

Approved for Public Release, Distribution Unlimited, GDLS approved, Log No. 2010-78, dated 07/13/10

2010 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM
VEHICLE ELECTRONICS & ARCHITECTURE (VEA) MINI-SYMPOSIUM

AUGUST 17-19, 2010 DEARBORN, MICHIGAN

VIRTUALIZATION – THE POWER AND LIMITATIONS FOR MILITARY
EMBEDDED SYSTEMS – A STRUCTURED DECISION APPROACH

Mike Korzenowski

Vehicle Infrastructure Software
General Dynamics Land Systems

Sterling Heights, MI

ABSTRACT
Virtualization is becoming an important technology for military embedded systems. The advantages to

using virtualization start with its ability to facilitate porting to new hardware designs or integrating new
software and applications onto existing platforms. Virtualization is a tool to reuse existing legacy software on
new hardware and to combine new features alongside existing proven software. For embedded systems,
especially critical components of military systems, virtualization techniques must have the ability to meet
performance requirements when running application software in a virtual environment. Together, these needs
define the key factors driving the development of hypervisor products for the embedded market: a desire to
support and preserve legacy code, software that has been field-proven and tested over years of use; and a need
to ensure that real-time performance is not compromised.

Embedded-systems developers need to understand the power and limitations of virtualization. This
paper presents virtualization technologies and its application to embedded systems. With the dominant market of
multi-core processing systems, the need for performing specific hardware/software configuration and usages
with relations to Platform Virtualization is becoming more and more prevalent. This paper will discuss different
architectures, with security being emphasized to overcome challenges, through the use of a structures decision
matrix. This matrix will cover the best suited technology to perform a specific function or use-case for a
particular architecture chosen. The topics of the “Best Suited Technologies” to utilize when considering
Virtualization will cover the following architectures: Virtualization – Hypervisors, Hyper-Threading, Single-
Core CPU Architectures, Multi-core CPU Architectures and Microkernels.

It discusses the possibilities and limitation of plain virtualization approaches in embedded systems.
These relate to the integrated nature of embedded systems with security and reliability requirements.

EXECUTIVE SUMMARY
Virtualization software is allowing systems developers to

reduce hardware assets, or use them more efficiently, by
running multiple “virtual machines” (VM) side by side on
the same hardware, emulating different components of the
systems. [1]

Each virtual machine operates almost as though it were a
discrete physical host. This is achieved with a piece of
software known as a hypervisor. The hypervisor is
responsible for managing memory and Central Processor
Unit (CPU) resources between the running virtual machines
(also known as guest machines), providing a set of virtual
hardware resources (such as display controllers, network
interfaces, storage devices etc.) to guest hosts, and providing

a control/management layer or channel between the system
operator and the guest machines.

Virtualization has now moved beyond mainframes and
servers and has found its way into applications, networks
and storage, among others. [2] Users are beginning to reap a
range of benefits from virtualization which go beyond the
cost savings of hardware consolidation. For example, the
military weapon upgrades, or reset programs which currently
dominate government program allocations, trend toward
reusing existing military platforms, whereas the theme is to
upgrade existing platforms without compromising system
integrity and reuse existing legacy proven code. These
programs are using virtualization to not only cut hardware
costs, but also to recover quickly from systems failures and
maintain weapon systems or vehicle continuity.

Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Virtualization – The Power and Limitations for Military Embedded Systems – A Structured Decision Approach
Approved for Public Release, Distribution Unlimited, GDLS approved, Log No. 2010-78, dated 07/13/10

Page 2 of 13

A specific example is within a Tank Vehicle program with
the US Army; new embedded devices have the capability to
move an entire virtual machine instantaneously from one
device to another and provide separation and isolation for
vehicle security enclaves. Security, isolation or the building
of on and off platform vehicle enclaves is performed through
virtualization partitioning.

Benefits discovered include: hardware consolidation,
reduced power and cooling (green computing), ease of
deployment and administration, high availability and disaster
recovery, migration and adoption of new hardware
architectures, such as multi-core processors, processor
obsolescence, semiconductor advances, etc., leverage/re-use
legacy software code to meet existing safety and security-
critical requirements and isolate GPL-licensed or other open
source code from proprietary code or vehicle components.

Drawbacks of virtualization seem to be that users could
face performance issues, as fewer systems do more work.
Although virtualization technology lets systems operate
fewer devices, it does not make programs run faster. There is
no universal unique solution which may adequately solve
each product’s architectural goals or problems.

Virtualization is a technology which is modular in
architecture, enabling developers to configure a custom
product, specific solution that meets the required product-
specific trade-offs between footprint, performance, isolation
and security. Specific virtualization technology enables the
full isolation of untrusted guest operating systems (OS) in
hardware partitions. A structure decision can be applied
when these factors are exposed and a specific need is applied
across use-cases. The matrix provided within this document
is an example of achieving a “best suited technology” to
meet a specific need providing lowest risk to implement, as
pertaining to virtualization.

