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ABSTRACT 
Often during Product Development, externalities or requirements change, 

forcing design change.  This uncertainty adversely affects program outcome, 

adding to development time and cost, production cost, and can compromise system 

performance.  We present a development approach that minimizes impacts, by 

proactively considering the possibility of changes in the externalities and mid-

course design changes.  The approach considers the set of alternative designs and 

the burdens of a mid-course change from one design to another in determining the 

relative value of a specific design through the set-based design methodology.  The 

approach considers and plans parallel (redundant) development of alternative 

designs with progressive selection of options, including time-versus-cost tradeoffs 

and the impact change-costs.  The approach includes a framework of the 

development process addressing design and integration lead-times, their 

relationship to the time-order of design decisions, and the time-dependent burden 

of design changes.  We also compare set-based and single point design schemes. 

INTRODUCTION 
Product Development (PD) remains uncertain and 

fraught with risk in development as outside factors 

change over time.  Changing requirements during 

PD play havoc with program budgets, resources 

and schedule.  Stakeholders with different 

concerns, constraints and changeable priorities 

coupled with cost and engineering technical 

fulfilment uncertainty impact system choices 

through design and development in PD programs.  

A Government Accounting Office (GAO) audit of 

Navy Destroyer Programs addressed this issue 
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(Anti-Air Warfare requirements in this case) and 

proposed the need for expanded design space in 

future programs [1].  Set-Based Design (SBD) as a 

candidate engineering development approach, 

holds promise to add resiliency into the PD process 

by expanding the design space to consider set 

design solutions.  SBD considers a set of design 

solutions and does not move to a point solution 

until PD uncertainty is resolved. 

SBD is based on satisficing given multiple 

constraints (requirements).  <Note: Satisficing is a 

decision-making technique that entails searching 

alternatives until the threshold is met.> Different 

stakeholders source different constraints and 

requirement thresholds change over time.  The 

relative priorities, i.e., the willingness of 

stakeholders to relax one requirement to be able to 

restrict another requirement and still have feasible 

solutions, also change over time.  SBD is an 

iterative process where design and requirements 

evolve in parallel and stakeholders restrict and 

relax requirements regarding feasible design space 

solutions [2].  It is a concurrent engineering process 

that helps stakeholders understand requirement 

interdependencies and impact on design as they 

work to develop the performance specification and 

preliminary design. 

 

LITERATURE REVIEW INSIGHTS 
SBD lacks a rigorous mathematical, quantitative 

formalization.  Emergence of computational, 

combinatorial design generation and evaluation 

tools and methods continue, but there are 

limitations in their use and application as they 

mainly focus on “point solutions” even with pareto 

multi-criteria design.  Optimal point solutions early 

in the design, are faced with unknowns that affect 

design fulfilment and success.  Point designs are 

“brittle” as they must react to technical, time and 

cost changes.  Ongoing requirements changes, in 

thresholds and priorities, also force point solution 

modification when expectations fall short of target.  

SBD however, creates set solutions, where set 

contains multiple point solutions in a region of the 

design space itself.  These set solutions offer the 

potential to improve design resilience since set 

solutions increase confidence that a single design 

from the set will better meet requirements and are 

more tolerant to parameter changes over time.  

Thus, a solution contained in a region, compared to 

a point solution, and also being allowed to change 

over time, increases PD process resilience. 

The general body of knowledge supports the 

theoretical foundation that uncertainty and risk 

severely impact designs as they change in the PD 

cycle.  Multiple foundational examples of failed 

programs, particularly complex and high cost 

programs, are directly linked to a lack of rich 

alternatives in a robust design space.  Furthermore, 

failures are tied to point design process brittleness, 

which is unable to deal with subsystem, assembly 

or component design failures associated with 

uncertainty over time in PD.  SBD can expand and 

contract its set solution, in the face of uncertainty.  

There are multiple, successful SBD qualitative 

examples of this process resiliency.  SBD is also 

directly linked to PD programs that are effectively 

using it to remove design process brittleness.  

However, the literature points to the need of 

coupling quantitative mathematical analysis into 

the PD process to create not just more process 

resiliency, but cost-effective, adaptive and 

technically improved solutions. The need for a 

framework that couples SBD with mathematical 

analytics is both real and overdue.  Additionally, 

the concept to optimize, while keeping solution 

variance in concept sets has been proposed. 

SBD is a proven qualitative process associated 

with organizational conference room decision 

making.  This is not disparaging, but rather it is 

encouraging, in that SBD has proven itself in 

decision making.  Therefore, designing a 

quantitative form of SBD that keeps the richness of 

SBD facing and agilely dealing with uncertainty in 

PD, is unique and novel.  Furthermore, the novel 

approach and framework presented in this paper, 

goes beyond using uncertainty to expand design 



 

Page 3 of 13 

DISTRIBUTION STATEMENT A.   Approved for public release; distribution unlimited. 

space around point solutions, to actually creating 

true set solutions with their total uncertainty [3]. 

