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ABSTRACT 
Building embedded systems is nothing like building desktop applications, as the hard real time 

requirements and relative harshness of the operating environment further constrains design choices to meet real 
world needs.  Those familiar with mainframe or server farm hosted, high volume, wide bandwidth applications 
know similar harsh computing environments for application development.  Given that more man-hours have 
been devoted to web application development over the past decade than have been devoted to embedded 
application development, there may be some valuable lessons to be learned that can be adopted by the embedded 
community for in-vehicle computing.  The best web application development teams successfully apply the notions 
of Representational State Transformation (REST) and Resource Description Framework (RDF) to handle the 
increasing demands on their sites.  We have taken these technologies and applied them to the smaller scale 
vehicle telematics platforms (PowerPC, ARM, and Atom) to test their viability.  This paper describes how we 
approached the design decisions that enabled us to successfully wrap a commercial J1939 CAN bus with a 
miniature web server that provides a REST API for applications to interact with an engine control unit. The 
architecture has been successfully deployed for custom mining and construction equipment. 

 

INTRODUCTION 
Software applications for desktop systems enjoy an 

abundance of resources, such as available memory, disk 
space, processing power, and network bandwidth.  
Embedded and server applications struggle with the issue of 
resource scarcity in contrast to desktop systems.  The 
economics behind the scarcity differ, with the embedded 
systems characterized by low cost, low power devices and 
the server market characterized by high cost, high utilization 
devices.  The scarcity of resources manifests itself in both 
marketplaces and places responsibility for efficient use of 
those resources in the hands of application developers. As 
the expectations of embedded applications have increased, 
we have seen an increase in the importance of application 
integration and distributed communications to support data 
sharing and multi-vendor, multi-programming language 
solutions. 

When attempting to address the application integration and 
distributed communication challenges of embedded systems, 

we focus the search for potential solutions in problem 
domains that share a common respect for the resource 
scarcity found in the embedded computing domain.  The 
idea behind this approach is that it is easier to stay efficient 
than it is to become efficient.  As embedded platform 
processing power, available memory, disk space and 
network bandwidth have increased over time, we find that 
approaches developed for the resource efficient server 
environments over a decade ago are now applicable and 
viable in the embedded domain.  Unfortunately, some 
developers have chosen to use the increased embedded 
platform capabilities to deploy the kinds of applications 
developed for desktop applications.  We have directly 
observed that this approach tends toward failure and should 
be avoided. 

In this paper, we describe an embedded system 
architecture, called Arbor, which adopts successful, proven 
techniques from the World Wide Web application server 
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domain.   This approach readily solves both the multi-
vendor, multi programming language integration problem 
and the distributed communications problem for sharing data 
with peers and remote servers.  We have successfully used 
this system architecture to develop applications that sense 
and control custom mining equipment employing SAE 
J1939 messaging over a Controller Area Network (CAN) 
bus.  We have also used this system to allow third party 
vendors to develop, integrate, and install prognostic and 
diagnostic algorithms that provide advanced, just in time 
maintenance capabilities for military vehicle transmissions. 

ON DISTRIBUTED COMPUTING 
During our research efforts we discovered a paper entitled 

"A Note on Distributed Computing" [1] published in 1994. 
This paper should be required reading for anyone designing, 
implementing, or using distributed software.  It describes the 
flurry around, and ultimate failure of, the distributed systems 
programming models that appear every few years, usually 
linked to new programming languages.  Despite being 
fifteen years old, this paper remains highly relevant today. 

In "A Note on Distributed Computing", Waldo et al make 
the case that objects interacting across a distributed system 
(and network) are fundamentally different from those within 
a single address space.  Designers and implementers must 
explicitly contend with the challenges presented by latency, 
memory access models, concurrency, and the higher 
likelihood of partial failures.  Unfortunately, most attempts 
at building distributed systems failed to adequately support 
the basic requirements of robustness and reliability. 

Based on this paper and our own research and experience 
building commercial systems, we identified the primary 
lessons learned, as they apply to any distributed services 
design: 

• Do not attempt to hide the differences between 
local and remote services 

• Do not provide generic marshaling support, it only 
encourages bad programming habits 

• All calls to remote services should be asynchronous 
• Plan for partial and full failures when talking to 

remote services 
• Encourage, and where possible, force good 

programming habits through careful API design 

ON SYSTEM INTEGRATION PATTERNS 
Integrating a system requires the connection of different 

parts.  These parts often come from multiple vendors.  The 
parts may also be made of multiple materials.  In the case of 
a software systems, the different materials are different 
programming languages and operating systems. 