INTRODUCTION

In computing, virtualization is a broad term that refers to
the abstraction of computer resources. This paper refers to
Platform Virtualization, which separates an OS from the
underlying platform resources. Some terms which aid in the
discussion and will be defined are; Full Virtualization,
Hardware-assisted Virtualization, Partial Virtualization,
Paravirtualization and Operating System-Level
Virtualization. These technologies have evolved as an
alternative or solution for emulation, and the hypervisor – a
small segment of code designed to share physical resources
between a number of logical virtual machines – is
considered the most efficient way of doing it. [3] The
hypervisor will take contended resources such as interrupt
controllers and network cards, and present a synthetic
version of them to each of the guest operating systems
running in their own virtual machines (VM). A typical
layered block diagram is shown in Figure 1 with the

hypervisor acting as shim or small piece of code managing
or abstracting between hardware and operating system
resources.

Figure 1: The Hypervisor Shim.

APPS

OS

HYPERVISOR

PROCESSOR

Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Virtualization – The Power and Limitations for Military Embedded Systems – A Structured Decision Approach
Approved for Public Release, Distribution Unlimited, GDLS approved, Log No. 2010-78, dated 07/13/10

Page 3 of 13

A basic cook book to perform virtualization consists of;

Intel or Advanced Micro Devices (AMD) Hardware-assisted
Virtualization Technology computer systems with a
processor, chipset, BIOS, Virtual Machine Monitor (VMM)
and for some uses, certain platform software enabled for
virtualization. Functionality, performance, or other, benefit
will vary depending on hardware and software
configurations. Both the Intel or AMD Virtualization
Technology-enabled BIOS and VMM applications together
can be applied to fully take advantage of virtualization
techniques. The different abstraction techniques consist of:
Platform virtualization, which separates an operating system
from the underlying platform resources; Resource
virtualization, which is virtualization or emulation of
specific system resources, such as storage volume, name
spaces, and network resources; and Application
virtualization, the hosting of individual applications on alien
hardware/software. Pertaining to Platform Virtualization
techniques; Paravirtualization is a virtualization technique
that presents a software interface to virtual machines that is
similar but not identical to that of the underlying hardware;
Full virtualization is a virtualization technique which
provides a complete simulation of the underlying hardware
(Emulation). Another technique includes Partial
virtualization, which provides partial simulation of the
underlying hardware. Most, but not all, hardware features
are simulated, yielding virtual machines in which some, but
not all, software can be run without modification. Operating
System-Level virtualization is a method where the kernel of
an operating system allows for multiple isolated use-space
instances of virtual machines, instead of just one. Figure 2
represents the basic architecture of virtualization approach of
partitioning operating environments and applications within
instances of virtual machines managed by a virtual machine
monitor (VMM or hypervisor) on a single hardware
platform.

Virtualization Technology
Intel, with its VT technology, and AMD, with its AMD-V

extensions to the x86 architecture, gave the hypervisor a
privileged status, making it easier for the thin piece of code
to adopt the role of supervisor, interpreting instructions from
the guest operating systems without passing them blindly
through to the processor. This becomes important if, for
example, a guest operating system sends a ring zero-level
command such as ‘HLT’, which would normally instruct the
processor to be idle. In a virtualized environment, the
processor will still probably be working on other tasks, for
other systems, so the hypervisor must make this instruction
local to their guest operating system so that it does not affect
the whole computer. Also chips are now shipping with I/O
support for native virtualization.

HYPERVISOR
A virtual machine monitor (VMM) – Software running

directly on the hardware that primarily functions as a host
for one or more guest operating systems is referred to as a
Hypervisor. It is described in two different types: [4]

Type 1, runs directly on the host’s hardware to control the

hardware and to monitor guest operating systems. This is
also called native or bare metal type.

Type 2, runs within an operating system environment. This

is also called hosted.

A hypervisor will handle interrupts from the operating

system to the CPU, schedule CPU time among the guest
operating systems and allocate cores to virtual machines,
manage devices and allocate memory. Because an operating
system does not speak directly to the CPU, the hypervisor
must act as the intermediary when an operating system has
an interrupt for the processor. When a guest wants to
interrupt the processor, and when the processor has a
response to that interrupt, the hypervisor must manage the
delivery of those messages. Because guest operating systems
compete for processor time, not all guests will be running all

VIRTUAL
MACHINE 1

Guest
OS1

Guest OS 1
Applications

HARDWARE

VIRTUAL MACHINE MONITOR

VIRTUAL
MACHINE 2

VIRTUAL
MACHINE 3

Guest OS 2
Applications

Guest
OS 2

Guest OS 3
Applications

Guest
OS 3

Figure 2: Example Virtualization Partitioning

Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Virtualization – The Power and Limitations for Military Embedded Systems – A Structured Decision Approach
Approved for Public Release, Distribution Unlimited, GDLS approved, Log No. 2010-78, dated 07/13/10

Page 4 of 13

the time. The hypervisor must store the response from an
interrupt until the guest is operational again. The hypervisor
must also coordinate the memory in which all of this takes
place. Because guest operating systems do not know of each
other, they will all assume that they have access to the same
portions of physical memory.