 

PROBLEM OVERVIEW 
  Many systems, especially military systems, have 

protracted development lifecycles.  During 

development, various external factors that 

influence design decisions often change.  The 

challenge is to develop a system that ends up being 

cost-effective and is cost effective to develop, 

despite changes in the externalities during 

development.  A development process that meets 

these challenges is resilient with respect to changes 

in the externalities. 

The externalities we are considering are: (1) the 

relative values of system performance, system 

burden, and unit production cost, and (2) the 

development cost, time and uncertainties of 

candidate technologies/ options. The external 

factors have a known value at any point in time, but 

their final value, when the development is over and 

the system enters production, are unknown until the 

end.  They are indeed “random” variables.  

Traditional point design treats the externalities as 

“deterministic”.  As a result, reactions to changes 

can incur greater costs and/or performance 

compromises than if the development program had 

considered potential variability of the externalities. 

The approach we are pursuing is Set-Based 

Design (SBD).  SBD carries a (redundant) set of 

options and alternatives forward during 

development, incrementally winnowing and 

adjusting the set as development proceeds and in 

response to changes in the externalities, leading to 

a final point design for production.  The principle 

of SBD is to keep a broad range of options under 

consideration “as long as possible” to provide 

resiliency to changes in the externalities. 

 

FRAMEWORK FORMULATION 
The high-level framework process uses a 

stochastic process to define the value, i.e. 

Contribution-to-Design, of developing multiple 

options, in a set from PD milestone/epoch to epoch.  

Contribution-to-Design is a combination of system 

performance, production cost, development time 

and cost. We treat the Contribution-to-Design as a 

black box treatment (allowing flexibility of 

application) to seed the values required to develop 

a Markov Decision Process.  This is standard 

stochastic automata with utilities that presume the 

“memoryless” property, where actions taken in a 

state depend only on that state and not prior history.  

We then recursively solve the problem as a 

Dynamic Programming model utilizing Bellman’s 

Equation with no discount to determine the optimal 

action (Bellman 1956).  It is worth noting that this 

is neither direct discrete optimization of a design’s 

characteristics, nor Pareto combinatorial 

optimization that yields a non-dominated set of 

point solutions.  The three methods will be 

compared using example problem data. 

 

THE DECISION PROBLEM 
We assume a system consists of several 

subsystems.  Each subsystem has alternative 

technologies and design options to meet the system 

requirements.  A final point design consists of 

exactly one choice of an option for each subsystem.  

In the general case, not all the subsystems will be 

present in the final design, so the option of “none” 

is a realization option for each subsystem. 

During development, technologies and design 

options are selected or rejected, subsystems are 

designed, and integrated in a task network 

organization leading to complete prototype 

production and testing.  Subsystem design and 

integration takes time and incurs cost, and the time 

and costs depend on the technology and design 

option choices.  The end system performance, 

production cost, and the development time and cost 

all depend on: (1) which subsystem technologies 

and design options are chosen, and (2) when the 

selection/rejection decisions are made.  

During development, information regarding the 

distribution of the external factors changes.  Over 

time, as more data becomes available, estimates of 

the means change and uncertainty generally 
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decreases – although it is possible that uncertainty 

can increase.  

The decision problem is to select or reject 

subsystem options at the appropriate milestone or 

epoch to achieve “best value”, the Contribution-to-

Design at the end of the development program, 

despite adapting to changes in the externalities.   

For the illustrative example below, we will 

assume that we only have three total system designs 

{D1, D2 and D3} from any unique and allowable 

combination of subsystem option.  These three 

designs enumerate into seven “Set Solutions” (SS1 

to SS7).  Additionally, we also show the possibility 

of skipping design work. 

In Figure 1, the PD milestones/Epochs are 

arranged in time order, such that Epoch Α is first 

and Epoch Ω is last.  The set solutions are all of the 

possible combinations of the three designs and are 

shown up to Epoch Ω.  At Epoch Ω, the last epoch, 

the final design must be selected, so only the 

designs are shown.  This is a visual representation 

of the Set-Based Design Process for considering 

which designs to develop.  The colored arcs below 

represent one (yellow) or two (red) designs from 

not developing a design in the previous epoch.  In 

most programs, these are possible but unlikely.  For 

example, SS1 in B going to SS2 in Γ requires 

catching up all the work for D2 missed before B. 

 

 
 

Figure 1:  Example Problem – Total Set Solutions 

 

DECISION SITUATIONS AND DESIGN 
DECISION STRATEGIES 

There are four macro decision situations the 

framework supports (a – d below): 

When new information regarding the distributions 

of the externalities becomes available, 

When an option enters the critical path, i.e., if the 

design and integration of the option does not begin 

immediately, but has begun later, it increases the 

total development time, 

When an option reaches the point at which 

keeping it under consideration, development or 

integration begins to incur costs at a higher rate, and 

When new information indicates that a new 

option is no longer feasible. 

