
UNCLASSIFIED: Distribution Statement A. Approved for public release

2012 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY

SYMPOSIUM
VEHICLE ELECTRONICS AND ARCHITECTURE (VEA) MINI-SYMPOSIUM

AUGUST 14-16, TROY MICHIGAN

Performance of an Embedded Platform Aggregating and Executing
Core Vehicular Integration for C4ISR/EW Interoperability (VICTORY)

Services

Mark Russell

U.S. Army RDECOM-TARDEC

Contracted by UBT Technologies

Warren, MI

Disclaimer: Reference herein to any specific commercial company, product, process, or service by trade name,

trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation,

or favoring by the United States Government or the Department of the Army (DoA). The opinions of the authors

expressed herein do not necessarily state or reflect those of the United States Government or the DoA, and shall not

be used for advertising or product endorsement purposes.

ABSTRACT

The Vehicular Integration for C4ISR/EW Interoperability (VICTORY) Standard adopts many

protocols that are traditionally used for developing enterprise application software deployed on general-

purpose or server/workstation based computing platforms. This has led to discussions regarding the

suitability of the VICTORY Standard for deployment to embedded and resource-constrained platforms. An

independent software implementation of VICTORY core services was developed within the U.S Army Tank

and Automotive Research, Development and Engineering Center (TARDEC) VICTORY System Integration

Lab (SIL). These services were ported from a general-purpose computing platform to an embedded

environment. Test procedures were developed and extensive performance tests were conducted to determine

the feasibility of operating in this resource-constrained environment. This paper discusses the development

procedures, implementation, test procedures, and performance results.

INTRODUCTION
 The Vehicular Integration for C4ISR/EW

Interoperability (VICTORY) project is an initiative

by the U.S. Army to improve upon current military

ground vehicle electronics architecture. The

VICTORY technical approach includes the use of

shared services with well-defined application

interfaces and protocols to achieve interoperability

and reductions in size, weight, power, and cost

(SWAP-C). A reference implementation of these

VICTORY core services was developed at TARDEC.

The preliminary stages of VICTORY software

development, execution, and testing occurred on

Linux-based workstations, specifically Dell (T3500).

These machines contain an abundance of computing

resources, including open-source libraries,

sophisticated hardware, advanced operating systems

(OS), and generous amounts of power on demand. In

addition, most vehicular ruggedized computing units

consume a lot of SWAP-C. The VICTORY SIL

team researched alternatives to identify a single board

computer that would be capable of running Linux

GCC-based VICTORY service executables. The

selected platform was an ARM-based

development/hobbyist board that is representative of

mainstream commercial hardware. This board, called

the BeagleBoard xM, contains a Texas Instruments

(TI) Cortex A8 32-bit ARM processor running at

1GHz [1]. Additionally, the BeagleBoard xM

provides 4 GB of Package on Package (POP)

SDRAM memory at 200 MHz. There are many

external I/O ports, but of particular interest are the 4

available USB ports, RS-232 Serial port, and a

10/100 Ethernet Interface, which are used to connect

peripherals and sensors, for performance testing and

service functionality. In this paper, we describe the

use of the BeagleBoard xM to execute and evaluate

performance of VICTORY core services which form

the VICTORY Data Bus (VDB).

Proceedings of the 2012 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

UNCLASSIFIED

Performance of an Embedded Platform Aggregating and Executing Core Vehicular Integration for C4ISR/EW

Interoperability (VICTORY) Services

Page 2 of 5

Ethernet Switch

BeagleBoard
Position Service

DOT & Orientation Service
Threat Service
RWS service

Ethernet

IMU

HW 1

E
th

e
rn

e
t

VDB Message Monitor:

Wireshark VDB Plug-In

Position Service Host

DOT & Orientation Hosts
Threat Service Host
RWS Service Host

Ethernet

Ethernet
GPS

Source
(DAGR)

R
S

-2
3

2
-
U

S
B

Threat

Sensor
(Boomerang)
and Simulator

(BoomTools)

U
D

P
/I
P

RWS Data

Interface

E
th

e
rn

e
t

SYSTEM CONFIGURATION & SETUP
 The BeagleBoard xM’s bootable MMC Flash card

was partitioned to run a 32-bit ARM-tailored version

of the Ubuntu 11 Linux OS. VICTORY executables

were developed in C++ on an x86_64 running Red

Hat Enterprise Linux (RHEL), and were cross-

compiled for 32-bit ARM target on the host. The

tool chain used is the GNU/GCC-based cross-

compiler called Code-Sourcery. Specifically, the

system under test is TARDEC’s VICTORY v1.0

implementation [2]. The system provides VICTORY

core services and defines that they shall consume

various sensor data. The BeagleBoard is responsible

for configuring and reading from the various external

sensors. In our current system configuration, one

VICTORY service reads data from a Global

Positioning System (GPS) device attached via RS-

232, and another VICTORY service reads data from

an RJ45 Ethernet-based Inertial Navigation Sensor

(INS) connected on the network. A third VICTORY

service subscribes to VICTORY Position and

Orientation Data Messages and calculates Direction-

of-Travel. Furthermore, the BeagleBoard is

implemented as an adapter between additional

sensors and interfaces, such as an acoustic shot

sensor, and a remote weapon station. Figure 1 below

graphically depicts the high-level overview of the

system:

Figure 1: BeagleBoard System Overview

 VICTORY requires that each service has a data

interface for publishing data and management

interface for monitoring and controlling the service

[2]. First, the service must provide an interface to its

service data; it accomplishes this by publishing its’

data to an IGMP multicast group. Interested

subscribers are required to join the multicast group

and bind to the respective port to receive the data.