Some disadvantages to using a hypervisor consist of
Hypervisor’s need to be monitored and managed once it is
operating. This can be done with various levels of
sophistication, but the “Holy Grail” is to have virtual
machines started and stopped dynamically according to the
system load or operating needs/requirements. Example of
Hypervisor Manager: (virt-manager) http://virt-manager.org.
Other issues; Increase in execution cycles; Increase code
complexity; size; diminishing returns as number of VM
increase; more points of failure.

ANALYSIS

A paravirtualized system typically performs better than a
fully virtualized system because operations, – disk and
network, have direct access to the hardware. However, it
requires specially modified kernel and the kernel needs to be
available for the OS you install. [5]

A fully virtualized system simulates all the hardware for
the VM, permitting no direct access. It allows for a greater
range of OS’s, but generally will not perform as well as a
paravirtualized system. Also for some hypervisor types, full
virtualization requires hardware support, as well as possible
acceleration support.

Use-cases generally fall into three broad main categories:
[6]

1. Co-existence of different operating-system (OS)

environments on the same platform,

2. Isolating critical components from an untrusted OS

environment,

3. The use of an Indirection level for remote control of OS

environments on deployed systems.

Modularity, isolation and security can be achieved once

developers understand the required architecture need, the
different choices of technology and the best use-case for
applying the technology to a specific computing platform.
Stronger inter-guest operating system isolation may be
required to resist malware that may potentially be injected in
one guest OS to penetrate another guest OS or application.
To this end, virtualization utilizing a hypervisor module can
provide complete isolation architecture between guest OS’s.
Isolation, in itself is not security, but only a prerequisite to
the creation of a secure system.

LIMITATIONS
Within embedded systems design, virtualization efforts

may not be most advantageous and careful consideration is
warranted. Specifically existing software complexity may
propose reliability concerns. Therefore, running legacy code
as an objective, needs to be factored into the requirements.
The highly integrated nature of embedded systems and their
cooperating subsystems bring increase communication
complexity and adding additional operating systems may
prove less deterministic and introduce additional possible
points of failure, thereby decreasing reliability. When
designing a system with virtualization in mind, performance
may actually decrease based on existing serialization or poor
distribution of the software architecture. (i.e. separating
cohesive units of software to isolate into separate processing
entities) Adding too many virtual machines can have
diminishing returns at some saturation level, based on the
hardware specifications. Working through the different
implementation techniques, such as with a structure decision
matrix, should mitigate the risk and provide for better
utilization of virtualization architectures.

MARKETS

The lists below continue to grow, but the market does
contain some limited support and “not everything in the
world has the capability to be virtualized”.

Some vendors offering embedded virtualization solutions:

• Green Hills Software
• LynuxWorks
• Open Kernel Labs
• Real Time Systems GmbH
• SYSGO AG
• TenAsys
• VirtualLogix
• VMware (recently acquired TRANGO Virtual

Processors)
• Wind River Systems

Popular Virtual Machine Software:

• ATL (A MTL Virtual Machine)
• Bochs, portable open source x86 and AMD64

PCs emulator
• CoLinux Open Source Linux inside Windows
• CoWare Virtual Platform
• Denali, uses paravirtualization of x86 for running

paravirtualized PC operating systems.
• eVM Virtualization Platform for Windows by

TenAsys
• FAUmachine
• Hercules emulator, free System/370, ESA/390,

z/Mainframe

Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Virtualization – The Power and Limitations for Military Embedded Systems – A Structured Decision Approach
Approved for Public Release, Distribution Unlimited, GDLS approved, Log No. 2010-78, dated 07/13/10

Page 5 of 13

• KVM
• LilyVM is a lightweight virtual machine An

introduction Logical Domains
• Microsoft Virtual PC and Microsoft Virtual

Server
• OKL4 from Open Kernel Labs
• Oracle VM
• OVPsim is a freely available virtual platform

simulator designed to simulate complex
multiprocessor systems at very high speeds

• Parallels Workstation, provides virtualization of
x86 for running unmodified PC operating systems

