_Γ CTD

EV

A_B Best

Action

A_B CTD

EV

Origin A a12 0.9927

1 A 1 1 B a12 0.9850

6 A 1 8 B a13 0.9898

7 A 1 21 B a12 0.9866

17 A 1 87 B a8 0.9915

24 A 1 108 B a12 0.9927

25 B 1 1 Γ a7 0.9365

28 B 1 6 Γ a6 0.9442

31 B 1 21 Γ a11 0.9614

36 B 1 28 Γ a10 0.9786

37 B 1 81 Γ a7 0.9614

45 B 1 103 Γ a4 0.9786

Page 12 of 13

DISTRIBUTION STATEMENT A. Approved for public release; distribution unlimited.

Table 10 – Forward CTD Expected Values for Comparing

Analytical Methods

From a pure quantitative sense, the SBD

Framework finds the best expected value. Of note,

Action 𝑎12 is the same as jointly executing 𝑎10 and

𝑎11, which are the two best single point design

approaches until dropping down to 𝑎11 in the final

phase. This approach reduces the risk of carrying

two designs through the first two phases until

uncertainty is reduced.

Perhaps the biggest issue regarding the use of

SBD is the potentially higher cost associated with

it. For this example, the SBD Framework approach

may cost an extra $11M to execute. That is the

immediate trade-off you take with SBD. However,

further factors support the SBD Framework

yielding superior design results. The first is that

Production costs are at least one order of magnitude

higher than R&D costs, let alone Lifecycle costs

which are typically a magnitude higher than

Production costs. Given that, budget increases for

R&D to support SBD make good sense.

Secondly, the U.S. DOD recognizes this

developmental risk and often awards two identical

design contracts in the hopes that two contractors

are better than one. They presume independence in

the development. Thus, the typical action would be

to pay $94M for two contractors which is $36M

more in the example problem. However,

contractors working on different options is

inherently more independent than two contractors

working on the same options. While their thought

processes may differ, both contractors are subject

to the same physics and the same engineering issues

when developing the same design. Further study

on how independent designs are in like contracts, is

warranted.

NEXT STEPS
Our framework process, which calculates the

probability density functions and values for the

Contribution-to-Design function, needs efficiency

improvements to handle large scale models. Use of

Design Structure Matrices (DSM) in parallel with

this framework can further enhance the scalability

of the framework.

CONCLUSIONS
The literature review documented the current state

of Set-Based Design as a resilient Product

Development process that has proven qualitative

results over the past two decades for many Product

Development programs. Quantitative processes

with design optimization traditionally focus on

point solutions. Sophisticated, combinatorial

optimization has increased insight into design

uncertainty, but still provide more sophisticated

point solutions. There is a significant need to have

a Set-Based Design quantitative solution structure

that balances both optimality in a point solution

sense with variability to capture set solutions in

clustered set solutions [5]. Resilience in the

Product Development process is supported by

utilizing Set-Based Design to create multi-design

sets that increase confidence to attain meeting

design target requirements.

The initial mathematical framework proposed in

this paper shows a method to combine performance

and burden information from competing design

elements into a Contribution-to-Design Function

that can be optimized [6]. Specifically,

Contribution-to-Design is an optimality structure

formulating Set-Based Design value which is not

point design optimization in the current vernacular.

The value is directly associated with maintaining

design sets to directly increase design resilience in

the face of design uncertainty. This directly

addresses objective 1. A cost structure that details

developmental costs, design recovery costs and

A to B B to Γ Γ to Ω System EV Budget - $M

Design 1 a11 a11 a11 0.953602 47

Design 2 a10 a10 a10 0.946763 43

Design 3 a7 a7 a7 0.947511 40

Design 4 a6 a6 a6 0.940672 36

SBD Framework a12 a12 a11 0.963733 58

Page 13 of 13

DISTRIBUTION STATEMENT A. Approved for public release; distribution unlimited.

system integration costs from epoch to epoch is

proposed. By updating the cost structures and

performance estimates at each epoch a design

fluidity supports set adjustments at epochal

decision points. This also supports the decisions as

to when to modify the sets, which addresses

objectives 2 and 3. Key linkage between the Set-

Based Design process and the usage of Process

Design Structures Matrices to support design

process resiliency was postulated for Navy ship

design [7]. Further research expanding the

framework to integrate Design Structures Matrices

would allow scalability. The bottom line is: Set-

Based Design improves mathematical optimization

to make better trade space decisions. This is done

by expressing set solution value and incorporating

uncertainty into the mathematical optimization.

REFERENCES

 [1] B. Martin, “Arleigh Burke Destroyers:

Additional Analysis and Oversight Required to

Support the Navy’s Future Surface Combatant

Plans”, G. Audit. Washington, DC, U. S.

Government Accounting Office, 2012.

[2] D. Singer, "What Is Set-Based Design?" Naval

Engineers Journal (4): 13, 2009.

[3] S. Rapp, “Product Development Resilience

through Set-Based Design”, Dissertation,

Digital Commons @ Wayne State University,

2017.

[4] R. Bellman, “Dynamic programming and

Lagrange multipliers.” Proceedings of the

National Academy of Sciences, 42(10), 767-

769, 1956.

[5] G. Avigad, “Set-Based Concept Selection in

Multi-Objective Problems: Optimality vs.

Variability Approach.” Journal of Engineering

Design 20:25, 2007.

[6] S. Rapp, “Product Development Resilience

through Set‐Based Design”, Systems

Engineering Journal, 2018.

[7] N. Doerry, “Using the Design Structure Matrix

to Plan Complex Design Projects”, ASNE

Intelligent Ships Symposium ASNE Intelligent

Ships Symposium. Philadelphia, PA, ASNE: 15,

2009.

