
Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Architecture Driven Generation of Distributed Embedded Software from

Page 1 of 8

Architecture Driven Generation of Distributed Embed ded Software from
Functional Models

Gopal Raghav,

Swaminathan Gopalswamy,
Karthikeyan Radhakrishnan

Emmeskay, Inc.
Plymouth, MI

 Julien Delange,
Jérôme Hugues

Telecom ParisTech
Paris, France

{gopalanr, swami, rg-
karthikeyan}@emmeskay.com

 {delange, hugues}@enst.fr

ABSTRACT
Embedded systems are becoming increasingly complex and more distributed. Cost and quality

requirements necessitate reuse of the functional software components for multiple deployment architectures. An
important step is the allocation of software components to hardware. During this process the differences
between the hardware and application software architectures must be reconciled. In this paper we discuss an
architecture driven approach involving model-based techniques to resolve these differences and integrate
hardware and software components. The system architecture serves as the underpinning based on which
distributed real-time components can be generated. Generation of various embedded system architectures using
the same functional architecture is discussed. The approach leverages the following technologies – IME
(Integrated Modeling Environment), the SAE AADL (Architecture Analysis and Design Language), and Ocarina.
The approach is illustrated using the electronic throttle control system as a case study.

1. INTRODUCTION

Embedded systems in ground vehicles are becoming
increasingly complex in the functionality they support.
Safety and security are very critical. Innovative approaches
are needed to develop such systems efficiently without
compromising on quality. A growing trend in development
of complex embedded systems is the use of model-based
development (MBD) techniques. Essentially MBD involves
modeling the behavior of the embedded systems to enable
simulation of the embedded system performance for various
stimuli under various operating conditions. MBD supported
by CAE tools facilitates the design of advanced control
functionality by enabling early V&V before the mechanical
and electronic hardware become available. The current state
of MBD technologies is evolved enough to allow embedded
software to be automatically generated from the functional
models. Such tools and processes facilitate code generation
for a single ECU. In practice however, as the number of
processors and complexity of algorithms keep growing,
there are two critical needs that emerge:

(i) The development framework needs to support modular
development of embedded software promoting re-usability.
Further, we need to support multiple variants in the
implementation of re-usable components. This leads to the
idea of an “architecture” becoming the underpinning
description of a system, with variant management built
around this architecture – Architecture Driven Development

(ADD). These issues have already been addressed in
previous work, e.g. [1]

(ii) The second need is related to the fact that the functional
model of an application often has a very different
architecture from the architecture of the application
embedded software. The functional architecture of the
system corresponds to the optimum architecture required for
control system development, and is concerned with the
functional performance of the physical system being
controlled. On the other hand, the embedded systems
architecture required for any application is concerned with
the number of processors, the different tasks and threads and
their scheduling, etc. We need an approach that explicitly
attempts to resolve such differences.

The focus of this paper is to discuss the second need

above. In particular, this paper discusses an approach to
extending the current technologies to allow generation of
distributed embedded software from functional models,
seamlessly reconciling the differences between functional
architectures and embedded systems architecture.

In addition to the above consideration, a single functional
architecture could often support multiple embedded systems
architectures. For example, there could be technological
advancements in the hardware used in the system, requiring

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Architecture Driven Generation of Distributed Embedded Software from

Page 2 of 8

new hardware architectures even though the functional
architecture does not change.

It is also common to reuse software components between
different vehicles where the functional architecture might
change but the hardware architecture remains the same.

The approach discussed in this paper also addresses such
additional practical issues that are of relevance during the
development of complex and large embedded systems.

Section 2 discusses the architecture driven development

approach for generation of distributed software. Two major
activities are described in this section – (a) development of
functional models consistent with a system architecture and
(b) generation of distributed embedded software. Workflows
to perform these activities are discussed. Section 3 discusses
enabling tools and technologies that are leveraged in this
process. Three major technologies are leveraged in our work
– the SAE AADL (Architecture Analysis and Design
Language), IME (Integrated Modeling Environment) and
Ocarina (AADL toolsuite with code generation facilities).
Section 4 describes a case study using the electronic throttle
control application. Finally in section 5 we summarize our
findings.