• Parallels Desktop for Mac, provides virtualization
of x86 for running virtual machines on Mac OS X
or higher

• QEMU is a simulator based on a virtual machine.
• SheepShaver.
• Simics
• Sun xVM
• SVISTA
• Trango Virtual Processors
• twoOStwo
• User-mode Linux
• VirtualBox
• Virtual Iron (Virtual Iron 3.1)
• VM from IBM
• VMware (ESX Server, Fusion, Virtual Server,

Workstation, Player and ACE)
• vSMP Foundation (From ScaleMP)
• Xen (Opensource)
• IBM POWER SYSTEMS

Hardware with Virtual Machine support:

• Alcatel-Lucent 3B20D/3B21D emulated on
commercial off-the-shelf computers with 3B2OE
or 3B21E system

• AMD-V (formerly code-named Pacifica)
• ARM TrustZone
• Boston Circuits gCore (grid-on-chip) with 16

ARC 750D cores and Time-machine hardware
virtualization module.

• Freescale PowerPC MPC8572 and MPC8641D
• IBM System/370, System/390, and zSeries

mainframes
• Intel VT (formerly code-named Vanderpool)
• Sun Microsystems sun4v (UltraSPARC T1 and

T2) -- utilized by Logical Domains
• HP vPAR and cell based nPAR
• GE Project MAC
• Honeywell Multics systems

• Honeywell 200/2000 systems Liberator
• IBM System/360 Model 145
• RCA Spectra/70 Series
• NAS CPUs emulated IBM and Amdahl machines
• Honeywell Level 6 minicomputers emulated

predecessor 316/516/716 minis
• Xerox Sigma 6 CPUs

Other technologies can be used to accomplish

virtualization use-cases rather than direct implementation of
hardware-assistance from vendors. The next sections will
briefly touch upon these concepts.

Hyper-Threading

Hyper-Threading (HT) is a means for improving processor
performance by supporting the execution of multiple threads
on the same processor at once: the threads share the various
on-chip execution units. You can think of Hyper-Threading
Technology as either a poor man's multiprocessor or a rich
man's uniprocessor. [7] Some level of isolation, resource
utilization can be attained, however mostly attained through
application threads being properly separated or appointed to
working with isolated CPU cores. Developers can take
advantage of it either by multitasking (running a number of
different applications at once) or by multi-threading (having
multiple threads of control within an application).

CHIP ARCHITECTURES

Embedded devices are increasingly based on multi-core
designs. Systems-on-a-chip (SoCs) often contain two or
more processor cores in homogeneous or heterogeneous
combinations, and FPGA-based designs can include a
virtually unlimited number and variety of cores.

Traditional multiprocessing models have been one of two
types. An asymmetric multiprocessing (AMP)-based RTOS
is one approach to utilizing multi-core processors;
symmetric multiprocessing (SMP) is another.

SMP systems are based on homogeneous hardware

designs, where each CPU (or processor core) has identical
capabilities and full access to all I/O devices and RAM in
the system. SMP uses algorithms that perform dynamic load
balancing by allocating software tasks among a number of
identical processors to make maximum use of processor
resources. A single operating system controls all of the
processors. Figure 3 represents the standard SMP
architecture.

Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Virtualization – The Power and Limitations for Military Embedded Systems – A Structured Decision Approach
Approved for Public Release, Distribution Unlimited, GDLS approved, Log No. 2010-78, dated 07/13/10

Page 6 of 13

AMP systems are typically associated with heterogeneous

hardware designs, where each CPU might have different
features and capabilities and may even have dedicated I/O
devices and RAM. AMP can best be described as “loosely-
coupled” (or in some cases, completely uncoupled)
multiprocessing. It performs selective load balancing;
allowing the developer to permanently assign some tasks to
fixed processor resources while allowing others to be load-
balanced among many processors. There may be some
communications among processors to exchange information
and coordinate tasks, but there is no dynamic load balancing.
The task assignment is fixed. Figure 4 represents the
standard AMP architecture.

CPU ARCHITECTURE ANALYSIS

Dual-core and Quad-core machines by hardware
architecture definition are SMP machines. The value of an
SMP system is the ability to maximize the use of system
resources. Having more than one CPU on which to schedule
applications (or processes or threads or...) means less time
waiting for high-priority CPU-intensive applications to
finish. An AMP system is specializing through dedicated
resources, where I/O devices and RAM are only accessible
to a specific core and the applications that run on that core.
This allows applications to assume sole ownership of the
resources, with the benefit of less overhead and higher
performance.

