Proceedings of the 2009 Ground Vehicle Systemsrigeeging and Technology Symposium (GVSETS)

Architecture Driven Generation of Distributed Embed

ded Software from

Functional Models

Gopal Raghav,
Swaminathan Gopalswamy,
Karthikeyan Radhakrishnan

Emmeskay, Inc.

Plymouth, Ml
{gopalanr, swami, rg-
karthikeyan}@emmeskay.com

Julien Delange,
Jérébme Hugues
Telecom ParisTech
Paris, France

{delange, hugues}@enst.fr

ABSTRACT

Embedded systems are becoming increasingly corgolex more distributed.

Cost and quality

requirements necessitate reuse of the functionfavace components for multiple deployment architees. An
important step is the allocation of software comgrits to hardware. During this process the diffeenc
between the hardware and application software assitures must be reconciled. In this paper we disan
architecture driven approach involving model-baseghniques to resolve these differences and integra
hardware and software components. The system anthie serves as the underpinning based on which
distributed real-time components can be generaBsheration of various embedded system architecusasy

the same functional architecture is discussed. @pproach leverages the following technologies — IME
(Integrated Modeling Environment), the SAE AADLcftiecture Analysis and Design Language), and Quzari
The approach is illustrated using the electronimttie control system as a case study.

1. INTRODUCTION

Embedded systems in ground vehicles are becoming
increasingly complex in the functionality they sopp
Safety and security are very critical. Innovatiyg@aches
are needed to develop such systems efficiently owith
compromising on quality. A growing trend in devetegnt
of complex embedded systems is the use of modelbas
development (MBD) techniques. Essentially MBD irnnes
modeling the behavior of the embedded systems &blen
simulation of the embedded system performance doious
stimuli under various operating conditions. MBD paped
by CAE tools facilitates the design of advanced tiin
functionality by enabling early V&V before the mextical
and electronic hardware become available. The custate
of MBD technologies is evolved enough to allow ented
software to be automatically generated from thectional
models. Such tools and processes facilitate codergton
for a single ECU. In practice however, as the numitfe
processors and complexity of algorithms keep grgwin
there are two critical needs that emerge:

(i) The development framework needs to support rfardu
development of embedded software promoting re-lisabi
Further, we need to support multiple variants ire th
implementation of re-usable components. This |gadthe
idea of an “architecture” becoming the underpinning
description of a system, with variant managemenitt bu
around this architecture — Architecture Driven Depenent

(ADD). These issues have already been addressed in
previous work, e.g. [1]

(i) The second need is related to the fact thatftimctional
model of an application often has a very different
architecture from the architecture of the applmati
embedded software. The functional architecture loé t
system corresponds to the optimum architectureimeddor
control system development, and is concerned wlin t
functional performance of the physical system being
controlled. On the other hand, the embedded systems
architecture required for any application is coneer with
the number of processors, the different tasks hrehtls and
their scheduling, etc. We need an approach thalicékp
attempts to resolve such differences.

The focus of this paper is to discuss the secoretl ne
above. In particular, this paper discusses an aghrdo
extending the current technologies to allow gem@mabf
distributed embedded software from functional msdel
seamlessly reconciling the differences between tional
architectures and embedded systems architecture.

In addition to the above consideration, a singlecfional
architecture could often support multiple embedsgstems
architectures. For example, there could be teclywdb
advancements in the hardware used in the systemirireg

Architecture Driven Generation of Distributed Emted Software from

Page 1 of 8

Proceedings of the 2009 Ground Vehicle Systemsrigeeging and Technology Symposium (GVSETS)

new hardware architectures even though the furation
architecture does not change.

It is also common to reuse software components dxtw
different vehicles where the functional architeetunight
change but the hardware architecture remains the.sa

The approach discussed in this paper also addresgds
additional practical issues that are of relevangend the
development of complex and large embedded systems.

Section 2 discusses the architecture driven dewsdop
approach for generation of distributed software oTwajor
activities are described in this section — (a) ttgu@ent of
functional models consistent with a system architecand
(b) generation of distributed embedded softwarerkitmns
to perform these activities are discussed. Se@idiscusses
enabling tools and technologies that are leveragethis
process. Three major technologies are leveragedrimvork
— the SAE AADL (Architecture Analysis and Design
Language), IME (Integrated Modeling Environment)dan
Ocarina (AADL toolsuite with code generation fai#s).
Section 4 describes a case study using the eléctifmottle
control application. Finally in section 5 we sumimarour
findings.