2. ARCHITECTURE DRIVEN APPROACH

 The system architecture can be used as the underpinning
using which functional models as well as embedded system
models and software can be generated. The approach
primarily consists of two major activities. First the system
architecture needs to be defined and functional models
(Executable Specifications) be developed that are consistent
with the system architecture. Second the functional models
should be integrated with the hardware architecture and
embedded software generated from the complete system
model.

2.1. Generation of Functional Models
The Generation of Functional Models can be captured

through four key steps in our proposed approach:
(i) Functional Architecture Definition: One of the first

steps is to develop the system architecture. The architecture
is the topology of the system and describes the structural
hierarchy of the subsystems and their interfaces and
connections. Several stakeholders are involved in this step –
control engineers, software engineers and managers. Usually
this step is performed by the OEM based on product goals
and requirements. This architecture can then be used to
communicate the requirements to the suppliers of the
individual components in the system, who could be a
division of the OEM or an outside supplier.

(ii) Organize and Mine Component Functional Models
Repository: A step that happens in tandem with the

architecture is the development of component models. To
enable maximum reuse, modular component models are
developed over time by the organization and collected in a
repository that is accessible to all authorized developers. The
larger the repository of such models the quicker the
development of functional applications. However, it is
important to have the repository well organized and
searchable. In particular, being able to search the repository
based on architectural metadata of the component models
(such as their interfaces, hierarchy, etc) will dramatically
improve the efficiency of application development.

(iii) Associate Component Models to Architecture: Since
we want the application models to be consistent with the
system architecture, we need to identify component models
that fit into the corporate hierarchy. As part of such an
association, the ability to search the model repository for
architectural metadata should be leveraged to verify
architectural consistency. Both structural and interface
consistency must be performed. Additionally constraints
specified in the architecture can be combined with metadata
inserted into the component models to enable guided
searches of the model repository.

(iv) Generate Simulatable Application Models: The final
task is the generation of simulatable application models that
can be used for confirming the functionality of the control
system. As an example, from the system architecture we can
compose models in a simulation domain such as Simulink
[2].

Some of the steps in the generation of functional models
are shown in Figure 1.

Figure 1: Process Steps to Generating (executable)

Application Models from Functional Architecture

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Architecture Driven Generation of Distributed Embedded Software from

Page 3 of 8

2.2. Generation of Distributed Embedded
Software

The generation of Distributed Embedded Software can be
captured in these next steps:

(i) Embedded Systems Architecture Definition: The
embedded system architecture is concerned with the
processors in the system, the information communicated
between them, the processes and threads within each of the
processor, and the scheduling of those processes and threads.
AADL is a powerful mechanism for describing and
communicating such an architecture [3]. Thus the embedded
systems architecture is developed by the stake holders
consisting of the program managers, and the embedded
software and hardware engineering team.

(ii) Reconciliation of Functional Architecture with
Embedded Systems Architecture: It is important to recognize
that the architecture used to generate functional models is
often quite different from the embedded system (hardware)
architecture. What is common between the functional
architecture and the embedded systems architecture is the set
of component functional models associated with either
architecture. Thus, in order to reconcile the functional
architecture with the embedded systems architecture, a key
step is to define the bindings between the component
functional models in the functional architecture and the
nodes of the embedded systems architecture.

When such a binding is done, it is important to ensure that
the functional connectivity between the software
components as specified in the functional architecture is not
broken, while simultaneously the communication
requirements of the embedded systems architecture is
satisfied.

(iii) Generation of Distributed Embedded Software: The
final step in this process is to generate the distributed
embedded software based on the embedded systems
architecture and the associated component models.