Virtualization through CPU Architecture
 Hardware-virtualization technology, such as the

Virtualization Technology (VT) found in many Intel dual-
core and quad-core embedded processors, can be used for
AMP configuration: to partition the CPU, RAM, and I/O
devices of an SMP machine between multiple virtual
machines. Unlike the server VMM model, the AMP-inspired
embedded VMM requires multi-core processors and needs
an assist from hardware-virtualization technology in the
processor to ensure that each virtual machine has low
interrupt latency, direct access to specialized I/O, and the
assurance that the VMM will not "time slice away" the guest
operating system and its applications.

Engineers contemplating a migration from a single-core to
a multi-core processor must identify where parallelism exists
in their application. The next decision is how to partition the
code over the cores of the device. The two main options are
symmetric-multiprocessor (SMP) mode and asymmetric-
multiprocessor (AMP) mode, previously discussed. [8] In
some cases, combinations of these make sense as well.
There’s just one kernel in SMP mode, and it’s run by all
cores. In AMP mode, each core has its own copy of a kernel,
which could be different (heterogeneous operating systems)
from, or identical (homogenous operating systems) to the
one the other core is executing.

There are several factors that will guide the plan for the
multi-core migration. Factors include the starting point
(design) of the original source code, as well as migration
goals and constraints. Each method has its own strengths.

More operating systems are now providing SMP, including
embedded Real-Time Operating Systems (RTOS), but SMP
requires code to be architected for parallelism to take
advantage of multiple CPUs (parallelized). For situations
where the application(s) is not well suited for parallelization,
AMP and Virtualization could be a more viable solution for
leveraging the extra processing capabilities of multi-core
hardware. The ideal situation is to have SMP and AMP,

CORE 0 …

CORE 1

CORE X

Figure 4: AMP

OS

APPLICATIONS

Figure 3: SMP

APPS

OS

CORE 0

APPS

OS

CORE 1

Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Virtualization – The Power and Limitations for Military Embedded Systems – A Structured Decision Approach
Approved for Public Release, Distribution Unlimited, GDLS approved, Log No. 2010-78, dated 07/13/10

Page 7 of 13

including virtualization, at your disposal. Amdahl’s Law is
in affect - which states that the upper limit on the speed-up
gained by adding additional processors is determined by the
amount of serial code that is contained in the application.

AMP Implementation

AMP requires no application changes to leverage the
benefits of multiple cores. It can leverage multiple cores by
running multiple instances of the OS and application in
separate partitions that are dedicated to specific cores,
Peripheral Component Interconnect (PCI) devices, and
system memory areas. AMP requires a boot loader that
supports AMP (can partition the hardware resources and
make OS/application assignments to the partitions). The OS
must also meet requirements to support AMP such as: The
OS must be relocatable, must be able to restrict its memory
region, and the OS must only operate on it assigned PCI
devices.

Applying AMP to SMP Systems
Assigning resources exclusively to specific cores in an

SMP system is a way to build an AMP system. By
partitioning CPU cores, RAM, and I/O devices between
multiple software systems, applications can gain direct
control over the performance and use of those hardware
resources. Running on a general purpose OS like Linux,
AMP involves the use of interprocessor communication to
combine the efforts of multiple processors, each with its own
local operating system and hardware resources. [9]. AMP
involves less OS overhead for each individual processor and
a more traditional execution environment for applications.

SMP has more inherent code dependencies than AMP
because the cores are more likely to contend for the same
data as they execute similar code. However, AMP has its
own issues with different cores sharing information, using
interprocessor communication (IPC) and requiring
semaphores. Sharing data can lead to data corruption and
other parallel code challenges.

MICROKERNELS

Microkernel or real-time operating system (RTOS) is
software that can serve as a host for one or more guest
operating systems, but also serves as an operating system
itself typically providing key features required by or
desirable to the function of the target system (e.g., real-time
performance, secure partitioning, and small footprint).

Why can't virtualization be performed simply with a
Microkernel? Microkernel-based operating systems stripped
down the privileged kernel part of the software,
extrapolating many functions into separate components that
can then be coordinated by the kernel. This creates a similar
situation to the hypervisor, with a small 'shim' that marshals
communications between these components, and between

the components and the processor. There are significant
differences between the two. Microkernels are not suited to
run meaningful applications, per its experts. Instead, they
must be extended with higher level APIs to run UNIX-like
applications. Hypervisors only know about the virtual
machines and the guest operating systems they are
managing, Microkernels take it upon themselves to handle
tasks, threads, and memory contexts, impinging on the
ground normally occupied by the guest operating system.
Hypervisors are non-intrusive. You don't want to change the
guest operating system. While Microkernels may not make
good virtual machine managers, they are useful in situations
where equipment needs to be nimble and quick to respond.
[10]

SECURITY

For each system, a virtualized environment contains three
extra 'layers' that may be attacked – physical host hardware,
physical host OS and the hypervisor. If any of these are
compromised, then all virtualized guest hosts on the physical
system are compromised; also, as the attacker can then
manipulate all aspects of guest hosts at will. Therefore, the
physical and hypervisor layers should be closely guarded
against unauthorized access.