2. ARCHITECTURE DRIVEN APPROACH
The system architecture can be used as the underg
using which functional models as well as embeddestes

architecture is the development of component modeds
enable maximum reuse, modular component models are
developed over time by the organization and cadh a
repository that is accessible to all authorizedettgyers. The
larger the repository of such models the quickee th
development of functional applications. However, ist
important to have the repository well organized and
searchable. In particular, being able to searchrépesitory
based on architectural metadata of the componemtelso
(such as their interfaces, hierarchy, etc) will dagically
improve the efficiency of application development.

(i) Associate Component Models to Architectuf®ince
we want the application models to be consistenh wlite
system architecture, we need to identify compomendels
that fit into the corporate hierarchy. As part afck an
association, the ability to search the model reposifor
architectural metadata should be leveraged to werif
architectural consistency. Both structural and rfate
consistency must be performed. Additionally cornstsa
specified in the architecture can be combined wittadata
inserted into the component models to enable guided
searches of the model repository.

(iv) Generate Simulatable Application ModelBhe final
task is the generation of simulatable applicatiamdets that
can be used for confirming the functionality of tbentrol
system. As an example, from the system architeaterean
compose models in a simulation domain such as $ikul
[2].

Some of the steps in the generation of functionati@hs

models and software can be generated. The approach are shown in Figure 1.

primarily consists of two major activities. Firgtet system
architecture needs to be defined and functional atsod
(Executable Specifications) be developed that arssistent
with the system architecture. Second the functionatiels
should be integrated with the hardware architectamel
embedded software generated from the complete rsyste
model.

2.1. Generation of Functional Models

The Generation of Functional Models can be captured
through four key steps in our proposed approach:

(i) Eunctional Architecture DefinitionOne of the first
steps is to develop the system architecture. Ttleitacture
is the topology of the system and describes thectsiral
hierarchy of the subsystems and their interfaces an
connections. Several stakeholders are involvetii;mstep —
control engineers, software engineers and manadstally
this step is performed by the OEM based on prodoets
and requirements. This architecture can then bel use
communicate the requirements to the suppliers @& th
individual components in the system, who could be a
division of the OEM or an outside supplier.

(i) Organize and Mine Component Functional Models
Repository: A step that happens in tandem with the

Models, Scripts,

Define Functional
Architecture of System

Functional Architecture

L

Functional PPt
Architecture

+Model Configuration [~< |

Data, etc

1
Organizeand Minc
Component Model

Repository

1

| Associate Component
“| Modelsto Architecture

Generate Simulatable
Application Models

S~ Develop Component
Modecls

Specific set of II
/| ComponentModels
/

AN Exccutable
Application
Models

Figure 1. Process Steps to Generating (executable)

Application Models from Functional Architecture

Architecture Driven Generation of Distributed Emted Software from

Page 2 of 8

Proceedings of the 2009 Ground Vehicle Systemsrigeeging and Technology Symposium (GVSETS)

2.2. Generation of Distributed Embedded
Software

The generation of Distributed Embedded Software lman
captured in these next steps:

() Embedded Systems Architecture Definitiohe
embedded system architecture is concerned with the
processors in the system, the information commugita
between them, the processes and threads within efattte
processor, and the scheduling of those processketharads.
AADL is a powerful mechanism for describing and
communicating such an architecture [3]. Thus théedded
systems architecture is developed by the stakeeh®ld
consisting of the program managers, and the emidedde
software and hardware engineering team.

(i) Reconciliation of Functional Architecture with
Embedded Systems Architectuteis important to recognize
that the architecture used to generate functionadeis is
often quite different from the embedded systemdivare)
architecture. What is common between the functional
architecture and the embedded systems architeisttine set
of component functional models associated with egith
architecture. Thus, in order to reconcile the fioral
architecture with the embedded systems architectuteey
step is to define the bindings between the componen
functional models in the functional architecturedathe
nodes of the embedded systems architecture.

