2018 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM
SYSTEMS ENGINEERING (SE) TECHNICAL SESSION
AUGUST 7-9, 2018 — NovI, MICHIGAN

The NeMO Orbiter: A Demonstration Hypermodel
Michael J. Vinarcik, P.E., FESD
University of Detroit Mercy
Booz Allen Hamilton

Detroit, Ml
Michael J. Vinarcik, P.E., FESD Peter Hodges
University of Detroit Mercy Fiat Chrysler Automobiles
Booz Allen Hamilton Auburn Hills, Ml
Detroit, Ml
Lizardo Amador Marin Jesus Mata Castaneda
Kyle Ebner General Motors Corporation
Gary Kliczinski Milford, Ml
Natalya Matevossyan
Ford Motor Company
Dearborn, Ml
ABSTRACT

System modeling is continuing to grow in importance as the enabling
discipline for digital engineering. Descriptive system models can be used as the
“central nervous system” of a system development effort (to federate a
constellation of analytical models and other engineering content).

Hypermodeling is a methodology focused on maximizing model elegance
through the efficient generation of a descriptive system model (with appropriate
supporting content). It emphasizes the most simple, direct approach to rigorously
capturing relevant information. Hypermodels use a limited set of model elements,
relationships, and properties and seek to maximize the amount of information
derived from the model.

The NeMO hypermodel, an example built by students at the University of
Detroit Mercy, provides a comprehensive demonstration of this approach and
includes behavioral, structural, and analytic information as well as metrics and
requirements.

It is hoped that this large example will serve as a focus for discussion and
experimentation in the system modeling community. Links to hypermodeling
tutorial videos are available for study and comment at the hypermodeling website:
http://hypermodeling.systems.

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETYS)

INTRODUCTION

Hypermodeling was born of necessity, there were
several systems modeling needs emerging at the
beginning of 2018 that this effort was intended to
address:

e There was a need to unify a variety of
modeling techniques that the author had
developed in the past several years and
demonstrate their utility and coherence in a
larger effort.

e The system modeling community needed a
publicly available reference model, drawn
from unclassified and non-proprietary
sources, that could be used as a testbed for
new modeling techniques, analyses, and
development.

e A large model was needed for further
development of adjacent and ancillary
analysis techniques such as design structure
matrices, Salado’s tension matrices [1],
network graph visualizations, and other
potentially useful emerging practices.

e Finally, there was a need to challenge the
status quo in modeling and demonstrate that
there was a way to model systems effectively
using relatively few relationships and element
types while still maintaining a coherent and
rigorous model narrative of the system of
interest.

HYPERMODELING

The Elegance Equation
Every modeling effort has several factors that
may be used to describe it:
n = Efficiency factor = output/input (0 <n < 1)
¢ = Effectiveness factor = ability to accomplish
intended outcome (0 <e<1)
¢ = Elegance value (0 < ¢ <1)
ne=o
Language, tool, and method each have their own
contributions to this equation:
MNlanguage €language Mtool Etool Nmethod Emethod = @

The NeMO Orbiter: A Demonstration Hypermodel

Once the tool and language are selected, those
terms are effectively constants...so any modeler is
only able to directly influence 1method Emethod-

Therefore, productivity, effectiveness, and
elegance depend heavily upon the methods used to
construct the descriptive system model. One
critical, inescapable fact is that every model
element has a cost associated with its elicitation,
creation, definition, and maintenance. Therefore, if
a system can be described rigorously and
completely with n elements, each n + i, where i > 0,
element adds no value and only increases cost.

Agile proponents have described software
development in two ways:

WET = Write Everything Twice

DRY = Don’t Repeat Yourself

A corollary of these principles is directly
applicable to system modeling: Don’t Create What
You Can Infer or Query. As long as these
inferences and queries are unambiguous,
leveraging them has a significant and direct impact
on reducing the number of modeling elements.

Controversial Aspects of Hypermodeling

There are several controversial aspects of
hypermodeling that challenge assumptions in
traditional systems engineering and modeling
approaches (See Figure 1). First, requirements are
subordinated and are considered *“just another
model element.” Source requirements, capability
documents, or other upfront goals provided by
stakeholders, management, or regulatory bodies
should be respected and are collected at the
beginning of the model development process or if
they are imposed later. However, the authoring of
individual system, subsystem, and component
requirements is deferred until very late in the
hypermodeling process. This is intended to free up
resources because, in the author's experience,
significant effort is spent trying to synchronize text-
based requirements with system models that are
still in flux.

Modeling of the complex systems that
characterize the modern age is an exercise that is

Page 2 of 19

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETYS)

both iterative and collective. Behavior, structure,
interfaces, flows, properties, and relationships
typically evolve rapidly over the course of the
modeling effort; their dynamic nature and the
constant emergence of new information makes
attempts to keep textual requirements in sync with
models difficult and time-consuming. The effort
this requires results in a drain on resources and saps
modeling effort away from more fruitful discovery
and analysis.