Situation (a) involves reconsideration of the entire 

set-solution.  Situations (b) and (c) involve only the 

decision to keep (b) or reject (c) the specific option.  

Situation (d) requires the problem to be restructured 

without the option by removing any system design 

choices that included the option. 

Design decision strategies for a point solution are 

restricted to either modifying the current point 

solution or replacing it with a new point solution.  

For set solutions, the choices are more resilient.  

One can choose to neck down (i.e., reduce the set 

size), open up, or completely modify the set 

solution. 

The following are examples of design decision 

strategy changes: 

Neck-Down Example: Epoch 𝐴: SS7 to Epoch 𝐵: 

SS6.  D2 dropped at Epoch 𝐵. 

Open-Up Example: Epoch 𝐴: SS3 to Epoch 𝐵: 

SS5.  D1 added at Epoch B with recovery costs. 

Complete Modify Example: Epoch 𝐴: SS4 to 

Epoch 𝐵: SS3.  D1 and D2 dropped and D3 added 

at Epoch 𝐵 with recovery costs. 

 

FRAMEWORK DIMENSIONS 
Epochs aka Milestones (E) – Discrete Time points 

from 𝐴 to 𝛺 where: 

𝛺 = total number of epochs (𝛺 =3 in the 

illustrative example): 

𝑡 is the epoch index 
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Design Data is updated, reviewed and then used 

to make forward programmatic decisions from 𝐴, 

𝐵, 𝛤… 𝑡 + 1, … 𝛺 

System Designs (𝛥) – the allowable individual 

system designs possible from the system trade 

space from 1 to 𝐷 where: 

𝐷 = total number of allowable system designs 

(𝐷=3 in the illustrative example): 

𝑑 is the design index 

A design must include exactly one option for 

every subsystem or technology under consideration 

in the trade space 

Each System Design, 𝛥𝑑  is a unique combination 

of technology options of exactly one per subsystem 

and is both a point solution and a singleton set 

solution 

Other set solutions are the combinations of 

multiple system designs (see Figure 1) 

Subsystems or Technology types (SS) – The 

discrete technology subsets that are required to 

frame a complete system choice where: 

𝐼 = total number of technology subsets or 

subsystems (𝐼 =3 in the illustrative example) 

𝑖 is the technology subset or subsystem index 

Options (O) – for every technology subset or 

subsystem there are a set of options available 

where: 

𝐽𝑖 = total number of options per 𝑖th subsystem 

((𝐽1, 𝐽2, 𝐽3) = (2,2,2) in the illustrative example) 

𝑗 is the 𝑖th subsystem option sub-index 

𝐾 = total number of options in the trade space (𝐾 

=6 in the illustrative example) 

𝑘 is the iterative vector transformation index 

taken from of the (𝑖,𝑗) option pairings 

 

TOTAL DEVELOPMENT COSTS 
The framework calculates Development Costs for 

every option epoch to epoch. Recovery Costs are 

calculated for options not developed in prior 

phases.  Finally, System Integration costs are 

calculated for all phases.  The framework considers 

the following: 

Options may share certain costs with other 

options, 

Reduce or Increase System Integration costs 

dependent on the shared development, 

Recovery Costs are calculated for all options 

where the timeline permits option recovery, 

There are no recovery costs if the new Set 

Solution is the same as the old, 

Recovery costs are lower if the new Set Solution 

shared development with the old, and 

Recovery costs are higher if development needs 

to be made up. 

Contribution-to-Design (CTD) 

We assume that a PD program will consider an 

initial set solution at the beginning and then will 

potentially modify that set solution at the different 

program milestones/epochs based on new 

information as time progresses and uncertainty 

clears.  The Contribution-to-Design (CTD) is 

calculated for each set solution at each epoch.  The 

framework supports the natural PD cycle where 

subsystem options are typically developed 

independently early and then require system 

integration later.  The following Table 1 shows the 

relationships between the framework dimensions as 

PD advances through the epochs and phases. 

 

 
 

Table 1:  Framework Dimensional Relationships 

 

In Table 1, we show what the key dimensions, 

values and costs are that the framework must track 

and calculate to data populate the Markov Decision 

Process algorithm.  We also show, what the 

required cost balance equations are for each phase 

of work, i.e. epoch to epoch.  At Epoch Ω, we down 

select to the final design.  At Ω, the option 

development is complete, so the point values of the 

designs are all that remains.  It is assumed that only 

SI costs remain at this point in the process. 