When such a binding is done, it is important toueaghat
the functional connectivity between the software
components as specified in the functional archirects not
broken, while simultaneously the communication
requirements of the embedded systems architectsire i
satisfied.

(iii) Generation of Distributed Embedded Softwafehe
final step in this process is to generate the ibisted
embedded software based on the embedded systems
architecture and the associated component models.

Program (Functional)
Deployment Constraints Requirements
Define Embedded Generate Functional
System Architecture Application Architecture -

T and Modecls
' T

'

Reconcile Functional Functional Architecture .

--- and Embedded -1 +Modcl Configuration }
Architectures !

Pt Specific set of II
Embedded System " | ComponentModels
Architecture + Model L

Configuration

]
i
1

Embedded
System
Architecture

Gencrate (Distributed}
Embedded Software

(Distributed)
Embedded
Softwarc for
Deployment

Figure 2: Process Steps in generating (Distributed)
Embedded Software for Deployment

This workflow is shown in Figure 2 above. If an@uated
process exists to generate the distributed embesioftédare
from the architecture, then this provides a powerfu
methodology to generate different deployment vasiaof
the distributed embedded system, all starting ftbensame
functional architecture. The different deploymemtsuld
pose different constraints, and these constraintddcbe
accommodated easily by the appropriate binding e&etw
the embedded architecture and functional architect{see
Figure 3 below)

Embedded System
Deployment Constraints

(Distributed)
Embedded Software
for Deployment: 1

(Distributed)
Embedded Software
for Deployment: 2

(Distributed)
Embedded Software
for Deployment: 3

Functional Architecture
+ Modecl Configuration

(Distributed)
Embedded Software
for Deployment:n

Figure 3: A single Functional Architecture can supjrt
Multiple Deployment Architectures

An example of multiple deployments for a given

functional architecture could be as below: (i) Avigost
solution dictates that the entire application ispldged
within a single processor, accepting the associated
schedulability issues, and consequent performandé p
back. (i) A medium-cost solution that allows fomart
actuators and/or smart sensors to run some of the
functionality in local processors, enabling fasteternal
feedback, and consequent improved system perfornéme
bulk of the functionality still runs in a centralqezessor. (iii)
A high-cost system that calls for separate proagssso
provide monitoring, safety and redundancy functiibies.
By using the advocated approach, each of the demay
could be initiated conveniently from a common fumaal
architecture.

3. ENABLING TECHNOLOGIES

In the previous section we discussed how the system
architecture drives the various activities involved the
embedded software generation process. Several iegabl
technologies are needed to efficiently realizeptaeesses:

Architecture Driven Generation of Distributed Emted Software from

Page 3 of 8

Proceedings of the 2009 Ground Vehicle Systemsrigeeging and Technology Symposium (GVSETS)

Architecture Description Methodology In order to
perform reconciliation between the functional arddware
architectures a first requirement is that we neecldet able to
have standardized descriptions of both the ardhites.
Such an Architecture Description Language (ADL)d®e®
allow specification of several different components
(functional, software, electronics, sensors andi@ots) as
well as the communication between them. Along wite
architectural view that lists the topology of thestem, non-
functional properties of relevance (priority, tinséot for
CAN buses, memory capacity, etc.) need to be spdcitt
the different nodes of the architecture. Therelss a need
for a well defined mechanism to bind the functional
components to the embedded system components stiile
retaining both their properties.

We chose the SAE AADL as the backbone modeling
notation because it has sufficient richness innitéfin to be
a good language for architecture driven developnant
embedded systems. Further the AADL is a tool néutra
language and so facilitates exchange of architectur
descriptions between different tools.

Architecture Driven ModelingWe need an environment
where (i) Architectures are comprehended and (i)
Architecture transformations (from functional atelture to
embedded system architecture) can be achieved. 8unch
environment should allow for linking and managemeht
the relationships between architectures and funatio
models that are developed in state of the art nmgi¢bols
such as Simulink. Such an environment should atewige
support for migration of the functional models tokedded
system models.

In this paper we use the commercial tool IME (Inétgd
Modeling Environment) to evaluate and demonstrite t
approach.