Many programs attempt to conduct requirements
development before the integrated system model is
matured and this leads to an endless cycle of
requirements updates. To make matters worse,
requirements typically are placed under change
control and this necessitates involving
administrative, engineering, and management
personnel in the review and approval of every
proposed change. This usually entails pre-work
and attendance at change control meetings.

For that reason, requirements authoring is
purposely deferred until the entire model (or at least
key sections of it) is stable enough to warrant
requirement authoring. At that point, it is a
straight-forward matter to author requirements
based on functions, messages and signals, interface
information, and other relevant model content (See
Requirements Churn: The Hidden Drain on
Systems Engineering [2].)

The second controversial aspect of hyper
modeling is that very few relationships are used
between requirements. It should be noted that the
SysML extended requirement types (functional,
performance, design constraint, etc.) are strongly
preferred because system modeling tools are
capable of rigorously validating requirement
relationships. For example, functional
requirements must be <<satisfied>> by activities or
operations, and interface requirements must be
<<satisfied>> by flows, connectors, or ports. For
this reason, <<satisfy>> is the only relationship that
IS permitted between requirements and descriptive
model elements in the construction of a
hypermodel. It forces a crispness in requirements

The NeMO Orbiter: A Demonstration Hypermodel

because the element, behavior, or property that
“makes them true” must be present in the model to
serve as the other end of the connection. The
<<derive>> and <<refine>> relationships are
permitted between requirements and between
requirements and certain model elements (such as
use cases). These allow the maturation of the
model to drive additional requirement content (for
example, the creation of functional and
performance requirement couplets connected by
<<refine>> relationships). <<trace>> relationships
are used between requirements and any upstream
content, artifacts, or standards. Finally, the
<<verify>> relationship is used between
requirements and test activities, which are
essentially activity diagrams that have a special
property that returns a result of pass or fail. This
ensures the clear identification of the step in the
verification process that adjudicates the outcome
and determines whether the requirement has been
appropriately satisfied.

Another controversial aspect of hyper modeling is
the absence of swimlanes on activity diagrams. It is
the primary author's opinion that swimlanes are a
serious misrepresentation and misuse of a modeling
tool. They attempt to use spatial positioning on a
diagram as a surrogate for properties of interest.
That may have been of some utility with drawing
tools but is completely inappropriate for modern
modeling approaches. Several individuals have
challenged the author, claiming that *“crossing the
swimlane” is a useful way to identify needed
interfaces. The author’s approach, which
rigorously associates each action node with a
specific owning class or usage, enables simple,
query-based identifications of functions that need
interface assignments because they are owned by
different model elements. The hypermodeling
approach also allows for the assignment of object
flows between action nodes to specific connectors,
sequence diagram messages, and state transitions.
There is no need to rely on cosmetic approaches as
a surrogate for rigor when rapid, tool-driven queries
are possible.

Page 3 of 19

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETYS)

Another commonly used practice prohibited in
hypermodeling is the use of the <<allocate>>
relationship. It is the primary author's opinion that
allocation is inherently sloppy; it is easy to allocate
thousands of requirements to model elements with
little rhyme or reason. This forces the downstream
consumer of the requirements (typically text
statements) to construct lossy mental models of the
system intent. The use of the <<satisfy>>
relationship, in contrast, forces a crispness in the
construction of both the model and the related
requirements. It forces singularization and careful
selection of each element, property, interface, or
behavior that <<satisfies>> the requirement and
“makes it true.” This improves clarity and
facilitates the identification of duplicates or
conflicts because instead of sifting through
thousands of requirements allocated to a system
element, the relative handful that are <<satisfied>>
by a given element or property are easy to compare
in a check for errors and inconsistencies.

Note that more than one element may <<satisfy>>
a requirement if that is appropriate.

Other Aspects of Hypermodeling

Hypermodeling relies on the <<realization>>
relationship to connect different layers of
architectural abstraction. If a purely functional
layer is constructed it is <<realized>> by logical
architecture elements and these are then
<<realized>> by elements of the physical
architecture. This relationship construction also
allows error checking and the tailoring of functions
at each level. For example, by having every
physical element own its own copies of relevant
functions, inputs and outputs can be adjusted,
additional content may be added, and code snippets
can be embedded. These relationships improve the
fidelity and rigor of the model significantly. For
example, a physical model element may
<<realize>> a logical element that in turn
<<realizes>> multiple functions...each of which is
associated with functional hazards, regulatory
requirements, or other relevant information. Using

The NeMO Orbiter: A Demonstration Hypermodel

structured queries, these relevant pieces of
information may be collected and displayed at the
physical level without the need for direct
connection or duplication. In addition, if any
changes are made to these higher level analyses or
artifacts the information presented to the team
members at the physical level is immediately
updated; this approach is inherently DRY.