Aside from attacks via the hypervisor, guest hosts are as
vulnerable to direct attack as they would be as conventional
physical systems. However, once a guest host is
compromised, it is then possible to attack the hypervisor
layer from the guest.

There is an element of communication between the
hypervisor and the guest systems. This is made up of special
communication channels, which allow client tools to
communicate system state back to, or accept instructions
from the management tool for the hypervisor and the
operation of the various virtual hardware devices.

Bugs or back-doors in any of these components could be
used to compromise the hypervisor or other guests running
on the same hypervisor. Several such bugs have been
discovered and demonstrated in existing virtualization
software packages. [11]

Virtualization significantly weakens the security
boundaries between objects in the same virtual domain.
However, each of these issues can be managed with proper
configuration and implementing the best suited technology
for a use-case.

BEST SUITED TECHNOLOGIES FOR USAGE

Knowing there are several techniques and technologies to
accomplish virtualization use-cases, a matrix can be
developed to list a number of usages which relate to a
possible virtualization need. Applying the analysis to items
discovered during research, which are deemed better
performing or more suited to use, one can show the best

Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Virtualization – The Power and Limitations for Military Embedded Systems – A Structured Decision Approach
Approved for Public Release, Distribution Unlimited, GDLS approved, Log No. 2010-78, dated 07/13/10

Page 8 of 13

suited technology for a specific usage. Associated hardware
elements can also be placed within the matrix to show the
processor architecture which can be applied for the usage
and technology.

Listed below, derived from a number of sources and
references, some possible use-cases for virtualization are
shown:

• Virtual machines can be used to consolidate the
workloads of several under-utilized systems to
fewer systems.

• The need to run legacy applications. A legacy
application might simply not run on newer
hardware and/or operating systems.

• Provide secure, isolated sandboxes for running
untrusted applications. Virtualization is an
important concept in building secure computing
platforms.

• Create operating systems, or execution
environments with resource limits.

• Provide the illusion of hardware, or hardware
configuration that you do not have (such as SCSI
devices, multiple processors, ...)

• Simulate networks of independent computers.
• Run multiple operating systems simultaneously:

different versions, or even entirely different
systems.

• Debugging and performance monitoring. You can
put such tools in the virtual machine monitor.

• Isolation for fault and error containment. You can
inject faults proactively into software to study its
subsequent behavior.

• Software migration, thus aiding application and
system mobility.

• Create application suites as appliances by
"packaging" and running each in a virtual
machine.

• Tools for research and academic experiments.
Since they provide isolation, they are safer to
work with. They encapsulate the entire state of a
running system: you can save the state, examine
it, modify it, reload it, and so on. The state also
provides an abstraction of the workload being
run.

• Enable existing operating systems to run on
shared memory multiprocessors.

• Create arbitrary test scenarios.
• Retrofit new features in existing operating

systems without "too much" work.
• Effective means of providing binary

compatibility.
• Co-locating hosts.

Putting together a matrix based on virtualization usage,
technology and processor architecture, applying an analysis
to point out “best suited technology” to utilize for a
particular use-case, a structure decision can be invoked. The
matrix in Figure 5 is an attempt to structure the information
in such a way.

Analysis Resources
Some of the resources used to perform the analysis, i.e. pin

pointing what technique or technology is considered better
or more defined, are listed below. Certain caveats may exist
within the matrix as individual interpretations may propose
opposition or justification for each of the technologies
chosen as best suited for the usage.
Paul Fischer, TenAsys - Asymmetric real-time

multiprocessing on multi-core CPUs. The latest multi-
core processors are ideal for implementing multi-OS
embedded applications. Virtualization technology makes
it possible for a multi-core system to easily support
multiple operating systems on a single computer
platform.

Masaki Gondo, Director of Engineering, eSOL Co., Ltd -
MULT I - C O R E DESIGN Information Quarterly
Volume 5, Number 4, 2007 Blending Asymmetric and
Symmetric Multiprocessing with a Single OS on ARM11
MPCoreM.

Gernot Heiser, OK Labs, Embedded systems virtualization:
Consider a Hypervisor, By Full System Virtualization:
Simulation for the Real-Time Embedded Economy.

Peter S. Magnusson, VIRTUTECH, October 2004, Host
development platforms are now fast enough and
hardware virtualization software is efficient enough to
allow the development of OS and application code to
take place before there is any real hardware–with
advantages in cost and efficiency.

Michael Christofferson, Embedded.com, (11/09/05) Using
an asymmetric multiprocessor model to build hybrid
multicore designs.