Architecture Driven Embedded Software Creatidie
need technologies that will synthesize the embedded
software corresponding to the functional models] &éme
distributed real-time software components.

For generation of the embedded software correspgrigi
the functional models, many of the native modeltngls
themselves provide this capability. In this papes use
Simulink as the modeling tool.

For generating the real time executive for distiéou
processor system, in this paper, we use Ocarirevatuate
and demonstrate the approach. Ocarina toolsuiteide®
support for code generation from AADL models foe tieal
time executables, with appropriate integration dfe t
software auto-generated from functional models.

These technologies — AADL, IME and Ocarifailitate
the designer to go from high-level modeling downctale
seamlessly, and are described in detail in theoviglig
sections.

3.1. AADL

The Architecture Analysis and Design Language (AADL
was adopted as an SAE (Society of Automotive Eragi)e
standard in the year 2004. The AADL is a tool nalutr
language that can be used to describe the run-time
architecture of the embedded system. Model-basatysis
for schedulability, safety, security, etc. can berfgrmed
using these descriptions [4]. It naturally providles ability
to describe the architecture of both hardware aftvare
components and data along with their variation& wégards
to implementations. AADL components are described a
component types and component implementations.
Component type defines the interface of the compbne
Component implementation inherits the propertiesthaf
component type and describes the sub-components and
connections. There can be different component
implementations for a single component type de€init
leading to variant implementations for the same pomnent.

In our work the following subset of AADL componergge
used.

System — These components can be used to deshebe t
system architecture. They can be used to represent
software or hardware component or a combinatidmogi.

Process - Process components are an abstraction of
software responsible for scheduling and for exaecuti
threads. They execute in their own memory in a gssor.

Thread — Thread components are an abstraction of
software responsible for scheduling and executing- s
programs. Thread execution periods and executiegican
be set as properties.

Sub-programs — Subprograms represent elementacgpie
of code that process inputs to produce outputthdrAADL
only the interfaces are described. The implememnatimust
be provided by the host language. In our work thecfional
models developed in Simulink provide the implemtata

Processors — These components are abstractions of
hardware and software that schedule and executegses.
Each processor will have its own clock which is these
time for all the components running on the processo

Buses — Bus components are used to exchange data
between hardware components.

A complete description of the AADL is provided h¢tg

The functional architecture can be initially debed using
the AADL System components. Ports and connections
define the component interfaces and communicatimce
functional models are associated with the System
components the architecture can be migrated to the
behavioral modeling domain. The System componealts c
later be translated to embedded components coristi
Processor, Process, Thread and Subprogram comgonent

Architecture Driven Generation of Distributed Emted Software from

Page 4 of 8

Proceedings of the 2009 Ground Vehicle Systemsrigeeging and Technology Symposium (GVSETS)

3.2. Integrated Modeling Environment (IME)

IME is a model management and architecture creatiah
analysis tool [6]. As described in Section 2 thestesn
architecture drives the creation of functional msdend
generating distributed software. A visualizatioviesnment
must be provided for the system architecture. Saoh
environment should be able to exchange architecture
descriptions with other tools. Component behaviadets
developed over time are archived in a model repositor
reuse. In order to find the consistent models their
architectural information must be extracted andresto
Intelligent queries to search for certified modetsupled
with consistency checks facilitate selection of glsdOnce
the selections are complete the architecture neéedbe
migrated to the behavioral modeling domain. As whsed
in section 2.2 the functional models must be irdez
seamlessly with the hardware architecture desoripti
During this step the environment must facilitatgiaeers to
define the bindings between functional and embedded
components. The bindings define the allocation of
functional components to the AADL Processes whialsim
be bound to AADL Processors. The AADL Processor
components represent the different ECUs. Onceitldings
are defined the embedded system architecture mest b
generated. From this architecture AADL descriptioresd
to be exported. IME is a tool that can support thi
activities described above. The resulting AADL misdean
then be used in code generation.