There are two orthogonal concerns that must be addressed 
when integrating parts of a software system. 

• Call direction, as in determining which part 
initiates the call and which part receives the call 

• Call payload, as in what information is sent with 
the call and how is the information packaged 

There are three popular integration patterns commonly 
adopted in production systems that address the two concerns.  

• A language-to-language binding 
• A publish and subscribe mechanism  
• A data format accessible over a stateless, language 

neutral transport 
We will cover the benefits and drawbacks of each 

approach below, beginning by briefly describing each of the 
three common integration patterns. 
Language to Language Binding 

Language-to-language, as an integration pattern, works 
regardless of the call direction.  Work is performed to allow 
the programming language that is initiating the call to invoke 
a function or subroutine in a second language. The corollary 
requires establishing the mechanism by which the invoked 
language can initiate callbacks into the first language. There 
is always syntactic mapping occurring here, where the 
payload may need to be massaged from its representation in 
one programming language to an equivalent representation 
in another programming language.  There also may be 
semantic mapping occurring, in the cases where concepts 
must be represented differently in the two programming 
languages.  One common place where semantic mapping 
occurs is when mapping between an object oriented 
language and a procedural language.  A concrete example of 
a language-to-language binding is the Java Native Interface, 
which is commonly used to connect Java code to C code. [2] 
Publish and Subscribe Binding 

The publish and subscribe pattern takes a specific position 
on call direction.  Producers push, or publish, information to 
a central broker.  This broker maintains a list of consumers 
who have registered interest in the published messages.  The 
broker then pushes the producer’s publication on to all of the 
registered consumers.  In this integration pattern, consumers 
may register their interest in only certain types of 
publications.  A publisher may publish regardless of how 
many consumers care about the publication.  The format of 
the call payload must be reified, so that the loosely coupled 
producers and consumers can both interpret the data the 
same way.  This removes the semantic mapping burden that 
is present in the language-to-language binding.  However, 
the syntactic mapping remains as a cost to be incurred for 
attaching a particular language to the publish and subscribe 
system. The publish and subscribe pattern is well described 
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by Hohpe and Woolf in Enterprise Integration Patterns [3] 
and Chappell in Enterprise Service Bus [4]. 
Standard Data Format Over a Stateless, Language 
Neutral, Transport Binding 

The standard data format over a stateless, language neutral 
transport pattern takes a specific position on call direction, 
but one that is the inverse of the publish and subscribe 
pattern.  Here, consumers pull information from the 
producers.  This has the benefit of avoiding the need to 
maintain a list of registered consumers.  The stateless 
property of the system allows the network topology to 
change without introducing systemic problems.  Like the 
publish and subscribe binding, the call payload format is 
reified, to reduce the semantic mapping costs.  To reduce the 
syntactic mapping costs, a language neutral transport is used 
for transmission of the call payload.  Typically, a transport is 
chosen which already enjoys full support in a large number 
of programming languages.   The World Wide Web is the 
largest, most successful embodiment on this approach. 
Pattern Evaluation 

  A language-to-language binding is undesirable for many 
reasons. The primary reason being that it is very difficult to 
do well.  This type of integration often introduces memory 
leaks, due to errors that occur when mapping the 
representations of the call payload. Language-to-language 
bindings are inherently brittle and changes to underlying 
shared objects can impact the integration. In the concrete 
domain of condition based maintenance applications, this 
requires work on a (number of sensors) × (number of 
algorithms) basis.  

Moving to the publish and subscribe system helps with a 
few of the issues associated with the language-to-language 
binding. Most importantly, it turns the multiplicative 
complexity into an additive one. Each portion of the system 
only needs to provide integration to the publish and 
subscribe bus. However, depending on how that integration 
is done, it is still susceptible to brittleness. New 
complications are added to a system by using this style of 
integration. Since all intra-system communication is 
happening through the publish and subscribe bus, it can be 
very difficult to debug problems which involve multiple 
messages crossing the bus.  Since events sent over the bus 
are temporal, system wide logic errors can be introduced 
when a subset of the nodes on a bus are disconnected due to 
a network partition.  This would be unusual in a traditional 
enterprise IT shop, but is expected in an ad-hoc mesh-
networking environment.  