Epochs Key Dimensions Value Calculations Development Costs (DC)

A Options Set Solution CTD Options Dev (A to B)

B to (Ω - 1) Options Set Solution CTD Options Dev + Recovery Costs (B to B+1)

Ω - 1 Options Set Solution CTD Options Dev + SI Costs (Ω-1 to Ω) *** Final Design Set

Ω Designs Point Design Value Options SI Costs (Ω to TP) for the Optimal Design (∆*)

Test/Production (TP) Final Design NA NA

Phases Cost Control Equations for Phase (Et to Et+1)

EA to EB 

EB ... to … EΩ-1

EΩ-1 to EΩ

EΩ to ETP Final Design SI Costs <= Pre-Test Development Budget

 𝐷 𝑘
 
  1 <= Phase Development Budget

 𝐷 𝑘
 
  1 <= Phase Development Budget

 𝐷 𝑘
 
  1 +   𝑑  𝐼

 
𝑑 1 <= Phase Development Budget
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General Control Equations: (1) Reject options 

development that exceeds the phase budgets, and 

(2) Select exactly one Design at Epoch Ω. 

 

THE CONTRIBUTION-TO-DESIGN 
FUNCTION: OPTION, SUBSYSTEM AND 
SET 

The Contribution-to-Design (CTD) for an option 

includes both the performance/burden to target 

difference of the technology/option and the 

expected variance of the developing 

technology/option.  The framework formulation 

measures the expected confidence of the specific 

technology/option to meet Design Readiness 

Levels during the phases.  The Design Readiness 

Level is an expansion of the DOD’s Technical and 

Material Readiness Levels.  In the context of 

framework, the Design Readiness Level reflects the 

maturity of the design relative to each of required 

target levels in a program. Without loss of 

generality, in the illustrative example, we employ 

three levels for design readiness: 1-Least Ready; 2-

Somewhat Ready; and 3-Fully Ready.  While the 

estimated confidence is based on estimates, the 

framework allows for continuous updating as 

uncertainty in the estimates lessens over time.  With 

the inclusion of variance, uncertainty can be 

properly modeled.  Additionally, this approach has 

significant computational advantages since it 

permits meta-heuristic optimization techniques.  

We calculate CTD (s) for: options, subsystem and 

set solution. 

This is the Contribution-to-Design formulation 

for an option at a specific Epoch looking forward: 

 

CTD =  𝜔𝑖 ∙ 𝑃[𝑍𝑖]
𝑛
1    (1) 

 

where 𝑃 is the probability lookup of the 𝑍𝑖 value 

(defined below), 𝜔𝑖 is the weight of the externality 

(performance or burden parameter), and 𝑖 is the 

index for all 𝑛 externalities. 

 
 𝜔𝑖
𝑛
1 = 1    (2) 

 

𝑍𝑖 = {(𝜇𝑖 − 𝐿𝑖)/𝜎𝑖} where:  (3) 

 

𝐿 = Performance or Burden Requirement Target 

Value 

{𝜇, 𝛼} = System or Sub-system externality 

probability distribution  

In Table 2, we show an example of Option 1’s 

individual Contribution-to-Design calculations for 

meeting Readiness Levels 1 and 2.  In this example 

we “weight” the three metrics (performance, 

physical weight burden and AUPC burden).  The 

Contribution-to-Design is then a weighted value of 

the three probability measures. 

 

 
 

Table 2:  Individual CTD Calculation 

 

For Set Solutions with more than one option per 

subsystem, it is expected that the multiple options 

reduce total design uncertainty should a single 

option fail to meet targets. 

This is the cornerstone of SBD and has been 

effectively utilized for over twenty years, even if 

not quantitatively proven.  For the framework, we 

assume that the multiple option designs are 

independent since we only calculate the 

probabilities of exceeding targets of the readiness 

levels.  Given independence, the Contribution-to-

Design formulation for multiple options in a 

subsystem is: 

Epoch A Option 1 Performance Weight Burden AUPC Burden CTD

Weight 0.3 0.3 0.4

Current Mean 350 350 47000

Current SD 50 100 10000

DRL 1 Target 250 400 45000

DRL 2 Target 300 390 44000

P (X > DRL 1 Tgt) 0.9772 0.6915 0.4208 0.6689

P (X > DRL 2 Tgt) 0.8414 0.6554 0.3821 0.6019
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 𝑇𝐷𝑖,𝑅𝐿𝑡→𝑅𝐿𝑡+1 
= 1

− ∏{1

𝑚𝑖

𝑗 1

− ∑ {1}𝑥𝑖,𝑗,𝑡,𝑅𝐿𝑡
𝑃𝑟𝑖,𝑗{𝑅𝐿𝑡

3

𝑅𝐿𝑡 1

→ 𝑅𝐿𝑡+1}  𝑇𝐷𝑖,𝑗,𝑅𝐿𝑡→𝑅𝐿𝑡+1} 

{1}𝑥𝑖,𝑗,𝛺,𝑅𝐿𝑡
: 1 if option 𝑗 of subsystem 𝑖 is selected 

and its current state in 𝛺 is 𝑅𝐿𝑡, 0 otherwise.  

   (4) 

 

where  𝑇𝐷𝑖 is the subsystem CTD for the 𝑖th 
subsystem. 𝑗 is the index for the option members, 

from 1 to 𝑚, where 𝑚 is the total number of options 

in the same subsystem that are in the set solution. 