3.3. Ocarina
Ocarina [7] is a toolsuite developed by the AADlogp at
Telecom ParisTech. It aims at providing AADL model
manipulation, syntactic/semantic analysis, modehlysis
capabilities (using external tools like Cheddar) [&]r
embedded (e.g. generation of Petri Net models,yaisabf
models using the REAL constraint language). Beside
Ocarina proposes code generation from AADL models t
either C or Ada using the PolyORB-HI family of AADL
runtimes. Code for the runtime, and the code géedra
follow carefully restrictions for the High-Integyitdomains
as mandated by the space, avionics or automotiveaihs.
Targeted RTOS range from bare boards Ada runties; r
time executive like RTEMS or RT-Linux, domain-syfexi
OS like POK for avionics systems [9] or native fuans for
rapid prototyping. Ocarina supports both AADLvl1.Ada
AADLV2.0. Contrary to many MDE tools, Ocarina ralien
its own internal meta-model engine, closer to a pitan
AST. This allows for a wide range of internal optiations,
allowing to process large models quickly.

Ocarina is available under the GPL license and mms
most operating systems (Windows, Mac OS X, Linux).
Releases, examples of application-level models saglies
as well as documentation are available on our AAdoktal

[10]. Ocarina has been successfully tested in thefean
project IST-ASSERT [11], led by the European Space
Agency, and the French R&D project Flex-eWare [1&{

by Thales.

One notable feature of Ocarina is the ability tclude
seamlessly any functional notations as implemeotatif
blocks such as subprograms or threads. InsteaditfigvC
code, the designer may insert a SCADE or Simulink
functional blocks. Then, the Ocarina code generatibr
generate all the required glue code to integrateoGe
generated from Simulink Real-Time workshop or SCADE
kcg C code into AADL runtime code. This suppresaes
tedious and error prone integration work, and aldfhe user
to focus only on the behavior of its system instedd
bothering with low-level implementation details. ih
feature allows for a natural bridge between a Higlel
architecture based tool like IME and simulation ical
hardware, in a distributed setup, using Ocarinaecead
code. We illustrate this in the next section.

4. CASE STUDY

In this section we describe the application of the
architecture driven approach to the Electronic Tileo
Control (ETC) system. ETC replaces a mechanicaiesys
consisting of a linkage between the acceleratoabptxdthe
throttle plate. In the mechanical system the vehagerator
directly regulates the engine airflow by adjustitige
position of the throttle plate via the acceleratedal. At idle
speed conditions, the airflow bypasses the throttée and
is regulated with an Idle Air Control (IAC) valvén the
ETC system the throttle plate is actuated eleatadlyi. The
desired throttle plate position (setpoint) is detieed based
on the pedal position as well as other inputs gperating
conditions. A primary benefit of ETC is it enablegstem
designers to incorporate throttle control into otkehicle
functions, such as cruise control and vehicle Btabi
control. ETC is considered a safety critical systéks a
result a considerable portion of ETC functionalgyn place
for redundancy and safety monitoring. Figure 4 shake
functional architecture of one ETC system as vigadl
within IME. The main components in the architectare the
core controller, actuator, sensors and the plahe ore
controller consists of three important functionssafety
monitor, manager and servo control.

Architecture Driven Generation of Distributed Emted Software from

Page 5 of 8

Proceedings of the 2009 Ground Vehicle Systemsrigeeging and Technology Symposium (GVSETS)

0
Plant plant

Figure 4: ETC Closed Loop System

In this case study we will consider three deploymen
scenarios for the embedded software.

Scenariol — Single ECWe consider the case in which a
supplier is assigned the responsibility of deveigpihe
actuator system. The supplier develops a firstieeref the
actuator based on the specifications from the OHIe
product development cycle requires virtual inteigrabf the
entire system much in advance of the availabilityactual
physical hardware. Therefore the supplier develtips
actuator driver models and the plant models anietsl the
closed loop actuator system model to the OEM. TE&MO
integrates the actuator models into the bigger Ey§&tem
models. The next step for the OEM is to deploy thé
controller components on a single target ECU ineortb
eventually generate the control software.

Scenario2 — Single ECU + Smart ActuatoAs an
alternative to the scenario 1 above, the suppliéero a
technologically advanced actuator in which the elriv
software is tightly integrated with the physicatwstor. In
turn, the OEM can offer superior functionality aomee of its
product lines, without disturbing the basic hardevar
architecture. However, in this case, the actuatdved
software executes on a dedicated ECU. When thelisupp
delivers the actuator driver and plant models ®o@&tM for
integration into the ETC system model, the OEM éthou
ensure that code generation does not include tierdmwith
the main ECU.

