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ABSTRACT 
Embedded systems are becoming increasingly complex and more distributed.  Cost and quality 

requirements necessitate reuse of the functional software components for multiple deployment architectures. An 
important step is the allocation of software components to hardware. During this process the differences 
between the hardware and application software architectures must be reconciled. In this paper we discuss an 
architecture driven approach involving model-based techniques to resolve these differences and integrate 
hardware and software components. The system architecture serves as the underpinning based on which 
distributed real-time components can be generated. Generation of various embedded system architectures using 
the same functional architecture is discussed. The approach leverages the following technologies – IME 
(Integrated Modeling Environment), the SAE AADL (Architecture Analysis and Design Language), and Ocarina. 
The approach is illustrated using the electronic throttle control system as a case study. 

 
1. INTRODUCTION 

Embedded systems in ground vehicles are becoming 
increasingly complex in the functionality they support. 
Safety and security are very critical. Innovative approaches 
are needed to develop such systems efficiently without 
compromising on quality. A growing trend in development 
of complex embedded systems is the use of model-based 
development (MBD) techniques. Essentially MBD involves 
modeling the behavior of the embedded systems to enable 
simulation of the embedded system performance for various 
stimuli under various operating conditions. MBD supported 
by CAE tools facilitates the design of advanced control 
functionality by enabling early V&V before the mechanical 
and electronic hardware become available. The current state 
of MBD technologies is evolved enough to allow embedded 
software to be automatically generated from the functional 
models. Such tools and processes facilitate code generation 
for a single ECU. In practice however, as the number of 
processors and complexity of algorithms keep growing, 
there are two critical needs that emerge: 
 
(i) The development framework needs to support modular 
development of embedded software promoting re-usability. 
Further, we need to support multiple variants in the 
implementation of re-usable components. This leads to the 
idea of an “architecture” becoming the underpinning 
description of a system, with variant management built 
around this architecture – Architecture Driven Development 

(ADD). These issues have already been addressed in 
previous work, e.g. [1] 
 
(ii) The second need is related to the fact that the functional 
model of an application often has a very different 
architecture from the architecture of the application 
embedded software. The functional architecture of the 
system corresponds to the optimum architecture required for 
control system development, and is concerned with the 
functional performance of the physical system being 
controlled. On the other hand, the embedded systems 
architecture required for any application is concerned with 
the number of processors, the different tasks and threads and 
their scheduling, etc. We need an approach that explicitly 
attempts to resolve such differences.  

 
The focus of this paper is to discuss the second need 

above. In particular, this paper discusses an approach to 
extending the current technologies to allow generation of 
distributed embedded software from functional models, 
seamlessly reconciling the differences between functional 
architectures and embedded systems architecture.   

 
In addition to the above consideration, a single functional 
architecture could often support multiple embedded systems 
architectures. For example, there could be technological 
advancements in the hardware used in the system, requiring 
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new hardware architectures even though the functional 
architecture does not change.  
 
It is also common to reuse software components between 
different vehicles where the functional architecture might 
change but the hardware architecture remains the same.  
 
The approach discussed in this paper also addresses such 
additional practical issues that are of relevance during the 
development of complex and large embedded systems.  

 
Section 2 discusses the architecture driven development 

approach for generation of distributed software. Two major 
activities are described in this section – (a) development of 
functional models consistent with a system architecture and 
(b) generation of distributed embedded software. Workflows 
to perform these activities are discussed. Section 3 discusses 
enabling tools and technologies that are leveraged in this 
process. Three major technologies are leveraged in our work 
– the SAE AADL (Architecture Analysis and Design 
Language), IME (Integrated Modeling Environment) and 
Ocarina (AADL toolsuite with code generation facilities). 
Section 4 describes a case study using the electronic throttle 
control application. Finally in section 5 we summarize our 
findings. 

 
2. ARCHITECTURE DRIVEN APPROACH 

  The system architecture can be used as the underpinning 
using which functional models as well as embedded system 
models and software can be generated. The approach 
primarily consists of two major activities. First the system 
architecture needs to be defined and functional models 
(Executable Specifications) be developed that are consistent 
with the system architecture. Second the functional models 
should be integrated with the hardware architecture and 
embedded software generated from the complete system 
model.  

2.1. Generation of Functional Models 
The Generation of Functional Models can be captured 

through four key steps in our proposed approach: 
(i) Functional Architecture Definition: One of the first 

steps is to develop the system architecture. The architecture 
is the topology of the system and describes the structural 
hierarchy of the subsystems and their interfaces and 
connections. Several stakeholders are involved in this step – 
control engineers, software engineers and managers. Usually 
this step is performed by the OEM based on product goals 
and requirements. This architecture can then be used to 
communicate the requirements to the suppliers of the 
individual components in the system, who could be a 
division of the OEM or an outside supplier.  