For the example problem, we will use the data 

from Table 3 for the third subsystem in Epoch 𝐵 

moving forward to Design Readiness Level of 3.  

We assume the set solution has options 5 and 6: 

 

CTD (Subsystem 3, Epoch 𝐵 to Epoch 𝛤, DRL 3) 

= {1 − ((1 − 0.7) ∙ (1 − 0.1))} = {0.73}. 
 

The total CTD for the set solution must then 

consider the individual subsystem CTD’s at the 

epochs.  Depending on program situation, it may be 

important to weight the subsystem CTD’s 

differently.  For example, an automotive program 

may value its engine subsystem higher than its 

entertainment system for its sports car while it 

reverses that weight value for its minivan.  The 

CTD for the entire set solution at an Epoch moving 

to given Design Readiness Level during the next 

phase is: 

 

 𝑇𝐷 =   {𝑊𝑡𝑖 ∙  𝑇𝐷𝑖}
𝐼
1   (5) 

 

where 𝐼 = the number of subsystems, 𝑖 is the 

subsystem index, and 𝑊𝑡 is the relative weight of 

the subsystems value. 

For the example problem, we will use data from 

Table 3 at Epoch 𝐵 for Design Readiness Level 3 

and an arbitrary weight vector of {0.4, 0.4, 0.2} for 

the subsystems.  The example set here includes all 

options except for Option 1. 

CTD (Set Solution, Epoch 𝐵, DRL 3) = ((0.4 ∙
0.9) + (0.4 ∙ 0.73) + (0.2 ∙ 0.73)) = 0.81. 

 

 
 

Table 3:  Example Action, State and Transition Matrix 

 

In Table 3, we show examples of the required 

action and state spaces to enable the algorithm.  The 

current Design Readiness Levels are in Row 3 and 

Rows 4 to 6 show the probability of the options 

moving up if invested in for the phase development 

to the next epoch.  Any probability distribution 

function is allowable as we are only concerned with 

the likelihood state changes. 

 

THE VALUE FUNCTION: STATE TO 
STATE CTD IS THE MDP REWARD 

This is the core of the research development.  We 

begin at the end, Epoch Ω, knowing that we must 

down select to a single integrated prototype design.  

We accept that there may be some modification, 

rework and additional SI during testing.  The value 

function at the end is simply a single weighted 

multi-attribute value of each design.  The key 

insight of the research is that we only need to solve 

the actions of the options themselves and not the 

designs.  The designs under development prior to 

full system integration are an extension of the 

option developments prior to the final epochal 

decision to design down select. 

Epoch A 1 2 3 4 5 6 Epoch B 1 2 3 4 5 6

Action 1 1 1 1 1 1 Action 0 1 1 1 1 1

State DRL 1 1 1 2 1 2 State DRL 1 2 2 2 2 2

P(DRL => 1) 1 1 1 1 1 1 P(DRL => 1) 1 1 1 1 1 1

P(DRL => 2) 0.6 0.7 0.5 1 0.7 1 P(DRL => 2) 1 1 1 1 1 1

P(DRL => 3) 0.3 0.2 0.2 0 0.3 0 P(DRL => 3) 0.2 0.9 0.7 0.1 0.7 0.1
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The Dynamic Programming (DP) back solve is 

initialized by calculating the CTD values to seed 

the MDP and its reward function 𝑅 beginning with 

the last epoch just before the system integration.  

We use the CTD values, which we calculate at each 

state space, to be a “black box” value from which 

we can determine a value change, the reward 𝑅, 

from state to state.  This creates a set of stochastic 

automata with utilities for DP solving. 

MDP(s) include: (1) a set of possible world spaces 

{ }, (2) a set of possible actions {𝐴}, (3) a real 

valued reward function 𝑅( , 𝐴) and a description 𝑇 

of each action’s effects in each state.  For the 

framework, this is a weighted selection of all the 

options that considers not only the performance and 

burdens of each of the options, but also their 

likelihood to meet their performance requirements 

and burden budgets. 

During the phases, we consider budgetary 

controls to not exceed the phase budget, which is 

standard DOD policy.  We consider every possible 

action that does not violate the budget.  The 

recursive DP solves for the optimal action.  We 

utilize Bellman’s stochastic balance equations to 

solve for the optimal initial action [4].  The actual 

value optimized recursively is the Expected Value 

of all CTD improvements.  This modified 

optimization approach allows us to focus on which 

options are invested in for the optimal actions 

determined at each Epoch.  We further assume the 

memoryless Markov Property: the effects of an 

action taken in a state depends only on that state and 

not on the prior history and we apply no discount 

factor. 

 

THE RESEARCH EXAMPLE PROBLEM 
Figure 2 shows the goals hierarchy and value 

weights for the example problem.  There are two 

subsystems and three metrics for the problem itself.  

For this simple problem we are able to use the 

straight forward Multi-Attribute Utility model to 

determine both the discrete single point optimal 

design and to also show the full combinatorial 

optima solution.   Figure 3 shows that D1 is the 

single best design as it has the best total weighted 

utility. 