MagicDraw

One of the primary author’s Ten Commandments
of Modeling (see Figure 2) is that one should
ruthlessly subordinate a modeling effort to what the
chosen modeling tool does well. MagicDraw™,
developed by No Magic, is arguably the most
standards compliant SysML modeling tool
available today. It is also arguably one of the most
user-friendly, due in large part to its user
community’s feedback. The primary author is a
member of No Magic’s Client Advisory Board, a
formal group representing some of the largest and
most demanding user communities, but the
company also considers a multitude of feature
requests submitted by individuals worldwide. Asa
result, each new release or service pack has a host
of improvements that savvy modelers can exploit to
increase their productivity.

Because of these factors, the author believes that
the Mol €tool fOr MagicDraw are relatively close to
1, but only if modelers know how to effectively use
it. Structuring each model to make use of
MagicDraw’s internal query language (known as
Structured Expressions) or other languages (such as
Beanshell and JavaScript) is how hypermodeling
delivers on its goal of economizing modeling while
maintaining rigor.

QED

In traditional geometric proofs, QED was the final
line a student wrote to indicate he was finished.
Quod erat demonstrandum means “that which was
to be proven” in Latin.

Page 4 of 19

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETYS)

This acronym has been
hypermodeling:

adapted for

What is the Question we need to answer?

How can we Extract relevant information from
the model?

How should we Display it to stakeholders in a
meaningful, easy to consume way?

By appropriately harnessing and answering these
three questions, a competent system modeler is able
to provide value for his program by allowing the
program team’s engineering staff to have insight
into the system of interest.

As Frederick Brooks wrote:

“Show me your flowcharts and conceal your
tables, and 1 shall continue to be mystified. Show
me your tables, and | won’t usually need your
flowcharts; they’ll be obvious.[3]”

Tables (or matrices or relationships maps) are
often much more useful and clear than diagrams.
For this reason, competent modelers should
carefully select how information should be
presented (remembering that the model and its
content is independent of its display). Subject
matter experts, modelers, decision makers, and
stakeholders may have different cognitive styles
and preferences. Modelers must be willing to adapt
without compromising model integrity. There is a
fine line between fruitful challenge of the status
quo (such as abolishing swimlanes) and fruitless
conflict.

Observing QED principles requires that the
modeler(s) find a way to represent all relevant
information in a well-defined structure so that it can
be found and serve as the authoritative source of
technical truth; for each piece of useful
information:

Should it be owned by an element?

Should it be owned by a relationship?

Should it be owned by a usage?

The NeMO Orbiter: A Demonstration Hypermodel

BUILDING BLOCKS OF A HYPERMODEL

Operations
Operations are the most important behavioral
element in hypermodeling:
e They own parameters (allowing rigorous
definition of inputs/outputs).
e They can be further decomposed with

methods.

e They must be owned by blocks or activities.
e They may <<satisfy>> functional
requirements.

e Their use streamlines behavioral

decomposition and because they have clear
ownership many complex queries are
simplified.

Opaque Behaviors

Opaque behaviors (a model element type)
encapsulate structured expressions, metachains,
scripts, queries, and other tool-specific behaviors.

They may be used to drive tables, matrices,
derived properties, and metrics. A library of useful
opaque behaviors may be created by expert
modelers and shared throughout an organization.
In many ways, opaque behaviors enable DRY
development of the system model by facilitating
reuse and enabling maintenance of a smaller set of
custom queries.

Opaque behaviors may also be used to facilitate
analysis; in the case of this case study, an opaque
behavior was used to facilitate scenario-based
power consumption analysis.

ltem Flows

Item flows are one of the most important elements
used in hypermodeling. They may be used to fully
integrate behavior, structure, and flows. A given
item flow connects specific parts or ports (at the
usage level) and may be mapped to connectors
(internal block diagrams), object flows (activity
diagrams), messages (sequence diagrams), and
transitions (state machines). Derived properties
using item flows allow extended information to be
displayed on any diagram in this chain of

Page 5 of 19

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETYS)

connection (for example, mapping a functional
output to a transition on a state machine).

This represents the most efficient way the author
has yet discovered to fully describe the
relationships between these diagrams with a
minimum number of elements and relationships.

THE BIRTH OF THE NEMO HYPERMODEL

A unique opportunity presented itself in the fall of
2017: a number of students who previously had
studied systems architecture and systems
engineering as students in the University of Detroit
Mercy's Master of Science in Product Development
(MPD) program wished to complete incremental
requirements and obtain systems engineering
certificates from the University. They were
required to take additional classes and elected to
enroll in the newly-created dedicated systems
modeling with SysML class. (SysML, the System
Modeling Language, is the industry standard,
general purpose modeling language. It is
administered by the Object Management Group).
Because they had previous experience with SysML
modeling integrated into the MPD curriculum, the
author felt they would benefit from an extended
modeling project and gave them the option of
developing a reference model.