Embedded.com (Jun 05 2007) SMP vs. AMP: How
Homogenous Is Your Embedded System?

VMware - White Paper: Best Practices Using VMware
Virtual SMP

Intel Technology Journal Hyper-Threading Technology
Volume 06 Issue 01 Published February 14, 2002 ISSN
1535766X

Todd Brian, Embedded.com - Putting Multicore Processing
in Context: Part 2 Dealing with hardware and OS issues
(03/07/06)

http://www.embedded.com/�

Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Virtualization – The Power and Limitations for Military Embedded Systems – A Structured Decision Approach
Approved for Public Release, Distribution Unlimited, GDLS approved, Log No. 2010-78, dated 07/13/10

Page 9 of 13

Alan Murphy, F5 - White Paper – Technical marketing
Manager, SECURITY1, Virtualization Defined – Eight
Different Ways

MASS
STORAGE

UNIT

Figure 5: Usage-Technology-Architecture Matrix

Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Virtualization – The Power and Limitations for Military Embedded Systems – A Structured Decision Approach
Approved for Public Release, Distribution Unlimited, GDLS approved, Log No. 2010-78, dated 07/13/10

Page 10 of 13

Virtualization Opportunity
A specific example is within a Tank Vehicle program with

the US Army; new embedded devices for vehicle training,
simulation and diagnostic recording have the capability to
move an entire virtual machine instantaneously from one
device to another, and make use of virtual storage,
applications and networking separation and isolation for
vehicle security enclaves. The network is also virtualized, so
the virtual machine performs an isolation of its network and
connections.

Security, isolation or the building of on/off platform
vehicle enclaves is performed through virtualization
partitioning. This will protect the vehicle from outside
unclassified networks and reduce the risk of inside (on-
platform) classified networks or embedded systems

processing classified data from intrusion or safety
depreciation.

Some of the features virtualization can accomplish within
this architecture: Security, OS Separation, Hardware
Separation, Emulation of Resources (Network Interfaces),
Dual-Core Systems (DSU, PMA), and Hardware Emulation.
The goal is to achieve a communication path between
enclaves other than directly through the physical Ethernet
interface reserved for vehicle enclave. Other interests will be
to emulate the hardware Ethernet interface on the Off-
Platform enclave. Figure 6 represents a brief architecture
diagram depicting the concept.

Figure 6: Example Design

Off-
Platform
Enclave

Secret
Domain

Vehicle
Enclave

Ethernet ALN

Mission
Processing Unit

Ethernet

Other
Vehicle
Devices

RSU
 DBMS
 DUAL-CORE

MPU

Graphics
Apps

Vehicle
Apps

 RTOS

Unclassified
Domain

Classified
Domain

Legend:
RSU – Recording Simulation Unit (Embedded Processing System)
PMD – Portable Maintenance Device (Embedded Processing System)
ALN – Army Logistical Networks (wireless)
DBMS – Database Management System
MPU – Mission Processing Unit (Embedded Processing System)
RTOS – Real-Time Operating System

PMD
 DBMS
 DUAL-CORE

Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Virtualization – The Power and Limitations for Military Embedded Systems – A Structured Decision Approach
Approved for Public Release, Distribution Unlimited, GDLS approved, Log No. 2010-78, dated 07/13/10

Page 11 of 13

 STRUCTURED DECISION
The decision to utilize virtualization to accomplish

memory/processor partitioning of DSU and PMD is a design
for providing separation of DBMS and Wi-Fi from vehicle
interfaces. Wi-Fi, DBMS can be isolated and the embedded
devices are virtualization candidates, an opportunity to
exploit the CPU cores for effective processing. The intent is
to limit application and protocols to restricted user space to
reduce risk and increase integrity of vehicle software
infrastructure. Reviewing the Virtualization Opportunity, we
can identify particular elements (objectives) and cross-
associate them to the “Best Suited Technology” matrix.
Once we have identified the usages, the best choice to
achieve the required objectives stands out based on the
column which identifies maximum coverage. Also the CPU
Architecture is considered and identified within the matrix.

The clear choice and the Technology considered “best” to
utilize for the usages identified within the design presented
is to institute Full Virtualization and Multi-core is featured.
Figure 7 represents the cut-out, slice of the matrix
identifying the structure decision.

Implementation utilizing the Full Virtualization techniques

provides for core separation or pinning into virtual hardware
machines running separate Operating Systems to establish
virtual network adapters which provide further isolation
from internal and external vehicle networks. The separation
can be viewed as the security enclaves of the requirement
objective. Figure 8 represents an architecture view of the
separation. (Same ‘Legend’ from Figure 6 applies)

Utilizing other virtualization techniques or technologies
can accomplish the requirements or objectives. However, the
least risk to fully institute an application based on the
identified usages is presented. A structured decision based
on analysis across a broad spectrum of technologies
pertaining to virtualization could be part of the design and
implementation process. Thus, would enable a system
designer to fully deal with inherit risks when delivering
embedded systems utilizing virtualization.