 

 
 

Figure 2:  Problem Goals Hierarchy 

 

 
 

Figure 3:  Ranking for Best Design 

 

Table 4 shows the CTD Based Expected Values 

that come from the main problem.  These Expected 

Values assume that the Designs would follow the 

typical PD process for point based design, i.e. the 

options of the design are developed continuously.  

Additionally, we show the CTD values at the metric 

level so we can determine if there is any pareto 

dominance between the designs.  
 

 
 

Table 4 – CTD Based Expected Values (Deconstructed 

down to metric) 

 

Green represents the maximum metric value.  

Although D1 almost dominates D2, and D3 almost 

dominates D4, the B2 option is strongest in cost 

value, which keeps D2 and D4 as combinatorial 
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optima.  Thus, the combinatorial solution shows no 

complete pareto dominance for any design.  The 

program team would be left to decide its best design 

solution to take forward. 

The process for defining the optimum or optima 

in single point approaches focuses on selecting a 

design initially and then developing it.  The 

framework approach rather determines an optimal 

action to initiate a set solution from an initial 

optimal action.  That action is based stochastically, 

to develop a set of options that reduces 

developmental risk and allows for uncertainty in 

the process.  We compare the results from these 

methods to the results from proposed framework 

method in the next section.  

 

FRAMEWORK STATE AND ACTION 
SPACES 

The State Space is the set of all possible states for 

the problem, which is every possible combination.  

The individual state’s dimensions are carried in a 

vector of: 𝐾 (total number of options) × (number 

of parameters/metrics) + epoch.  The non-epoch 

cells hold the Design Readiness Levels that can 

vary, but for the example we use exactly three 

levels per option/metric combination.  The 

following Table 5, shows the origin and end states.  

The state space contains four possible designs.  The 

possible maximum size of the example state space 

is the product of all option Design Readiness Levels 

(312) and the number of Epochs (4) or 2,125,764. 

 

 
 

Table 5 – Notional Origin and End States 

 

The MDP Network for our example, is much 

sparser since we do not start or end at the extremes 

and we do not have state to state arcs for every 

possibility.  The actual example problem state 

space is less than 1,000. 

In Table 6 below, the Action Space is a matrix of 

all possible options length that represents whether 

an option is invested in (1) or not invested in (0) for 

the next phase’s development. Additionally, the 

Action Space can be expanded to cover skipped 

investments.  A skipped investment would be 

marked by a (2) and the Action Space would then 

be a maximum in size of 81 possible actions.  This 

is a rather rare occurrence in the real world, so it 

would be easy enough to just add the small set of 

skip actions for computation purposes. 

 

 

 
 

Table 6 – Example Problem Action Space 

 

The Transition arcs are stochastic.  Most of the 

problem model’s transitions are two choices of 

either move up one or remain the same Design 

Readiness Level for the individual options, 

although we did include some other transitions to 

test the model’s robustness.  The actual set solution 

transitions typically numbered 16 or more are 

shown below in Table 7.  The Rewards as stated 

earlier, are state to state changes in the CTD. 

Options

Metrics P W C P W C P W C P W C

StateA 1 1 1 1 1 1 1 1 1 1 1 1

Options

Metrics P W C P W C P W C P W C

StateΩ 3 3 3 3 3 3 3 3 3 3 3 3

A1 A2 B1 B2

A1 A2 B1 B2

Actions A1 A2 B1 B2

a1 0 0 0 0

a2 0 0 0 1

a3 0 0 1 0

a4 0 0 1 1

a5 0 1 0 0

a6 0 1 0 1

a7 0 1 1 0

a8 0 1 1 1

a9 1 0 0 0

a10 1 0 0 1

a11 1 0 1 0

a12 1 0 1 1

a13 1 1 0 0

a14 1 1 0 1

a15 1 1 1 0

a16 1 1 1 1
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Table 7 – Transition Matrix Example 

 

 

MDP WITH DP SOLVE 
Once the MDP is seeded with the CTD values, we 

can conduct the DP recursion.  First, we calculate 

from Epoch 𝛤 to Epoch Ω the Expected Values of 

the CTD’s for every possible action because each 

state to state arc for each action has an associated 

probability.  Once that is accomplished, we have 

the optimal action and its Expected Value 

calculated for every Epoch 𝛤 state to its children 

Epoch Ω states.   

For the example problem, this corresponds to 

measuring approximately 2,000 arcs to determine 

the Optimal Actions and Expected Values for the 

108 Epoch 𝛤 states.  We continued recursively to 

solve the Epoch 𝐵 to Epoch 𝛤 (approximately 500) 

arcs to find the optimal actions for the 24 Epoch 𝐵 

states and we pass the previous best Expected 

Value for those Actions.  We then repeat the same 

process to calculate the Optimal Action from the 

MDP Networks origin node at Epoch 𝐴.  Table 8 

below is a small subset of the more than 2,500 

Expected Value/Optimal Action sets of 

calculations. 