(ii) Organize and Mine Component Functional Models 
Repository: A step that happens in tandem with the 

architecture is the development of component models. To 
enable maximum reuse, modular component models are 
developed over time by the organization and collected in a 
repository that is accessible to all authorized developers. The 
larger the repository of such models the quicker the 
development of functional applications. However, it is 
important to have the repository well organized and 
searchable. In particular, being able to search the repository 
based on architectural metadata of the component models 
(such as their interfaces, hierarchy, etc) will dramatically 
improve the efficiency of application development. 

(iii) Associate Component Models to Architecture: Since 
we want the application models to be consistent with the 
system architecture, we need to identify component models 
that fit into the corporate hierarchy. As part of such an 
association, the ability to search the model repository for 
architectural metadata should be leveraged to verify 
architectural consistency. Both structural and interface 
consistency must be performed. Additionally constraints 
specified in the architecture can be combined with metadata 
inserted into the component models to enable guided 
searches of the model repository.  

(iv) Generate Simulatable Application Models: The final 
task is the generation of simulatable application models that 
can be used for confirming the functionality of the control 
system. As an example, from the system architecture we can 
compose models in a simulation domain such as Simulink 
[2].  

Some of the steps in the generation of functional models 
are shown in Figure 1. 

 

 
Figure 1: Process Steps to Generating (executable) 

Application Models from Functional Architecture 
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2.2. Generation of Distributed Embedded 
Software 

The generation of Distributed Embedded Software can be 
captured in these next steps: 

(i)  Embedded Systems Architecture Definition: The 
embedded system architecture is concerned with the 
processors in the system, the information communicated 
between them, the processes and threads within each of the 
processor, and the scheduling of those processes and threads. 
AADL is a powerful mechanism for describing and 
communicating such an architecture [3]. Thus the embedded 
systems architecture is developed by the stake holders 
consisting of the program managers, and the embedded 
software and hardware engineering team. 

(ii) Reconciliation of Functional Architecture with 
Embedded Systems Architecture: It is important to recognize 
that the architecture used to generate functional models is 
often quite different from the embedded system (hardware) 
architecture. What is common between the functional 
architecture and the embedded systems architecture is the set 
of component functional models associated with either 
architecture. Thus, in order to reconcile the functional 
architecture with the embedded systems architecture, a key 
step is to define the bindings between the component 
functional models in the functional architecture and the 
nodes of the embedded systems architecture. 

When such a binding is done, it is important to ensure that 
the functional connectivity between the software 
components as specified in the functional architecture is not 
broken, while simultaneously the communication 
requirements of the embedded systems architecture is 
satisfied.  

(iii) Generation of Distributed Embedded Software: The 
final step in this process is to generate the distributed 
embedded software based on the embedded systems 
architecture and the associated component models.  

 
Figure 2: Process Steps in generating (Distributed) 

Embedded Software for Deployment 

 
This workflow is shown in Figure 2 above. If an automated 

process exists to generate the distributed embedded software 
from the architecture, then this provides a powerful 
methodology to generate different deployment variants of 
the distributed embedded system, all starting from the same 
functional architecture. The different deployments could 
pose different constraints, and these constraints could be 
accommodated easily by the appropriate binding between 
the embedded architecture and functional architecture. (see 
Figure 3 below) 

 

 
Figure 3: A single Functional Architecture can support 

Multiple Deployment Architectures 
 
An example of multiple deployments for a given 

functional architecture could be as below: (i) A low-cost 
solution dictates that the entire application is deployed 
within a single processor, accepting the associated 
schedulability issues, and consequent performance pull-
back. (ii) A medium-cost solution that allows for smart 
actuators and/or smart sensors to run some of the 
functionality in local processors, enabling faster internal 
feedback, and consequent improved system performance; the 
bulk of the functionality still runs in a central processor. (iii) 
A high-cost system that calls for separate processors to 
provide monitoring, safety and redundancy functionalities. 
By using the advocated approach, each of the deployment 
could be initiated conveniently from a common functional 
architecture.  