Scenario3 — Two ECUs + Smart Actuatdrhe OEM
wants to reuse the same physical system and csntrol
architecture for an advanced defense applicationerev
safety criticality and redundancy are highly ptiiaed. In
order to accommodate this modification the OEM \saiot
deploy the safety monitor component on a sepaaatget
ECU; the core functionality runs on the main ECle t
drivers run on the processor with the actuator.

In all the above scenarios the functional architect
remains the same but the deployment architecture is

different. We now discuss the workflow and tool ichto
support the deployment in the above scenarios.

Figure 5 depicts the steps involved in the genamatf
functional models from the system architecture. $stem
architecture can be developed using AADL authotiogs
such as OSATE (Open Source AADL Tool Environment)
[5] and imported into IME. The model repository cha
mined and consistent functional models can be wsleand
associated with the system architecture. The fanati
Simulink models of the system can then be generfied
further analysis.

OSATE AADL architecture consists of systems only B

ecture

Simulink

Author or Simulate
Behavioral Model
and perform V&V

Figure 5: Generation of functional models consisten
with system architecture.

The next step is to deploy the functional modelstltom
target. Since the functional architecture is déferfrom the
target architecture and also the target architedtudifferent
in the three scenarios considerable re-architecthghe
functional architecture must be done. The workfléov
allocating the functional software components ®ttdrget is
shown in figure 6.

1 EHEORERS] ;
Set Attributes for : " ey
each component e

R e — - % i -

[- F._ &2 P
Set the Processor,
Process and Thread

ﬂ View in different
Perspective

Figure 6: Generation of embedded system architectes
from functional architectures

Architecture Driven Generation of Distributed Emted Software from

Page 6 of 8

Proceedings of the 2009 Ground Vehicle Systemsrigeeging and Technology Symposium (GVSETS)

The functional system architecture can be annotafial
the binding information. The binding informationd#ferent
in the three deployment scenarios. The bindingrimédion
must include the processor, process and threadhichveach
component must execute. Then the embedded aralitsct
are generated from the functional architectureufdg 7, 8
and 9 illustrate the embedded architectures fonasies 1, 2
and 3 respectively. Figure 9 shows the detailecahity of
the embedded system. The embedded system corfsigts o
ECUs — ECU1 and ECU2. A single process executes in
ECU1 which manages a single thread. This threadutes
the monitor component. The connections to the mamtnot
shown in the figure. In all the three target amttiires the
communication between the software components is
maintained as specified in the functional architest

g o— -b[o g <
TT . wom:gionau,pﬂ;j r
Figure 7: lllustrates scenario 1 - Controller and

actuator drivers are executed in a single ECU

Controller
: v
B controller_prs

desired_current
csgm e 2

mise_ggisors

Figure 8: lllustrates scenario 2 — Actuator driver
executes on a dedicated ECU

Figure 9: lllustrates scenario 3 — Monitor componeh
executes in a dedicated ECU. Other controller
components execute in a second ECU.

The next step is the generation of embedded sadtwar
scenarios 1 and 2 the controller components wepéoged
on a single ECU. So the re-architected embedded
architectures can be migrated back to the Simuliotain
which supports code generation for a single ECln |
scenario 3 the controller components are distrib@eong
two ECUs. In order to generate distributed softwasing a
single model the architecture is exported as an BAAD
model. The Ocarina toolsuite can parse the AADL ahod
and extract the execution characteristics of théesided
system. Executables can be generated for each gstoce
Within each process the required threads are ctesltéch
in turn call the subprograms that represent therfates of
the functional components. Simultaneously code ban
generated from the functional models for each carept
The functional components are called from withire th
subprograms. The execution architecture and the
communication among the embedded and functional
components are shown in figure 10. Figure 11 ilaist the
structure of the monitor subprogram and the callthe
monitor functional component. The integrated sofevean
be executed on a real-time system.