 

 
 

Table 8 – Best Action and Expected Value Example 

 
 

 

 

SENSITIVITY ANALYSIS OF THE 
FRAMEWORK MODEL 

Multiple Scenario Models were created to 

conduct sensitivity analysis on the proposed 

Framework Model.  Figure 4 below shows the 

variant models.  

 

 
 

Figure 4 – Variants to Test Sensitivity 

 

  

Epoch Pred

A1 A2 B1 B2 In Node

1 13 5 13 3 A Origin

1 13 5 13 3 B 1

2 13 5 13 5 B 1

3 13 5 13 11 B 1

6 13 5 14 3 B 1

7 13 5 14 5 B 1

8 13 5 14 11 B 1

21 13 14 13 3 B 1

22 13 14 13 5 B 1

23 13 14 13 11 B 1

26 13 14 14 3 B 1

27 13 14 14 5 B 1

28 13 14 14 11 B 1

81 14 5 13 3 B 1

82 14 5 13 5 B 1

83 14 5 13 11 B 1

86 14 5 14 3 B 1

87 14 5 14 5 B 1

88 14 5 14 11 B 1

101 14 14 13 3 B 1

102 14 14 13 5 B 1

103 14 14 13 11 B 1

106 14 14 14 3 B 1

107 14 14 14 5 B 1

108 14 14 14 11 B 1

State 

Index

Opt Index

A to B B to Γ Γ to Ω Budget - $M

Model 1 a16 a16 a13 72

Model 2 a12 a12 a11 53

Model 3 a8 a8 a7 46

Model 4 a12 a12 a11 53

Model 5 a12 a12 a11 53

Model 6 a12 a12 a11 53

Model 7 a4 a53 a11 51

Model 1
Light Budget 
Constraint

1. Tighten Budget

Model 2
Core Model

- All Phases Budget 
Constrained

2. Vary
Weights

For
P, W, C

Model 4
Same Budget
Higher C Wt

Model 3
Same Budget
Higher P Wt

Model 6
Modify Origin 

DRL

Model 7
Epoch Skip
Scenario 

Discussion

Model 5
Same Budget
Flipped SS Wt
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Table 9 below the optimal actions. 

 

 
 

 

Table 9 – Sensitivity Analysis - Framework Models 
 

Model 1 had a lightly constrained budget and 

correctly picked all options where it could.  In 

Model 2, the budget was tightened to specifically 

force selections between options and it did so 

correctly.  In model 3, we adjusted the performance 

weight much higher, and the model went for the 

development of option A2 as it became more 

attractive than A1.  In Model 4, we adjusted the cost 

weight higher and it went back to the same actions 

in Model 2, although the EV numbers were 

different.  If the cost weight would have been 

forced even higher a change in actions would have 

occurred.  In Model 5, we flipped the subsystem 

weights.  Although the numbers did change, it was 

not enough to alter the actions.  Model 6 modified 

the network origin and had over 90% different arcs.  

The same modeling structure was applied as in 

Model 2, so that actions mimicked Model 2.  

However, the numbers for the EV were completely 

different as the state locations were vastly different.  

Model 7 covered a skip and recovery.  In this 

version, we modeled a later start, but with more 

attractive metrics and better budget.  The model did 

take the skip and recovery for this unusual scenario.  

Generally, development is required to reduce 

uncertainty, but the framework can handle budget 

skips. 

 

SUPPORTING FUNCTIONS NEEDED TO 
IMPLEMENT THE MODEL  

Each externality or parameter/metric must include 

a target value and a random value (RV) distribution 

of the technology/option to determine the 

confidence of the individual design sets 

(singletons), and then ultimately the multiple 

design sets.  That includes: performance and burden 

metrics. 

Each design must calculate the development costs 

from epoch to epoch and the recovery costs from 

the previous epoch to catch up if the set solution did 

not include that option previously.  Additionally, 

reductions and increases associated with shared 

development and SI costs must be calculated. 

Finally, although not shown here in the example 

problem, the weights of the externalities 

themselves are also RV’s.  This framework can be 

extended with a Monte Carlo simulation.  The 

simulation would create a data set of random 

externality weights from the weight RV’s.  Each 

one of these could then be solved individually to 

see the impact on the Set Solutions from epoch to 

epoch. 

 

COMPARATIVE ANALYSIS OF THE THREE 
ANALYTICAL METHODS 

We cannot completely compare the three methods 

since the framework method employs a DP 

recursion to calculate optimal actions vs. the single 

point and combinatorial forward models. However, 

we can consider what the forward expected CTD 

would be for all actions when executing the 

methods going forward.  Developing the individual 

designs from 𝐴 to Ω is a pure set of 𝑎11 actions for 

Design 1, 𝑎10 for Design 2, 𝑎7 for Design 3, and 𝑎6 

for Design 4.  The optimal set of actions, 

recursively solved in the framework solution are: 

𝑎12, 𝑎12, and 𝑎11.  See Table 10 below for the 

comparisons. 