In a publish and subscribe system, data producers publish 
or push their information to the central broker.  This broker 
then consults the list of subscribers to that information and 
pushes the information to them.  There are many problems 

with this approach that place fundamental restrictions on a 
systems ability to scale.  One such problem is that all 
interested parties are notified at the rate of production, rather 
than at the rate they are prepared to consume. Another issue 
is that the list of interested consumers that must be 
maintained by the central broker.  The required subscriber 
list maintenance becomes problematic when used in an 
environment where nodes come and go frequently.  There is 
a bootstrapping issue as well, when a node arrives late to a 
bus and has misses an initial set of publications. 

Defining a data format over a stateless, language neutral 
transport provides a better solution than either a language-
to-language binding or a publish and subscribe system. As 
long as the chosen programming languages natively support 
the transport, you can safely avoid the brittleness problem. 
The data format stays consistent, which enables portions of 
the system to be upgraded or patched, without impacting the 
other unchanged portions.  Additionally, since data is pulled 
rather than pushed, we avoid the network connectivity issues 
of the publish and subscribe bus.  The pulling of data also 
avoids the need for centralized registration lists of parties 
interested in a piece of information.  Pulling can occur at any 
time, so the bootstrapping problem is also avoided.   

 
Figure 1: Language & Notification Brittleness 

Our design objective is to create an extensible system that 
can accommodate both legacy and newly developed 
components – in other words, a system that is easily 
extensible, rather than brittle. Figure 1 summarizes the 
qualitative nature of selecting combinations of underlying 
integration technologies.  The conclusion, based on 
experience, is that pull is better than push and language 
neutral is better than language bound.  When combined, the 
choice falls to employing a solution with a standardized data 
format over a language neutral transport.  
 Choosing a Stateless, Language Neutral Transport 

We surveyed the common distributed systems and 
integration patterns in production use and chose the 
approach taken by the most successful large distributed 
system in the world today: the World Wide Web (WWW). 
The HyperText Transfer Protocol (HTTP) [5] was developed 
as the basis of the World Wide Web.  The architectural style, 
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known as REpresentational State Transfer (REST), used to 
design HTTP is described in Dr. Roy Fielding’s PhD thesis 
[6].  We refer to applications adopting this design as being 
RESTful. 

Ubiquitous support in all modern programming languages 
was a considerable factor in choosing HTTP as the language 
neutral transport.  There is wide experience and an array of 
information about HTTP available on the Web and in 
literature.  Practically speaking, that means a large group of 
developers won't need to learn anything new to adopt this 
approach. This helps to lower the overall system cost by 
reducing the training and support burden. This means that 
developers can get up and running quickly.  
CHOOSING A STANDARD DATA MODEL AND FORMAT 

There are many different technologies that can be used to 
describe a data model: Unified Modeling Language (UML) 
[7], eXtensible Markup Language (XML) Schema [8], or 
Resource Description Framework Schema (RDF-S) [9] and 
many others.   

In determining the data model to use, we had one primary 
issue to consider.  Does the data model have an open 
worldview or a closed worldview?  The distinction between 
the two can be most clearly seen when one attempts to 
extend a system beyond the use cases for which it was first 
designed.  In closed worldview systems, new use cases can 
result in significant rework and extremely high cost.  This is 
because the data model must be changed to incorporate the 
new data that the new use cases require.  Existing systems 
must be upgraded or retrofitted to support handling the new 
data model.  By contrast, in an open worldview system, 
additional use cases can be added easily, since the existing 
parts of the system don’t make assumptions about things 
they don’t understand.  A concrete example of the 
philosophical difference between the two approaches can be 
seen in basic Boolean logic.  In a closed world, if a 
statement cannot be proven to be true, then it is assumed to 
be false.  In an open world, if a statement cannot be proven 
to be true, then no assumption can be made about the truth of 
the statement. 