Once they had agreed to participate in this effort,
a suitable subject for the model needed to be
selected. Past modeling projects in the MPD
program included notional space probes (with
missions and capabilities specified by the primary
author), a notional polar exploration submarine,
personal survival pods (intended to sustain disaster
survivors or explorers in remote areas for a period
of time without resupply or other resources), and a
Next generation Mars Orbiter (NeMO). The author
selected the NeMO for redevelopment (starting
from published NASA goals, objectives,
subobjectives, and investigations) because it was
based on public information and non-automotive
(the students all work in the automotive industry
and this precluded the possibility of introducing
any proprietary information). It also had the

The NeMO Orbiter: A Demonstration Hypermodel

advantage of being large enough to exercise the
modeling approach and small enough to be
manageable by the team.

Modeling Process

The NeMO hypermodel was constructed in one
term by six students. One class session each week
was augmented with one or more feedback and help
sessions to assist the students with advanced
modeling techniques and the resolution of quality
checks to improve model health.

The modeling effort followed the hypermodeling
loop displayed in Figure 3. It should be noted that
this cycle is highly iterative; as information or gaps
are exposed in one area they may impact other
areas. The model’s package structure (see Figure
4) allowed the students to work in a relatively linear
fashion since each “lower” package tends to be less
abstract and more concrete than the one above it.

The instructor imported the NASA goals,
objectives, sub-objectives, and investigations and
their relationships (see Figure 5) and provided these
to the students as a basis for their modeling.
Behavior modeling was conducted using the
relationships shown in Figure 6. They identified
capabilities and <<traced>> them to investigations
(these served as the connection point to the
upstream goals and objectives, see Figure 7); they
created use case diagrams to analyze these
capabilities (see Figure 9). Each student also
developed instrument architectures that
implemented those capabilities and was assigned a
subsystem that provided or enabled generic satellite
behaviors and capabilities.

Elements identified in the use case diagrams were
used as the basis for the system context (see Figure
8). Students were given the option to create a
functional architecture (using activities to own
operations) or begin with a logical architecture
(since this project already made numerous
assumptions about which elements would perform
various functions). See Figure 10 for notional
architectural elements and Figure 11 for a relation
map that decomposes the logical architecture.

Page 6 of 19

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETYS)

Interfaces were defined using Internal Block
Diagrams (see Figure 12); these allowed the use of
item flows to unify behavioral, structural, and flow
elements. State machines were created (and owned
by specific system elements) to integrate desired
system behaviors (see Figure 13 and Figure 14);
note that entry/exit points are extremely useful
SysML elements that facilitate the use of
submachines.

The use of generalizations between use cases (see
Figure 15) allows the cloning of associated
behaviors and rapid tailoring at each level of
abstraction (or to create a variant).

The final graphical example provided illustrates
the relationships between requirements and test
activities (see Figure 16).

Detailed parametric diagrams were not
constructed; however, a scenario-based power
consumption analysis was developed. Customized
power usage relationships were created between
part properties and the power scenarios in which
they consumed power. A scale factor (defaulting to
1) was defined to allow lower-power usage of a
given part. An opaque behavior was defined that
rolled up all power usage for a given scenario
(power consumption for a part property was
provide by the defining block, multiplied by the
multiplicity and scale factor, and then summed for
the power scenario). Although not as rigorous as a
state-machine and parametric diagram-based
analysis, this approach demonstrated that a rapidly
constructed, less rigorous approach still had
significant qualitative value.

Quality Checks

Numerous quality check tables were created to
enable the rapid detections of errors in the model.
For example, one table displays “trapped
parameters.” These are parameters owned by
operations that cannot legally flow over the
available interfaces owned by the block. These
may be resolved by adding interfaces or
generalization relationships to enable the “trapped”
signals to flow over existing interfaces.

The NeMO Orbiter: A Demonstration Hypermodel

Other tables displayed elements without
documentation or required <<trace>>
relationships. The creation of the custom queries
that drive these tables requires some advanced
skills but when they are placed in a library as
opaque behaviors every model that uses the library
may benefit from them.

IMPACT

The NeMO hypermodel and related tutorial
videos were released at the No Magic World
Symposium in May 2018. As of June 2018, the
model is already in use by one Ph.D. student who is
analyzing it as part of his thesis and it is serving as
the basis for improving interoperability between
MagicDraw and another analysis tool.

Several debates (primarily in LinkedIn’s MBSE
group) have been sparked by the video series and
model and the author has provided it to the teams
developing proposals for SysML 2.0. Ongoing
discussions with various modelers and corporations
are underway.