 
 

3. ENABLING TECHNOLOGIES 
 
In the previous section we discussed how the system 

architecture drives the various activities involved in the 
embedded software generation process. Several enabling 
technologies are needed to efficiently realize the processes: 
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Architecture Description Methodology: In order to 
perform reconciliation between the functional and hardware 
architectures a first requirement is that we need to be able to 
have standardized descriptions of both the architectures. 
Such an Architecture Description Language (ADL) needs to 
allow specification of several different components 
(functional, software, electronics, sensors and actuators) as 
well as the communication between them. Along with the 
architectural view that lists the topology of the system, non-
functional properties of relevance (priority, time slot for 
CAN buses, memory capacity, etc.) need to be specified at 
the different nodes of the architecture. There is also a need 
for a well defined mechanism to bind the functional 
components to the embedded system components while still 
retaining both their properties. 

We chose the SAE AADL as the backbone modeling 
notation because it has sufficient richness in definition to be 
a good language for architecture driven development of 
embedded systems. Further the AADL is a tool neutral 
language and so facilitates exchange of architecture 
descriptions between different tools. 

Architecture Driven Modeling: We need an environment 
where (i) Architectures are comprehended and (ii) 
Architecture transformations (from functional architecture to 
embedded system architecture) can be achieved. Such an 
environment should allow for linking and management of 
the relationships between architectures and functional 
models that are developed in state of the art modeling tools 
such as Simulink. Such an environment should also provide 
support for migration of the functional models to embedded 
system models. 

In this paper we use the commercial tool IME (Integrated 
Modeling Environment) to evaluate and demonstrate the 
approach. 

Architecture Driven Embedded Software Creation: We 
need technologies that will synthesize the embedded 
software corresponding to the functional models, and the 
distributed real-time software components.  

For generation of the embedded software corresponding to 
the functional models, many of the native modeling tools 
themselves provide this capability. In this paper we use 
Simulink as the modeling tool. 

For generating the real time executive for distributed 
processor system, in this paper, we use Ocarina to evaluate 
and demonstrate the approach. Ocarina toolsuite provides 
support for code generation from AADL models for the real 
time executables, with appropriate integration of the 
software auto-generated from functional models. 

These technologies – AADL, IME and Ocarina facilitate 
the designer to go from high-level modeling down to code 
seamlessly, and are described in detail in the following 
sections. 

 

3.1. AADL 
The Architecture Analysis and Design Language (AADL) 

was adopted as an SAE (Society of Automotive Engineers) 
standard in the year 2004. The AADL is a tool neutral 
language that can be used to describe the run-time 
architecture of the embedded system. Model-based analysis 
for schedulability, safety, security, etc. can be performed 
using these descriptions [4]. It naturally provides the ability 
to describe the architecture of both hardware and software 
components and data along with their variations with regards 
to implementations. AADL components are described as 
component types and component implementations. 
Component type defines the interface of the component. 
Component implementation inherits the properties of the 
component type and describes the sub-components and 
connections. There can be different component 
implementations for a single component type definition 
leading to variant implementations for the same component. 
In our work the following subset of AADL components are 
used. 

System – These components can be used to describe the 
system architecture. They can be used to represent any 
software or hardware component or a combination of both. 

Process - Process components are an abstraction of 
software responsible for scheduling and for executing 
threads. They execute in their own memory in a processor. 

Thread – Thread components are an abstraction of 
software responsible for scheduling and executing sub-
programs. Thread execution periods and execution times can 
be set as properties. 

Sub-programs – Subprograms represent elementary pieces 
of code that process inputs to produce outputs. In the AADL 
only the interfaces are described. The implementations must 
be provided by the host language. In our work the functional 
models developed in Simulink provide the implementation.  

Processors – These components are abstractions of 
hardware and software that schedule and execute processes. 
Each processor will have its own clock which is the base 
time for all the components running on the processor. 

Buses – Bus components are used to exchange data 
between hardware components. 

A complete description of the AADL is provided here [5]. 
The functional architecture can be initially described using 

the AADL System components. Ports and connections 
define the component interfaces and communication. Once 
functional models are associated with the System 
components the architecture can be migrated to the 
behavioral modeling domain. The System components can 
later be translated to embedded components consisting of 
Processor, Process, Thread and Subprogram components. 
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3.2. Integrated Modeling Environment (IME) 
IME is a model management and architecture creation and 

analysis tool [6]. As described in Section 2 the system 
architecture drives the creation of functional models and 
generating distributed software. A visualization environment 
must be provided for the system architecture. Such an 
environment should be able to exchange architecture 
descriptions with other tools. Component behavior models 
developed over time are archived in a model repository for 
reuse. In order to find the consistent models their 
architectural information must be extracted and stored.   
Intelligent queries to search for certified models coupled 
with consistency checks facilitate selection of models. Once 
the selections are complete the architecture needs to be 
migrated to the behavioral modeling domain. As discussed 
in section 2.2 the functional models must be integrated 
seamlessly with the hardware architecture descriptions. 
During this step the environment must facilitate engineers to 
define the bindings between functional and embedded 
components.  The bindings define the allocation of 
functional components to the AADL Processes which must 
be bound to AADL Processors. The AADL Processor 
components represent the different ECUs. Once the bindings 
are defined the embedded system architecture must be 
generated. From this architecture AADL descriptions need 
to be exported. IME is a tool that can support all the 
activities described above. The resulting AADL models can 
then be used in code generation.  