When looking at the data models available, we ended up 
choosing to use RDF-S to describe our data model.  RDF-S 
has an open worldview, in contrast with XML Schema.  
Additionally, RDF-S has multiple data format 
representations and it is possible to make additional formats.  
This provides the flexibility to use one data model with 
different formats in use, depending on the capabilities of a 
specific system.  This also allows us to avoid the 
performance penalty of relying heavily on XML based 
formats on embedded systems, while still making XML 
representations available on enterprise systems. 

There are many different popular data formats in use 
today: XML, RDF-XML, JavaScript Object Notation 
(JSON), Comma Separated Values (CSV) and others.  We 
have defined representations for our data model in RDF-
XML, CSV and JSON.  We have also evaluated the 
possibility of representing our data model in the Common 
Data Format (CDF), which is in wide spread use within the 
agencies of the US Federal Government. 

THE ARBOR DATA MODEL 
The codename ‘Arbor’ is used for our data model and 

system architecture.  As mentioned, we chose to use RDF-S 
to create our data model.  We used a technology known as 
the Web Ontology Language (OWL) [10,11] to represent the 
classes and properties of our data model.  By using OWL 
and restricting ourselves to a specific subset of its 
capabilities (OWL-DL), it is provable that data based on our 
data model can be reasoned about in a deterministic, finite 
amount of time.  This is important for algorithm authors, 
because they need to use probabilistic and automated 
techniques to develop prognostic and diagnostic algorithms 
from vehicle sensor data.  Using a data model that provides 
computational guarantees is a win for algorithm authors.  

The Arbor data model is composed of four OWL Classes 
and several properties.  We cover the classes and the more 
important properties below. 

• Control 
• Datapoint 
• Class 
• Entity 

In the Arbor data model, the unit of recording a sensor 
value, or posting a new value, is the Datapoint, comprised of 
the three atomic pieces of information. 

 Unique Event Timestamp Control Identifier Value  
 
In the CSV format, each event is presented on its own line.  

 
1001, temperature, 85 
 

In the JSON format, each event is presented in its own 
JSON object.  

 
 [{  
  "timestamp":"1001", 
  "control":"temperature", 
  "value":"85" 
 }] 
 

The data presented here are just individuals of the 
Datapoint class.  The Unique Event Timestamp is a property 
on the individual. The Control Identifier is another property 
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and the Value is the third property.  In Arbor, we require that 
the Control Identifier actually be a reference to an existing 
individual of the type Control. The Control individual holds 
all of the critically important information for applications 
dealing with the data.  However, Control properties don't 
vary with each data point, and as such are not stored with 
each event.  In Arbor, we call these properties extra data. 

A Control with the control identifier temperature might 
have the following extra data properties (in CSV format).  
The URL prefixes of the property keys are not shown in this 
example for layout purposes. 

 
uri http://www.bandxi.com/engineTemp 
encoding UTF8 
type float 
name Engine Temperature 
units C 
highWarnThreshold 75 
highErrorThreshold 90 
 
There are two additional parts of the data model. 

• A Class has a unique identifier, which should be a 
URL, and also has a list of Control URI property 
values.  A Class individual states that a 
implementer of that Class type must contain 
controls instances with the same URI values as 
those specified in the Class. 

• Entities list their specific control identifiers and the 
Classes that the entity implements. 

Here is a specific example of a class based on the Control 
already specified. 

Class 
 Identifier = http://www.bandxi.com/example/Foo 
 Uri = http://www.bandxi.com/engineTemp 
 
Entity 
 Identifier = {Vehicle VIN Number} 
 Control = temperature 
 Control = … 
 Class = http://www.bandxi.com/example/Foo 
 

Entities and Classes are used for several purposes.  They 
enable easy synchronization of sensor values between peers 
in mesh networking environments.  They also allow 
programmers to understand the relationships between sensor 
values and to know that if a given entity declares that it 
implements a particular Class, then the URIs defined by that 
class will be available. 

RESTFUL INTERFACE: DEVICE SERVER 
The discussion to this point has centered on the data model 

and data formats.  It is equally important to understand the 
RESTful interface to the data and the available mechanisms 

available to manipulate and query the data.  There is a 
component in Arbor called the Device Server that 
implements this RESTful interface. 