Figure 7: Selection from Usage-Technology-Architecture Matrix

Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Virtualization – The Power and Limitations for Military Embedded Systems – A Structured Decision Approach
Approved for Public Release, Distribution Unlimited, GDLS approved, Log No. 2010-78, dated 07/13/10

Page 12 of 13

Vehicle Enclaves

Ethernet

Ethernet

Vehicle
Apps

RTOS

Other Vehicle Devices

Graphic
 Apps

CORE 2
VM - OS 2

DBMS

CORE 1
VM - OS 1

PMD

Virtual Net 2

Virtual Net 1

Virtual Separation

Figure 8: Isolation utilizing core pinning and network virtualization with Full Operating System separation with Virtual Machines

CORE 1
VM - OS 1

CORE 2
VM - OS 2

DBMS

RSU

Virtual Net 1

Virtual Net 2

Virtual Separation

Off-Platform
Enclave

MPU

Secrete
Enclave

(Classified)

On-Platform
Enclave

Physical Separation
ALN (WI-FI)

Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Virtualization – The Power and Limitations for Military Embedded Systems – A Structured Decision Approach
Approved for Public Release, Distribution Unlimited, GDLS approved, Log No. 2010-78, dated 07/13/10

Page 13 of 13

Conclusion
Embedded project requirements with objectives to

preserve legacy investments, and with new software and
hardware for integration may fit into development
environments pertaining to virtualization. Finding the right
technique without compromising existing solutions for
safety or reliability is a component of knowing the power
and limitations of a unique set of technologies. When
working with a diverse set of use-cases, developing or
categorizing the best suited technology against the choices
can reduce or mitigate the risk to developing solutions as
broad as technologies pertaining to virtualization.

Specifically, Virtualization is a technology which is
modular in architecture enabling developers to configure a
custom product, specific solution that meets the required
product-specific trade-offs between footprint, performance,
isolation, and security. Specific virtualization technology
enables the full isolation of untrusted guest OS in hardware
partitions. The modular architecture of virtualization
technologies allows developers to make explicit trade-offs
between the required level of isolation and the desired level
of performances. A structure decision can be applied when
these factors are exposed and specific needs are applied
across use-cases. The matrix provided within this document
is an example of achieving a best suited technology to utilize
to meet a specific need at the lowest risk to implement, as
pertaining to virtualization.

REFERENCES
[1] Arif Mohamed, “Virtualisation making IT more cost

effective”, ComputerWeekly.com, article 221516, page
1, 2007.

[2] Arif Mohamed, “Virtualisation making IT more cost
effective”, ComputerWeekly.com, article 221516, page
2, 2007.

[3] Danny Bradbury, “Everything you ever wanted to know
about virtualisation”, ComputerWeekly.com, article
234352, page 1, 2009.

[4] IBM Systems, “Virtualization”, release 1, version 2,
page 3, 2005.

[5] VMware, “Understanding Full Virtualization,
Paravirtualization, and Hardware Assist”, whitepaper,
revision: 20070911, item WP-028-PRD-01-01, page 5,
2007.

[6] Gernot Heiser, OK Labs, “Embedded systems
virtualization: Consider a Hypervisor”, 212902574, page
1, 2009.

[7] Intel, “Hyper-Threading Technology: A Programmer’s
Perspective”, page 1, 2003.

[8] Toby Fisher, “Symmetric Multiprocessing Vs.
Asymmetric Processing”, Electronic Design, page 1,
2007.

[9] Toby Fisher, “SMP vs. AMP: How Homogenous Is your
Embedded System?”, Embedded Technologies, page 1,
2007.

[10] Danny Bradbury, “Everything you ever wanted to know
about virtualisation”, ComputerWeekly.com, article
234352, page 1, 2009.

[11] Rosenblum & Garfinkel, “Virtual Machine
Introspection Architecture for Intrusion Detection”,
February 2003.

	ABSTRACT
	EXECUTIVE SUMMARY
	INTRODUCTION
	Virtualization Technology

	HYPERVISOR
	ANALYSIS
	LIMITATIONS
	MARKETS
	Hyper-Threading
	CHIP ARCHITECTURES
	CPU ARCHITECTURE ANALYSIS
	Virtualization through CPU Architecture

	AMP Implementation
	Applying AMP to SMP Systems

	MICROKERNELS
	SECURITY
	BEST SUITED TECHNOLOGIES FOR USAGE
	Analysis Resources
	Virtualization Opportunity

	STRUCTURED DECISION
	Conclusion
	REFERENCES