 
3.3. Ocarina  

Ocarina [7] is a toolsuite developed by the AADL group at 
Telecom ParisTech. It aims at providing AADL model 
manipulation, syntactic/semantic analysis, model analysis 
capabilities (using external tools like Cheddar [8]) or 
embedded (e.g. generation of Petri Net models, analysis of 
models using the REAL constraint language).  Besides, 
Ocarina proposes code generation from AADL models to 
either C or Ada using the PolyORB-HI family of AADL 
runtimes. Code for the runtime, and the code generated 
follow carefully restrictions for the High-Integrity domains 
as mandated by the space, avionics or automotive domains. 
Targeted RTOS range from bare boards Ada runtime, real-
time executive like RTEMS or RT-Linux, domain-specific 
OS like POK for avionics systems [9] or native platforms for 
rapid prototyping. Ocarina supports both AADLv1.0 and 
AADLv2.0. Contrary to many MDE tools, Ocarina relies on 
its own internal meta-model engine, closer to a compiler 
AST. This allows for a wide range of internal optimizations, 
allowing to process large models quickly. 

Ocarina is available under the GPL license and runs on 
most operating systems (Windows, Mac OS X, Linux). 
Releases, examples of application-level models, case studies 
as well as documentation are available on our AADL portal 

[10]. Ocarina has been successfully tested in the European 
project IST-ASSERT [11], led by the European Space 
Agency, and the French R&D project Flex-eWare [12], led 
by Thales.   

One notable feature of Ocarina is the ability to include 
seamlessly any functional notations as implementation of 
blocks such as subprograms or threads. Instead of writing C 
code, the designer may insert a SCADE or Simulink 
functional blocks. Then, the Ocarina code generator will 
generate all the required glue code to integrate C code 
generated from Simulink Real-Time workshop or SCADE’s 
kcg C code into AADL runtime code. This suppresses a 
tedious and error prone integration work, and allows the user 
to focus only on the behavior of its system instead of 
bothering with low-level implementation details. This 
feature allows for a natural bridge between a high level 
architecture based tool like IME and simulation on real 
hardware, in a distributed setup, using Ocarina generated 
code. We illustrate this in the next section. 

 
4. CASE STUDY 

In this section we describe the application of the 
architecture driven approach to the Electronic Throttle 
Control (ETC) system. ETC replaces a mechanical system 
consisting of a linkage between the accelerator pedal to the 
throttle plate. In the mechanical system the vehicle operator 
directly regulates the engine airflow by adjusting the 
position of the throttle plate via the accelerator pedal. At idle 
speed conditions, the airflow bypasses the throttle plate and 
is regulated with an Idle Air Control (IAC) valve. In the 
ETC system the throttle plate is actuated electronically. The 
desired throttle plate position (setpoint) is determined based 
on the pedal position as well as other inputs and operating 
conditions. A primary benefit of ETC is it enables system 
designers to incorporate throttle control into other vehicle 
functions, such as cruise control and vehicle stability 
control. ETC is considered a safety critical system. As a 
result a considerable portion of ETC functionality is in place 
for redundancy and safety monitoring. Figure 4 shows the 
functional architecture of one ETC system as visualized 
within IME. The main components in the architecture are the 
core controller, actuator, sensors and the plant. The core 
controller consists of three important functions – safety 
monitor, manager and servo control. 
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Figure 4: ETC Closed Loop System 
 
In this case study we will consider three deployment 

scenarios for the embedded software.  
Scenario1 – Single ECU: We consider the case in which a 

supplier is assigned the responsibility of developing the 
actuator system. The supplier develops a first version of the 
actuator based on the specifications from the OEM. The 
product development cycle requires virtual integration of the 
entire system much in advance of the availability of actual 
physical hardware. Therefore the supplier develops the 
actuator driver models and the plant models and delivers the 
closed loop actuator system model to the OEM. The OEM 
integrates the actuator models into the bigger ETC system 
models. The next step for the OEM is to deploy all the 
controller components on a single target ECU in order to 
eventually generate the control software. 