Figure 2: Process Steps in generating (Distributed)

Embedded Software for Deployment

This workflow is shown in Figure 2 above. If an automated

process exists to generate the distributed embedded software
from the architecture, then this provides a powerful
methodology to generate different deployment variants of
the distributed embedded system, all starting from the same
functional architecture. The different deployments could
pose different constraints, and these constraints could be
accommodated easily by the appropriate binding between
the embedded architecture and functional architecture. (see
Figure 3 below)

Figure 3: A single Functional Architecture can support

Multiple Deployment Architectures

An example of multiple deployments for a given

functional architecture could be as below: (i) A low-cost
solution dictates that the entire application is deployed
within a single processor, accepting the associated
schedulability issues, and consequent performance pull-
back. (ii) A medium-cost solution that allows for smart
actuators and/or smart sensors to run some of the
functionality in local processors, enabling faster internal
feedback, and consequent improved system performance; the
bulk of the functionality still runs in a central processor. (iii)
A high-cost system that calls for separate processors to
provide monitoring, safety and redundancy functionalities.
By using the advocated approach, each of the deployment
could be initiated conveniently from a common functional
architecture.

3. ENABLING TECHNOLOGIES

In the previous section we discussed how the system

architecture drives the various activities involved in the
embedded software generation process. Several enabling
technologies are needed to efficiently realize the processes:

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Architecture Driven Generation of Distributed Embedded Software from

Page 4 of 8

Architecture Description Methodology: In order to
perform reconciliation between the functional and hardware
architectures a first requirement is that we need to be able to
have standardized descriptions of both the architectures.
Such an Architecture Description Language (ADL) needs to
allow specification of several different components
(functional, software, electronics, sensors and actuators) as
well as the communication between them. Along with the
architectural view that lists the topology of the system, non-
functional properties of relevance (priority, time slot for
CAN buses, memory capacity, etc.) need to be specified at
the different nodes of the architecture. There is also a need
for a well defined mechanism to bind the functional
components to the embedded system components while still
retaining both their properties.

We chose the SAE AADL as the backbone modeling
notation because it has sufficient richness in definition to be
a good language for architecture driven development of
embedded systems. Further the AADL is a tool neutral
language and so facilitates exchange of architecture
descriptions between different tools.

Architecture Driven Modeling: We need an environment
where (i) Architectures are comprehended and (ii)
Architecture transformations (from functional architecture to
embedded system architecture) can be achieved. Such an
environment should allow for linking and management of
the relationships between architectures and functional
models that are developed in state of the art modeling tools
such as Simulink. Such an environment should also provide
support for migration of the functional models to embedded
system models.

In this paper we use the commercial tool IME (Integrated
Modeling Environment) to evaluate and demonstrate the
approach.

Architecture Driven Embedded Software Creation: We
need technologies that will synthesize the embedded
software corresponding to the functional models, and the
distributed real-time software components.

For generation of the embedded software corresponding to
the functional models, many of the native modeling tools
themselves provide this capability. In this paper we use
Simulink as the modeling tool.

For generating the real time executive for distributed
processor system, in this paper, we use Ocarina to evaluate
and demonstrate the approach. Ocarina toolsuite provides
support for code generation from AADL models for the real
time executables, with appropriate integration of the
software auto-generated from functional models.

These technologies – AADL, IME and Ocarina facilitate
the designer to go from high-level modeling down to code
seamlessly, and are described in detail in the following
sections.

3.1. AADL
The Architecture Analysis and Design Language (AADL)

was adopted as an SAE (Society of Automotive Engineers)
standard in the year 2004. The AADL is a tool neutral
language that can be used to describe the run-time
architecture of the embedded system. Model-based analysis
for schedulability, safety, security, etc. can be performed
using these descriptions [4]. It naturally provides the ability
to describe the architecture of both hardware and software
components and data along with their variations with regards
to implementations. AADL components are described as
component types and component implementations.
Component type defines the interface of the component.
Component implementation inherits the properties of the
component type and describes the sub-components and
connections. There can be different component
implementations for a single component type definition
leading to variant implementations for the same component.
In our work the following subset of AADL components are
used.