CONCLUSION

The NeMO hypermodel was born from a set of
needs and the effort of a dedicated group of
students. It illustrates a number of advanced
modeling techniques and a unified approach
intended to maximize the value of an integrated
system model.

The following students built the NeMO
hypermodel:

. Lizardo Amador Marin
. Kyle Ebner

. Peter Hodges

. Gary Kliczinski

. Jesus Mata Castaneda
. Natalya Matevossyan

The primary author is deeply grateful for their
willingness to tackle this challenge and share their
work with the system modeling community as the
basis for further development and refinement.

Page 7 of 19

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETYS)

DISCLAIMER

The model and paper were prepared by the
authors in their personal capacities as instructor and
students. The opinions expressed in this article are
the authors” own and do not reflect the views of
their respective employers

REFERENCES
[1] The Tension Matrix and the Concept of
Elemental Decomposition: Improving

Identification of Conflicting Requirements, A.
Salado and R. Nilchiani, in IEEE Systems
Journal, vol. 11, no. 4, pp. 2128-2139, Dec.
2017.

[2] Requirements Churn: The Hidden Drain on
Systems Engineering, Systems Architecture
Guild YouTube channel, published 10/8/2016.
https://www.youtube.com/watch?reload=9&v=
T84WZ4WLqws.

[3] The Mythical Man-Month: Essays on Software
Engineering (1975, 1995) [Originally published
in 1975; Brooks, Frederick, page numbers refer
to the substantially expanded Anniversary
Edition (2nd Edition), 1995, Addison-Wesley,
ISBN 0-201-83595-9], Pp. 102-3.

The NeMO Orbiter: A Demonstration Hypermodel

Page 8 of 19

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

APPENDIX A: FIGURES

Needs / Context Behavior Structure / Analysis Requirements

iliti Interfaces /
Capabilities * Block Definition « Use Case Diagrams Flows e Parametric * Model elements
«Outcomes Diagrams « Activity Diagrams Diagrams * Requirements
Scenarios * Internal Block State Machines *Block Definition ¢ Matrices
eConstraints Diagrams « Sequence Diagrams Diagrams e Variants

* Requirements
Tables

eInternal Block Diagrams
eFunctional / Logical /
Physical Architectures

eAssociated Elements o Interfaces (if needed)

Figure 1: The Hypermodeling Approach

The 10 Commandments of Modeling
I. Thou shalt not make shelfware
Il. Thou shalt not add any model element without reason
1. Thou shalt not add any model element that can be derived
IV. Thou shalt document all model elements
V. Thou shalt always apply units to value properties and tags
VI. Thou shalt type all model elements
VII. Thou shalt integrate the model and help it grow organically
VIIl. Thou shalt delete unneeded elements to prevent clutter
IX. Thou shalt not be afraid to say “no”
X. Thou shalt always do what is right for the model
The Greatest Commandment:

Thou shalt ruthlessly subordinate thy approach to what the modeling tool does easily and well.

There is no point in trying to model and automate document-based processes with their inherent
inefficiencies.

Figure 2: The Ten Commandments of Modeling

The NeMO Orbiter: A Demonstration Hypermodel

Page 9 of 19

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Needs

Analysis ‘ Capabilities

Context

Interfaces Constraints ‘

\J \J

Figure 3: The Hypermodeling Loop

00 Source Content
10 Behavioral Analysis

20 Context

30 Functional Architecture
40 Logical Architecture
50 Physical Architecture
60 Verification

70 Analysis

80 Requirements

90 Tables and Matrices
QC Quality Checks

Library

¢ Ontology

Figure 4: Hypermodel Package Structure

The NeMO Orbiter: A Demonstration Hypermodel

Page 10 of 19

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

uc [Package] 00 Source Content[00 Source Cuntentlj

atraces
Y
_-——_g__——-_
«investigations)
Investigation
include
« /n - b ~ atraces
. - \ ~
" ssub-objectives \ irac S
Sub-Objective N /”‘ acapabiitys —
(Capability
~ afraces i th
Ny
- -— ! - dtraces

— i -
wgoale en) wtraces = A
Goal | — = = «source centents D

. Source Document or other material
. wincludes) t 3
“ atraces _ —

J -

=l . -

" xobjectives
Objectives

Figure 5: Source Content Relationships

uc [Package] 10 Behavioral Analysis [10 Behavioral Analysis: Capabilties and Use Casesu

asource contents (]
Source Document or other material
___________ atracay — o DM AN
== oy

| | (N sinvestigations
|atraces |«fraces | |udracé:o Investigation
straces N \

|
| \

<

Actuator \traces

lutracen

wtraces

th

Iudrace:o
| etraces

Sensor

User System

|
|
|
I Imtrac Jr«ﬂbjecﬂve{"
T ugoabh | Objectives
(0 Gou |
[
|
|

__u;sulxubjediva;-
Sub-Objective

Capability

+Operatin|{t 4 Inpui, : Qutput)