Architecture Driven Generation of Distributed Emted Software from

Page 7 of 8

Proceedings of the 2009 Ground Vehicle Systemsrigeeging and Technology Symposium (GVSETS)

EEE N / ECU2

Manitor Functional Component Mariager Functional Gomponent

ﬁ etc_monitor_v1_1.c ; etc_manager_vZ_1.c

bzl ete_monitor_v1_1.h [z} etc_manager_vz_1.h

.’-'é etc_monitor_v1_1_data.c (A etc_manager_v2_1_data.c
f:é etc_monitor_v1_1_private.h I’

ﬁ etc_monitor_v1_1_types.h [%e} etc_manager_v2_1_types.h

honitor Embedded Component Manager Embedded Component

bl b = B m
w 7 @ e w F b e
B b b o)
e h B8
I :

detc_manager_vz_l _private.h

| Generic Middieware (PolyORB_HLC) |

| Generic Middieware (PolyORB_HI_C) |

‘ Operating System ‘ ‘ Operating System

Network

Figure 10: Communication between the monitor and

manager components executing in separate ECUs.

Monitor Subprogram

void etc monitor vi 1 spy

(real trig_etc wonitor_fast,

real tpsl,

real tpsz,

real actual current,

real manager_task cntr,

real servo task ente,

real desired cucrent,

realt vhich faults)

"__ | Interface Generated from AADL Subprograms
(Embedded Component)

et¢_monitor vl 1 U.trig etc monitor fast = trig etc monitor fast;
et¢_nonitor v1 1 U.tpsl = tpsl;

etc wonitor vi 1 U.tpsz = tpsl; Pass inputs to controller
ete_nonitor_vi 3 U.actual current = actusl_curent; | application (Functional
etc_wonitor_vi 1 U.nanager_task cntr = wanager_task catr; ‘Component)

etc_nonitor_vi 1 U.servo_task encr = servo_task cntr;
ete_monitor v1 1 U.desired current = desired current;

Call controller application (functional compohent)

i B SR vydete 4 - — generated from Simulink
#vhich faults = etc monitor vi 1. vhl:h_faulL;L_ Get outputs from Controller Application
} = (functional component) and pass to embedded
component

Figure 11: Structure of a subprogram

5. CONCLUSIONS

In this work we discussed the approaches and $pecif
technologies that enable the generation of didkithu

embedded software from functional models. An aedtitre
driven approach facilitates the reconciliation ofiet
functional and embedded architectures and thedgmation.

The specific tools and technologies also supportutay
development and reuse of software components. These
improve the efficiency of the engineering actistié-urther
studies needs to be performed with regards to gigygahe
embedded software on the target hardware and ireal-t
testing of the system.

REFERENCES

[1] S. Gopalswamy, et.al., “Practical Consideragidor the
Implementation of Model Based Control System
Development Processes”, Proceedings of the Corderen
on Control Applications, 2004.

[2] Simulink is a registered trademark of The Matinks,
www.mathworks.com

[3] SAE. Architecture Analysis & Design Language.@2
(AS5506), September 2008.

[4] B. Lewis, P. Feiler, Multi-Dimensional Model Bed
Engineering for Performance Critical Computer Syste
using the AADL,ERTS 2006Toulouse, France.

[5] The SAE AADL,www.aadl.infa

[6] IME, http://www.emmeskay.com/tools/ime

[7] "OCARINA: An Environment for AADL Models
Analysis and Automatic Code Generation for High
Integrity Applications" Gilles Lasnier, Bechir Zklj
Laurent Pautet, and Jérdme Hugues. Reliable Sadtwar
Technologies'09 - Ada Europe. Brest, France. JOG8 2
pp. 237-250

[8] Cheddarhttp://beru.univ-brest.fr/~singhoff/cheddar

[9] J. Delange, L. Pautet and F. Kordon. Code Gatitar
Strategies for Partitioned Systems. In 29th IEERIRe
Time Systems Symposium (RTSS'08) Work In Progress,
IEEE Computer Society, December 2008.

[10] http://aadl.telecom-paristech.fr .
[11] http://www.assert-project.net
[12] http://www.flex-eware.org

Architecture Driven Generation of Distributed Emted Software from

Page 8 of 8