System – These components can be used to describe the
system architecture. They can be used to represent any
software or hardware component or a combination of both.

Process - Process components are an abstraction of
software responsible for scheduling and for executing
threads. They execute in their own memory in a processor.

Thread – Thread components are an abstraction of
software responsible for scheduling and executing sub-
programs. Thread execution periods and execution times can
be set as properties.

Sub-programs – Subprograms represent elementary pieces
of code that process inputs to produce outputs. In the AADL
only the interfaces are described. The implementations must
be provided by the host language. In our work the functional
models developed in Simulink provide the implementation.

Processors – These components are abstractions of
hardware and software that schedule and execute processes.
Each processor will have its own clock which is the base
time for all the components running on the processor.

Buses – Bus components are used to exchange data
between hardware components.

A complete description of the AADL is provided here [5].
The functional architecture can be initially described using

the AADL System components. Ports and connections
define the component interfaces and communication. Once
functional models are associated with the System
components the architecture can be migrated to the
behavioral modeling domain. The System components can
later be translated to embedded components consisting of
Processor, Process, Thread and Subprogram components.

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Architecture Driven Generation of Distributed Embedded Software from

Page 5 of 8

3.2. Integrated Modeling Environment (IME)
IME is a model management and architecture creation and

analysis tool [6]. As described in Section 2 the system
architecture drives the creation of functional models and
generating distributed software. A visualization environment
must be provided for the system architecture. Such an
environment should be able to exchange architecture
descriptions with other tools. Component behavior models
developed over time are archived in a model repository for
reuse. In order to find the consistent models their
architectural information must be extracted and stored.
Intelligent queries to search for certified models coupled
with consistency checks facilitate selection of models. Once
the selections are complete the architecture needs to be
migrated to the behavioral modeling domain. As discussed
in section 2.2 the functional models must be integrated
seamlessly with the hardware architecture descriptions.
During this step the environment must facilitate engineers to
define the bindings between functional and embedded
components. The bindings define the allocation of
functional components to the AADL Processes which must
be bound to AADL Processors. The AADL Processor
components represent the different ECUs. Once the bindings
are defined the embedded system architecture must be
generated. From this architecture AADL descriptions need
to be exported. IME is a tool that can support all the
activities described above. The resulting AADL models can
then be used in code generation.

3.3. Ocarina

Ocarina [7] is a toolsuite developed by the AADL group at
Telecom ParisTech. It aims at providing AADL model
manipulation, syntactic/semantic analysis, model analysis
capabilities (using external tools like Cheddar [8]) or
embedded (e.g. generation of Petri Net models, analysis of
models using the REAL constraint language). Besides,
Ocarina proposes code generation from AADL models to
either C or Ada using the PolyORB-HI family of AADL
runtimes. Code for the runtime, and the code generated
follow carefully restrictions for the High-Integrity domains
as mandated by the space, avionics or automotive domains.
Targeted RTOS range from bare boards Ada runtime, real-
time executive like RTEMS or RT-Linux, domain-specific
OS like POK for avionics systems [9] or native platforms for
rapid prototyping. Ocarina supports both AADLv1.0 and
AADLv2.0. Contrary to many MDE tools, Ocarina relies on
its own internal meta-model engine, closer to a compiler
AST. This allows for a wide range of internal optimizations,
allowing to process large models quickly.

Ocarina is available under the GPL license and runs on
most operating systems (Windows, Mac OS X, Linux).
Releases, examples of application-level models, case studies
as well as documentation are available on our AADL portal

[10]. Ocarina has been successfully tested in the European
project IST-ASSERT [11], led by the European Space
Agency, and the French R&D project Flex-eWare [12], led
by Thales.