Figure 6: Behavioral Analysis Relationships
The NeMO Orbiter: A Demonstration Hypermodel

Page 11 of 19

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Legend -] Goals and Objectives
Related Goals B[] 10 Goals, B[] 20 Objectives., T 30 SUD-OBIECHVES g g o
= | = || o = b o oa = E B 4 o a4 a5 o 5 o - o - - o 5 £ &
Il Related Investigations b E 5 .2 E = vop o % B % :g s 5 gy ';é s £ E %;,; £ & £ g o E o
- £ g 8D e BT 3 w0 8 58 8 e Z D22 P cmEs e g g &%
Related Objectives % 3 g § 155 _E £ EE8EE 5 e .5 .% .5 _% ZEE z £ £ E E z % g %
Related SubObjectives ¥ 5 3 & E ® 5 5 T R B R & = g 8BRS 2 E 5 § 2 Iz iz I 5
S 58 = I E2salE g A g .‘8‘ 4S5 5885c0EcoldlES50
S22 L EFU DS99 000 S0 G es g DS S
< 4 4 4 s T Y g md oo = o oo g T TLHD B Y g mmm U0
86886 Zifsgsggzzszz ILEdisfipssEEEHzzzzzz
QOOO0 000000000 ©OGOQOCQCOO00C0OO00C000D0
B[10 Use Cases and Capabilities [10 Behavioral Analysis] Z 1| 5|5 2 1 42 11 3 2 3 11 (1 |dff2|d1|z|z(d1 |1 L1 i(2 1 2|3
i..C) Capture SWIR Survey Readings 20 3 3 3 ﬂ H ﬂ E
. Find geological boundaries & ice 6 1 2 3
-(_) Find Water Deposits 4 1 1 1
- Getimages From Mars surface 12 2 3 3 E
() Mars Surface Minerals Identification 1B 3 3 3 5] 5] 5]
L2 Thermal IR Sounder Measure Temperature, Pressurd39 3 5 9 5] 5]

Figure 7: Goal, Investigation, and Capability Matrix

bdd [Package] 15 Context] 15 Cuntextlj

wexternals | — — — — —
External | afraces Boundary System
pars | |
subsystem : Subsystem [0..] —=
block : Block [0.. d L
straces Environmental Effect
wzystems
System @
pars 1 _
subsystem : Subsystem [0 —eirases— —User System
block : Block [0..%]
—————— N7
| atraces Sensor
xsystem contexts |
System Context | @
pars 11
external : External [0.] _*irace» External System
system : System [0..%] d |
I
—————— =
atraces Actor
wzubsystems
Subsystem @
parts _ _ _ufraces _ . Actuator
block : Block [0..7H

All part properties
or blocks in the
sy=stem context
should trace to

use case elements.

D

Mo reference
properties (except
for fuel or other
consumables).
Reference
properties may be
elminated by
maoving one level
higher in
abstraction.

Figure 8: System Context Relationships

The NeMO Orbiter: A Demonstration Hypermodel

Page 12 of 19

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

uc [capability] Manage Electrical Power [Manage Electrical PuwerlJ

Generate
Electrical Power

Regulate

\ Electrical Power
yaincludes
Y eincludes —
-
S -
-
—
Manage Electrical
Power
sincludes -~ %
. \
T Y eincludes NeMO
/ Stare Electrical |
(Power
v

@ribute Electrical S —
Power aextends Power

-(Pu wer Co n'r:u mEtiun} @

exiension points

Power Consu mptien

Sun

Figure 9: Capability Use Case Diagram

bdd [Package] 20-40 Architecture [20-40 Architecture J_J

sblocks
System Element
pars

Part Properties : Block [0..%]

7 -~
FETEerences

Reference Properties : Block [0..%]

operaons

Operation(Inputs : Input [0..%], Outputs : Output [0..%] } : Output [0..1]

proxy poris
incut Port ; Interface Block

zinterfaceBlocks
Interface Block

flow properties

inout : Signal [0..%]

proxy ports

ports : Atomic Interface Block [0..%]