Scenario2 – Single ECU + Smart Actuator: As an 
alternative to the scenario 1 above, the supplier offers a 
technologically advanced actuator in which the driver 
software is tightly integrated with the physical actuator. In 
turn, the OEM can offer superior functionality on some of its 
product lines, without disturbing the basic hardware 
architecture. However, in this case, the actuator driver 
software executes on a dedicated ECU. When the supplier 
delivers the actuator driver and plant models to the OEM for 
integration into the ETC system model, the OEM should 
ensure that code generation does not include the drivers with 
the main ECU.  

Scenario3 – Two ECUs + Smart Actuator: The OEM 
wants to reuse the same physical system and controls 
architecture for an advanced defense application, where 
safety criticality and redundancy are highly prioritized. In 
order to accommodate this modification the OEM wants to 
deploy the safety monitor component on a separate target 
ECU; the core functionality runs on the main ECU; the 
drivers run on the processor with the actuator.  

In all the above scenarios the functional architecture 
remains the same but the deployment architecture is 

different. We now discuss the workflow and tool chain to 
support the deployment in the above scenarios. 

Figure 5 depicts the steps involved in the generation of 
functional models from the system architecture. The system 
architecture can be developed using AADL authoring tools 
such as OSATE (Open Source AADL Tool Environment) 
[5] and imported into IME. The model repository can be 
mined and consistent functional models can be selected and 
associated with the system architecture. The functional 
Simulink models of the system can then be generated for 
further analysis. 

 

 
Figure 5: Generation of functional models consistent 

with system architecture. 
 
The next step is to deploy the functional models on the 

target. Since the functional architecture is different from the 
target architecture and also the target architecture is different 
in the three scenarios considerable re-architecting of the 
functional architecture must be done. The workflow for 
allocating the functional software components to the target is 
shown in figure 6. 

 

 
Figure 6: Generation of embedded system architectures 

from functional architectures 
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The functional system architecture can be annotated with 
the binding information. The binding information is different 
in the three deployment scenarios. The binding information 
must include the processor, process and thread in which each 
component must execute. Then the embedded architectures 
are generated from the functional architecture. Figures 7, 8 
and 9 illustrate the embedded architectures for scenarios 1, 2 
and 3 respectively. Figure 9 shows the detailed hierarchy of 
the embedded system. The embedded system consists of two 
ECUs – ECU1 and ECU2. A single process executes in 
ECU1 which manages a single thread. This thread executes 
the monitor component. The connections to the plant are not 
shown in the figure. In all the three target architectures the 
communication between the software components is 
maintained as specified in the functional architecture.  

 

 
Figure 7: Illustrates scenario 1 - Controller and 

actuator drivers are executed in a single ECU 
 

 
Figure 8: Illustrates scenario 2 – Actuator driver 

executes on a dedicated ECU 
 

 
Figure 9: Illustrates scenario 3 – Monitor component 

executes in a dedicated ECU. Other controller 
components execute in a second ECU. 

 
The next step is the generation of embedded software. In 

scenarios 1 and 2 the controller components were deployed 
on a single ECU. So the re-architected embedded 
architectures can be migrated back to the Simulink domain 
which supports code generation for a single ECU.  In 
scenario 3 the controller components are distributed among 
two ECUs. In order to generate distributed software using a 
single model the architecture is exported as an AADL 
model. The Ocarina toolsuite can parse the AADL model 
and extract the execution characteristics of the embedded 
system. Executables can be generated for each process. 
Within each process the required threads are created which 
in turn call the subprograms that represent the interfaces of 
the functional components. Simultaneously code can be 
generated from the functional models for each component. 
The functional components are called from within the 
subprograms. The execution architecture and the 
communication among the embedded and functional 
components are shown in figure 10. Figure 11 illustrates the 
structure of the monitor subprogram and the call to the 
monitor functional component. The integrated software can 
be executed on a real-time system.  
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Figure 10: Communication between the monitor and 

manager components executing in separate ECUs. 
 
 
 

 
Figure 11: Structure of a subprogram 

 
5. CONCLUSIONS 

In this work we discussed the approaches and specific 
technologies that enable the generation of distributed 

embedded software from functional models. An architecture 
driven approach facilitates the reconciliation of the 
functional and embedded architectures and their integration. 
The specific tools and technologies also support modular 
development and reuse of software components. These 
improve the efficiency of the engineering activities. Further 
studies needs to be performed with regards to deploying the 
embedded software on the target hardware and real-time 
testing of the system. 
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