One notable feature of Ocarina is the ability to include
seamlessly any functional notations as implementation of
blocks such as subprograms or threads. Instead of writing C
code, the designer may insert a SCADE or Simulink
functional blocks. Then, the Ocarina code generator will
generate all the required glue code to integrate C code
generated from Simulink Real-Time workshop or SCADE’s
kcg C code into AADL runtime code. This suppresses a
tedious and error prone integration work, and allows the user
to focus only on the behavior of its system instead of
bothering with low-level implementation details. This
feature allows for a natural bridge between a high level
architecture based tool like IME and simulation on real
hardware, in a distributed setup, using Ocarina generated
code. We illustrate this in the next section.

4. CASE STUDY

In this section we describe the application of the
architecture driven approach to the Electronic Throttle
Control (ETC) system. ETC replaces a mechanical system
consisting of a linkage between the accelerator pedal to the
throttle plate. In the mechanical system the vehicle operator
directly regulates the engine airflow by adjusting the
position of the throttle plate via the accelerator pedal. At idle
speed conditions, the airflow bypasses the throttle plate and
is regulated with an Idle Air Control (IAC) valve. In the
ETC system the throttle plate is actuated electronically. The
desired throttle plate position (setpoint) is determined based
on the pedal position as well as other inputs and operating
conditions. A primary benefit of ETC is it enables system
designers to incorporate throttle control into other vehicle
functions, such as cruise control and vehicle stability
control. ETC is considered a safety critical system. As a
result a considerable portion of ETC functionality is in place
for redundancy and safety monitoring. Figure 4 shows the
functional architecture of one ETC system as visualized
within IME. The main components in the architecture are the
core controller, actuator, sensors and the plant. The core
controller consists of three important functions – safety
monitor, manager and servo control.

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Architecture Driven Generation of Distributed Embedded Software from

Page 6 of 8

Figure 4: ETC Closed Loop System

In this case study we will consider three deployment

scenarios for the embedded software.
Scenario1 – Single ECU: We consider the case in which a

supplier is assigned the responsibility of developing the
actuator system. The supplier develops a first version of the
actuator based on the specifications from the OEM. The
product development cycle requires virtual integration of the
entire system much in advance of the availability of actual
physical hardware. Therefore the supplier develops the
actuator driver models and the plant models and delivers the
closed loop actuator system model to the OEM. The OEM
integrates the actuator models into the bigger ETC system
models. The next step for the OEM is to deploy all the
controller components on a single target ECU in order to
eventually generate the control software.

Scenario2 – Single ECU + Smart Actuator: As an
alternative to the scenario 1 above, the supplier offers a
technologically advanced actuator in which the driver
software is tightly integrated with the physical actuator. In
turn, the OEM can offer superior functionality on some of its
product lines, without disturbing the basic hardware
architecture. However, in this case, the actuator driver
software executes on a dedicated ECU. When the supplier
delivers the actuator driver and plant models to the OEM for
integration into the ETC system model, the OEM should
ensure that code generation does not include the drivers with
the main ECU.

Scenario3 – Two ECUs + Smart Actuator: The OEM
wants to reuse the same physical system and controls
architecture for an advanced defense application, where
safety criticality and redundancy are highly prioritized. In
order to accommodate this modification the OEM wants to
deploy the safety monitor component on a separate target
ECU; the core functionality runs on the main ECU; the
drivers run on the processor with the actuator.

In all the above scenarios the functional architecture
remains the same but the deployment architecture is

different. We now discuss the workflow and tool chain to
support the deployment in the above scenarios.

Figure 5 depicts the steps involved in the generation of
functional models from the system architecture. The system
architecture can be developed using AADL authoring tools
such as OSATE (Open Source AADL Tool Environment)
[5] and imported into IME. The model repository can be
mined and consistent functional models can be selected and
associated with the system architecture. The functional
Simulink models of the system can then be generated for
further analysis.

Figure 5: Generation of functional models consistent

with system architecture.

The next step is to deploy the functional models on the

target. Since the functional architecture is different from the
target architecture and also the target architecture is different
in the three scenarios considerable re-architecting of the
functional architecture must be done. The workflow for
allocating the functional software components to the target is
shown in figure 6.