 

Arc 

Number

Epoch 

In

Node 

In

Node 

Out

Epoch 

Out

Γ_Ω Best 

Action

Γ_Ω CTD 

EV

B_Γ Best 

Action

B_Γ CTD 

EV

A_B Best 

Action

A_B CTD 

EV

Origin A a12 0.9927

1 A 1 1 B a12 0.9850

6 A 1 8 B a13 0.9898

7 A 1 21 B a12 0.9866

17 A 1 87 B a8 0.9915

24 A 1 108 B a12 0.9927

25 B 1 1 Γ a7 0.9365

28 B 1 6 Γ a6 0.9442

31 B 1 21 Γ a11 0.9614

36 B 1 28 Γ a10 0.9786

37 B 1 81 Γ a7 0.9614

45 B 1 103 Γ a4 0.9786
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Table 10 – Forward CTD Expected Values for Comparing 

Analytical Methods 

 

 

From a pure quantitative sense, the SBD 

Framework finds the best expected value.  Of note, 

Action 𝑎12 is the same as jointly executing 𝑎10 and 

𝑎11, which are the two best single point design 

approaches until dropping down to 𝑎11 in the final 

phase.  This approach reduces the risk of carrying 

two designs through the first two phases until 

uncertainty is reduced. 

Perhaps the biggest issue regarding the use of 

SBD is the potentially higher cost associated with 

it.  For this example, the SBD Framework approach 

may cost an extra $11M to execute.  That is the 

immediate trade-off you take with SBD.  However, 

further factors support the SBD Framework 

yielding superior design results.  The first is that 

Production costs are at least one order of magnitude 

higher than R&D costs, let alone Lifecycle costs 

which are typically a magnitude higher than 

Production costs.   Given that, budget increases for 

R&D to support SBD make good sense. 

Secondly, the U.S. DOD recognizes this 

developmental risk and often awards two identical 

design contracts in the hopes that two contractors 

are better than one.  They presume independence in 

the development.  Thus, the typical action would be 

to pay $94M for two contractors which is $36M 

more in the example problem.  However, 

contractors working on different options is 

inherently more independent than two contractors 

working on the same options.  While their thought 

processes may differ, both contractors are subject 

to the same physics and the same engineering issues 

when developing the same design.  Further study 

on how independent designs are in like contracts, is 

warranted. 

 

NEXT STEPS 
Our framework process, which calculates the 

probability density functions and values for the 

Contribution-to-Design function, needs efficiency 

improvements to handle large scale models.  Use of 

Design Structure Matrices (DSM) in parallel with 

this framework can further enhance the scalability 

of the framework. 

 

CONCLUSIONS 
The literature review documented the current state 

of Set-Based Design as a resilient Product 

Development process that has proven qualitative 

results over the past two decades for many Product 

Development programs.  Quantitative processes 

with design optimization traditionally focus on 

point solutions.  Sophisticated, combinatorial 

optimization has increased insight into design 

uncertainty, but still provide more sophisticated 

point solutions.  There is a significant need to have 

a Set-Based Design quantitative solution structure 

that balances both optimality in a point solution 

sense with variability to capture set solutions in 

clustered set solutions [5].  Resilience in the 

Product Development process is supported by 

utilizing Set-Based Design to create multi-design 

sets that increase confidence to attain meeting 

design target requirements. 

The initial mathematical framework proposed in 

this paper shows a method to combine performance 

and burden information from competing design 

elements into a Contribution-to-Design Function 

that can be optimized [6].  Specifically, 

Contribution-to-Design is an optimality structure 

formulating Set-Based Design value which is not 

point design optimization in the current vernacular. 

The value is directly associated with maintaining 

design sets to directly increase design resilience in 

the face of design uncertainty.  This directly 

addresses objective 1.  A cost structure that details 

developmental costs, design recovery costs and 

A to B B to Γ Γ to Ω System EV Budget - $M

Design 1 a11 a11 a11 0.953602 47

Design 2 a10 a10 a10 0.946763 43

Design 3 a7 a7 a7 0.947511 40

Design 4 a6 a6 a6 0.940672 36

SBD Framework a12 a12 a11 0.963733 58
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system integration costs from epoch to epoch is 

proposed.  By updating the cost structures and 

performance estimates at each epoch a design 

fluidity supports set adjustments at epochal 

decision points.  This also supports the decisions as 

to when to modify the sets, which addresses 

objectives 2 and 3.  Key linkage between the Set-

Based Design process and the usage of Process 

Design Structures Matrices to support design 

process resiliency was postulated for Navy ship 

design [7].  Further research expanding the 

framework to integrate Design Structures Matrices 

would allow scalability.  The bottom line is: Set-

Based Design improves mathematical optimization 

to make better trade space decisions.  This is done 

by expressing set solution value and incorporating 

uncertainty into the mathematical optimization. 
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