Figure 10: Notional Architectural Elements

The NeMO Orbiter: A Demonstration Hypermodel

Page 13 of 19

1B Antennas and Telecommunication 8—

(B8 command and Data-Handling Systems @—

(B Electrical Power Subsystem g —

(B8 Guidance Navigation and Control Systems 8=

»~ & Amplifier

~ B High Gain Antenna@——
=& Low Gain Antenna

~ & Transponder

~ Bl Data Recorder@

~E& space Flight Computer @ ——
~Blinverter

»~ & NiH Battery

=~ & Power Distribution

= B Power Regulation and Control @——
« & solar Panel

~HE solar Sensor

4B Control g

+«BoNaC swe

BB GNC Sensors
“ B Horizon Tracker

“E Reaction Wheel Subsysiem B

- & Gimbal
« B HG Antenna

= & Solid State Recorder
B Command Processor
& Flight Software @

=&l Power Charge Controller
=& Power Requlator

+ & Reaction Control System Thrusters
« [Reaction Wheel Subsystem

=& Star Map

- Rl e TGO TEC e

- & Magnetometar
= & Radar Altimeter
~ Bl star Tracker@
~ & Sun Tracker@

=Bl Reaction Wheel

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Legend
Metachain Navigation

VE Star Tracker @ = & Photodetector
"B sun Tracker @ ~ & Photodetector
~HE Catalyst
~BLine
» [Main Rocket Motar
(B Propulsion & =B Pressurant Tank
~ B Propellant Tank 4B Bencn
~ B Regulator +E Calibrator
~BEvave »~ Bl Coolers
. i ~ Bl CRISM Electronics

,Ecampam Reconnaissance Imaging Spectrometer 2 — ~Erroa

Elnenoa< “ & Gimbal Motor

“BEIRC Telescope

& Telescope Sensor Caver
Bl DCDC Converter

- B PSAR Antenna Array @
+~ B PSAR Antenna Mator
~E PSAR Control Module @

~EPsARRadarg

w B MultiSpectral Scanner
~ & SWIR Power Supply
- B SWIR Mapper @ = & SWIR Telescope
= B Thematic Mapper
V& science Instruments £ — «~ Bl Thermal IR Sensor
~ IR Spectrometer
« & Wulti-speciral imager
=B Telescope
=& Thermal IR Calibration flag
=E Thermal IR Control Module

~E Thermal IR Mapper &

B Azimuth Actuator

~ B Azimuth Yoke

=B Elevation Actuator

« 5] Optical Bench Assembly @
~HE solar Target@

~E Thermal Blanket

B Thermal IR Sounder 8 —

= & Focal Plane Subsystem @
VBl wide Angle Camera@——
= 9 = + & Remote Electronics @
~ B Battery Enclosure

= = Equipment Module

B Structure and Mechanical 8 = B structure g ———

=B Mechanisms @
=E Propulsion Module
=Bl Heater

B Active Heating @——— = & Temperature Sensing Element

+ Bl Thermostat element

Y& Thermal SystemE—

» & Radiator

= & Surface Coating

=& Thermal Blanket

~EPassive Cooling@

Figure 11: Relation Map of NeMO Logical Architectural

The NeMO Orbiter: A Demonstration Hypermodel

Page 14 of 19

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

ibd [Subsystem] Reaction Wheel Subsystem|[Reaction Wheel SubsystemlJ

[_| Command Data : Data Command Data : Data
|

Y
¥

| Z reaction wheel : Reaction Wheel

Torgue : Torgue

inout Reaction Wheel Data : Data

Electrical : ~Electrical

Torgue : Torgue

Y reaction wheel : Reaction Wheel

‘—| Torgue : Torgue

inout Reaction|Wheel Data . Data inout Reaction Wheel Data : Data

Electrical : ~Electrical

Command Data : Data

Torgue : Torgue X reaction wheel : Reaction Wheel

inout Reaction Wheel Data : Data

[_3 Elettrical : ~Electrical Electrical : ~Electrical

Command Data : Data

Figure 12: Example Internal Block Diagram

stm [State Maching] Command and Data-Handling Sy=stems [Command and Data-Handling Syst&rnsﬂ
Operating
Dual
’ . Compute
‘ FC1 r Failure
Q@
Single FC
Compute Fatal
r Failure Fault
Inoperable
FC Single
Fatal Compute
H Dual
Fault r Failure dompute
@ FC2 WS Q? Failure

Figure 13: State Machine Showing Entry/Exit Points

The NeMO Orbiter: A Demonstration Hypermodel

Page 15 of 19

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

stm [State Machine] Space Flight Computer [Space Flight C\Jmputeru

Single
Computer
Failure

Operational

[Dual Flight Computers Operational
do / Check Flight Computer Status &® | Single Computer Operation
do / Check Flight Computer Status

Ground Command

[Single Computer Execute
Ground Command

_Flight Compute¥Faull «froms Command Data Bus
Execute Ground Command

do / Execute Ground Command

do / Execute Ground Command

hen (Groynd Cornand Gomplete) «froms Command Data Bus

Flight Computer Fault «from» Command Data Bus

Flight Computer Heartbeat «ffjoms Command Data Bus

Diagnosing
do / Repair Flight Computer Fault

Flight Computer Fatal Fault «froma Command Data Bus

[

Flight Computer Fatal Fault «from» Command Data Bus

Flight Computer

Flight Computer Fatal Fault «froms CJmmand treperable

Dual
Computer
Failure

gCFatalFauk
Figure 14: Space Flight Computer State Machine

uc [capability] Communicate with Earth [Communicate with Earth lJ

o

—
Aommuniu:.ate with

(Earth Logical
' th

- S

// wcapabilitys '