Figure 6: Generation of embedded system architectures

from functional architectures

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Architecture Driven Generation of Distributed Embedded Software from

Page 7 of 8

The functional system architecture can be annotated with
the binding information. The binding information is different
in the three deployment scenarios. The binding information
must include the processor, process and thread in which each
component must execute. Then the embedded architectures
are generated from the functional architecture. Figures 7, 8
and 9 illustrate the embedded architectures for scenarios 1, 2
and 3 respectively. Figure 9 shows the detailed hierarchy of
the embedded system. The embedded system consists of two
ECUs – ECU1 and ECU2. A single process executes in
ECU1 which manages a single thread. This thread executes
the monitor component. The connections to the plant are not
shown in the figure. In all the three target architectures the
communication between the software components is
maintained as specified in the functional architecture.

Figure 7: Illustrates scenario 1 - Controller and

actuator drivers are executed in a single ECU

Figure 8: Illustrates scenario 2 – Actuator driver

executes on a dedicated ECU

Figure 9: Illustrates scenario 3 – Monitor component

executes in a dedicated ECU. Other controller
components execute in a second ECU.

The next step is the generation of embedded software. In

scenarios 1 and 2 the controller components were deployed
on a single ECU. So the re-architected embedded
architectures can be migrated back to the Simulink domain
which supports code generation for a single ECU. In
scenario 3 the controller components are distributed among
two ECUs. In order to generate distributed software using a
single model the architecture is exported as an AADL
model. The Ocarina toolsuite can parse the AADL model
and extract the execution characteristics of the embedded
system. Executables can be generated for each process.
Within each process the required threads are created which
in turn call the subprograms that represent the interfaces of
the functional components. Simultaneously code can be
generated from the functional models for each component.
The functional components are called from within the
subprograms. The execution architecture and the
communication among the embedded and functional
components are shown in figure 10. Figure 11 illustrates the
structure of the monitor subprogram and the call to the
monitor functional component. The integrated software can
be executed on a real-time system.

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Architecture Driven Generation of Distributed Embedded Software from

Page 8 of 8

Figure 10: Communication between the monitor and

manager components executing in separate ECUs.

Figure 11: Structure of a subprogram

5. CONCLUSIONS

In this work we discussed the approaches and specific
technologies that enable the generation of distributed

embedded software from functional models. An architecture
driven approach facilitates the reconciliation of the
functional and embedded architectures and their integration.
The specific tools and technologies also support modular
development and reuse of software components. These
improve the efficiency of the engineering activities. Further
studies needs to be performed with regards to deploying the
embedded software on the target hardware and real-time
testing of the system.

REFERENCES
[1] S. Gopalswamy, et.al., “Practical Considerations for the

Implementation of Model Based Control System
Development Processes”, Proceedings of the Conference
on Control Applications, 2004.

[2] Simulink is a registered trademark of The Mathworks,
www.mathworks.com.

[3] SAE. Architecture Analysis & Design Language v2.0
(AS5506), September 2008.

[4] B. Lewis, P. Feiler, Multi-Dimensional Model Based
Engineering for Performance Critical Computer Systems
using the AADL, ERTS 2006, Toulouse, France.

[5] The SAE AADL, www.aadl.info.

[6] IME, http://www.emmeskay.com/tools/ime.

[7] "OCARINA: An Environment for AADL Models
Analysis and Automatic Code Generation for High
Integrity Applications" Gilles Lasnier, Bechir Zalila,
Laurent Pautet, and Jérôme Hugues. Reliable Software
Technologies'09 - Ada Europe. Brest, France. June 2009
pp. 237-250

[8] Cheddar, http://beru.univ-brest.fr/~singhoff/cheddar

[9] J. Delange, L. Pautet and F. Kordon. Code Generation
Strategies for Partitioned Systems. In 29th IEEE Real-
Time Systems Symposium (RTSS'08) Work In Progress,
IEEE Computer Society, December 2008.

[10] http://aadl.telecom-paristech.fr .

[11] http://www.assert-project.net

[12] http://www.flex-eware.org