The Device Server is responsible for maintaining history of 
Datapoints, as well as descriptive information on Entities, 
Classes, and Controls.  The Device Server has the following 
capabilities: 

• Create a New Control 
• Read an Existing Control 
• Delete an Existing Control 
• Create a New Entity 
• Read an Existing Entity 
• Delete an Existing Entity 
• Modify an Existing Entity 

o Add a Class Declaration 
o Remove a Class Declaration 
o Add a Control Instance 
o Remove a Control Instance 

• Create a New Class 
• Read an Existing Class 
• Delete an Existing Class 
• Read the latest Control value 
• Read the previous Control value history 
• Write a Control value 
• Lookup all Entities which declare a Class 
• Lookup a control identifier by Control URI 

Local programs make use of these capabilities as well as 
remote peer systems, which can also use these capabilities to 
inspect the state of the system. 

EXAMPLE: CONDITION BASED MAINTENANCE 
It is useful in understanding Arbor to run through an 

example, for instance adoption in the field of Condition 
Based Maintenance.  For simplicity, let’s call logic 
executing on the system an algorithm. Algorithms will need 
to know the input sensors that they require input from in 
order to execute. They will also need to know the output that 
they will be producing and making available to the rest of 
the system. Each algorithm will be able to identify the 
sensors that it requires by their URL. Additionally, it can 
identify its output by a URL as well.  

In order to make use of data from a particular sensor, the 
algorithm must have internalized the properties that it needs 
to run. As a simple example, imagine an algorithm that only 
monitors engine temperature from a J1939 bus.  At 
development time, the algorithm would know about the 
concept of a highWarnThreshold and a highErrorThreshold. 
The algorithm would know that these extra data properties 
are of the type float and may be positive or negative. It 
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would also know that the interpretation of the value is 
dependent on the value of the units property (Celsius or 
Fahrenheit). Since this information is baked into the code of 
the algorithm, it doesn't need to fetch the URLs. It's 
important to leave the properties as URLs, because this 
provides a namespacing capability, which keeps one 
algorithm’s notion of units from colliding with another. The 
verbosity isn't a concern for the extra data information, 
because it only exists once per sensor.  

Once the algorithm has executed, it needs to produce an 
output.  It does this by creating a control and writing its 
output value.  The control is associated with the entity of the 
current vehicle.  Any necessary class declarations can be 
made on the vehicle entity after the control is created. 

When the vehicle is sensed by a peer system, such as a 
scan tool in a motor pool, the scan tool can communicate to 
the HTTP interface and retrieve the sensor values and 
algorithm output values. 

EXAMPLE:  MINING & CONSTRUCTION 
The above described system architecture has been 

employed to build the operator displays for mining and 
construction equipment.  For example, one system monitors 
and controls the engines, auger, and elevators of a salt 
harvester over a J1939 vehicle bus.  A salt harvester operates 
much like a grain combine, as it drives across a salt flat, 
grinding salt off the ground and feeding it onto elevators 
which carry it upward and outward for deposit into large 
dump trucks riding alongside.  The Arbor based salt 
harvester application achieved Technical Readiness Level 
8/9, as it is now operating in the wild on the salt flats. 
Additionally, another system to monitor and control the 
engine, hydraulics, and solenoids of a foundation drill is 
ready for testing and should be fielded soon. 

EMBEDDED PLATFORMS 
At the beginning of the paper, we described the embedded 

platforms as resource constrained. We have successfully 
deployed this system on several ruggedized, low-power 
embedded systems.  Examples of existing systems include: 

• 300 MHz PowerPC, 64Mb RAM, 64Mb ROM, 
running Linux 

• 400 MHz ARM, 32Mb RAM, 32Mb ROM, running 
Windows Mobile 5 

SUMMARY 
 “We are all agreed that your theory is crazy. The question 

that divides us is whether it is crazy enough to have a 
chance of being correct.” 

The above quote is attributed to famous physicist Niels 
Bohr in regard to Wolfgang Pauli’s non-linear field theory of 
elementary particles.  When we first began discussing 

packing a web application server architecture into an 
embedded device, it sounded like crazy talk.  However, 
being good scientists, we decided to run some experiments 
before dismissing it.   After all, our basis for thinking it was 
a crazy idea was no more robust than was our basis for 
conceiving it in the first place!  In the end, taking this 
approach has proven successful and relaxed some of the 
design constraints that had previously challenged us. 
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