I" Communicate
with Earth

Figure 15: Use Case Diagram showing Generalization to Facilitate Behavior Cloning

The NeMO Orbiter: A Demonstration Hypermodel

Page 16 of 19

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

req [Package] 50 Verification [50 Werification lJ

«zextendedRequirements
Requirement

ld=""
Text = "Maotional Requirement”

T T T T
| | T T T T T T |
- - = | - _I
| mverifys | asatisfys xsatisfys I wsatisfys
l |
|
| | |
atestCasen | a:hll:rck:a
wtest methods i System Element
Test Method u =

Part Propefties : Block [0.%] |

[
Referen cal Properties : Block [0..

Operation(Inputs : Input [0..*], Oulputs : Output [0..%]) : Qutput [0..1)5

proxy| ports

inout Port : Interface Block [=

Figure 16: Validation Relationships

The NeMO Orbiter: A Demonstration Hypermodel

Page 17 of 19

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

APPENDIX B: HYPERMODELING STYLE GUIDE

Use Cases:
e Behavioral sketchpad to show behaviors/capabilities.
e <<capability>> stereotype applied to capabilities
<<extend>> use cases are triggered by extension points
<<include>> use cases are always executed by the use case to which they are connected
May be more fully described by activity diagrams
<<dissociation>> relationships used to exclude inherited relationships.
Specialized by other use cases realized by variants (provides a basis for variant-specific
activity diagrams)

Activity Diagrams:

e Flowcharts of behavior; describe activities that are made up of actions

o Call behavior actions execute other activities (activity diagrams)

o Call operation actions execute “leaf node” functions owned by functional (activities), logical
(blocks), or physical (blocks) elements (the smallest behaviors we will model)

e Send and accept event actions model messages flowing into/out of activities and may be
assigned to ports

e Complicated logical behaviors may be modeled (decision nodes, forking, etc.)

Capabilities:
e Use cases stereotyped as capabilities own activities that own operations
e They are only used as containers for operations
e They should be organized so that the majority of operations within a given activity are
realized by a logical block (for example, a collection of testing/status/heartbeat functions that
always are performed by a subsystem)
e These may be omitted if it is more appropriate to begin modeling at the logical level

Operations:
e Model elements that MUST be owned by a block or activity
e May own in, out, or result parameters
e Parameters may be typed by signals
e Parameters may have multiplicities

Signals:
e Are used to type parameters, information flows, item flows, flow properties, and send or
accept events
e Can own attributes that include other signals

Logical Blocks
e Own part properties typed by blocks
e Own operations that realize operations owned by functional blocks
e Are connected to other logical blocks by connectors (ports may also be used, if appropriate)
e May own value properties typed by value types (which are typed by units)

The NeMO Orbiter: A Demonstration Hypermodel

Page 18 of 19

Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Physical Blocks

Own part properties typed by blocks

Own operations that realize operations owned by logical blocks

Own proxy ports typed by interface blocks

Are connected to other physical blocks by connectors

e May own value properties typed by value types (which are typed by units)

Interface Blocks:
e Own flow properties typed by signals
e May own ports typed by other interface blocks
e May own signals and interface blocks (if appropriate)

State Machines
o All transitions are defined by signals, change events, time events, or operations
o All states have entry/do/exit behaviors defined
e Most do behaviors will call activities owned by use cases

End state:

e All use cases are decomposed by activity diagrams

o All activity diagram nodes are either call behavior nodes that trigger other activities or are
call operation nodes triggering leaf-node operations on activities, or logical/physical blocks

e Functional requirements are either <<satisfied>> by operations or by activities

¢ All leaf-node functions are operations on with in, out and result parameters typed by signals.

e Ports have been added to the logical blocks (if appropriate) and are typed by interface blocks

¢ Internal block diagrams have been created to show how logical blocks connect; all
connectors have item flows showing what signals flow along them.

o |tem flows are used because of their ability to connect deeply nested ports and relate object
flows, conveyed information, and messages

o All object flows, messages, and signal event transitions are mapped to item flows.

e <<physical>> blocks realize logical blocks and are used to redefine part properties of each
physical architectural variant.

o All quality checks pass (no untyped elements, documentation fields complete, no
unconnected pins, etc.)

Requirements:
o All functional requirements are satisfied by operations or activities
¢ All interface requirements are satisfied by ports, flows, or connectors
o All physical and performance requirements are satisfied by value properties
e All design constraints are satisfied by blocks
e All requirements are verified by test cases

The NeMO Orbiter: A Demonstration Hypermodel

Page 19 of 19