The advantage of this methodology is that data is

being transmitted only to the nodes who wish to

listen/subscribe. VICTORY requires that each data

message be encapsulated using a VICTORY-

specified XML schema; they are known as

VICTORY Data Messages (VDM), and are being

served over the VDB.

 Next, a management interface to the service is

mandated. The VICTORY 1.0 Specification requires

that each service shall have the capabilities to be

managed by an alternate software technology. The

technology that is required is by means of web-

service based remote procedure calls (RPC). These

management capabilities, or features, control many

aspects of the service, including simpler functions

such as enabling/disabling data transmissions, to

more complex methods of rerouting the data via

alternate transport locations. Additionally,

management functions can also query a subset of the

data that are published. For example, the Position

Service is capable of publishing/serving a vehicular

position point (latitude, longitude, and altitude) by

both multicast UDP (data) and web-service based

remote procedure calls (management). These

management operations are facilitated by Simple

Object Access Protocol (SOAP) technologies, and are

specifically implemented with an open-source

software development toolkit, called gSOAP [3].

The gSOAP toolkit creates web servers and clients

that bind XML data types in WSDLs and XSDs

to/from C and C++ data types. The data binding

provides a type-safe and transparent solution through

the use of compiler technologies that optimize the

resulting code and ensures precise serialization. The

VICTORY service is capable of functioning as a web

server that provides a transport layer with an HTTP

stack on top of TCP/IP. TARDEC has developed

both the gSOAP web-service management server and

web-service client to facilitate management

operations (gets and sets) of the service.

SYSTEM PERFORMANCE BENCHMARKS
 The goal of the experiment was to test and collect

data illustrating the efficiency of the system under

load. First, statistics were measured on the

VICTORY Position service executed on the

BeagleBoard; the service was configured to read the

GPS via an RS232 connection. Using precise kernel

timing methods, the following statistics were

obtained: CPU utilization per second, average CPU

utilization per hour, and minimum and maximum

CPU Utilization. Examined were the units of work

(clock cycles) the CPU performed on the process

during a one second interval; this measurement is

known as a Jiffie [4]. The current process’ Jiffie(s)

are compared to the entire amount of the CPU’s

Jiffies in the elapsed second, and a percentage is

Proceedings of the 2012 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

UNCLASSIFIED

Performance of an Embedded Platform Aggregating and Executing Core Vehicular Integration for C4ISR/EW

Interoperability (VICTORY) Services

Page 3 of 5

calculated. The average memory usage per hour was

calculated, as well as average time required to

construct as well as transmit a VICTORY data

message. The results of these tests are shown below:

1. Average CPU Utilization: 1.053%

2. Average Memory Consumption: 0.772%

3. Average System Jiffies: 0.666

4. Minimum CPU Utilization: 0%

5. Maximum CPU Utilization: 3.061%

6. XML Build Time Average: 713132.49 ns

7. Message Transmit Time Average: 953089.1 ns

Second, there were two additional services under

test, the Orientation Service and Direction of Travel

Service. Both of these services were either as or

more efficient than the Position service described

above. Running all three service processes in

parallel monopolized at maximum 3-4% of the CPU

at any one time as displayed in Figure 2 below:

Figure 2: Percent CPU Utilization (%) vs. Time (Secs)

 Third, the external sensors that produce

synchronous data points will be removed from the

system, and will be replaced by simple “synthetic”

data. Specifically, this data will be a hard-coded

value and will be used to illustrate the overhead the

VICTORY-compliant sensors levy on the system.

Results from this test are shown in Table 1 below:

Device Service

Average

CPU

Utilization

Average

Process

Jiffies

GPS

Sensor
Position 1.053% .666

Synthetic

GPS Data
Position .375% .388

INS Sensor Orientation .433% .665

Synthetic

INS Data
Orientation .395% .388

Obtained

via Position
& Orientation

Data

Direction
of Travel

.531% .659

Synthetic

Direction of
Travel Data

Direction

of Travel
.404% .388

Table 1: Average CPU Utilization

The new average CPU utilization measurements for

the services are: 0.375%, 0.395%, and 0.404% for

Position, Orientation, and Direction of Travel

Services respectively. When compared with actual

obtained sensor data, the only service with a

noticeable difference is the Position Service (1.053%

versus 0.375%). Thus, when running VICTORY

services that consume sensor data, it is found that

each sensor accounts for 64.3%, 8.7%, and 23.9% of

the process execution, respectively for each service.

Running at 4800 Baud, the receive, process, and

transmit states for the serial GPS device are the

largest bottleneck in terms of system performance.

The average number of system Jiffies did appear to

remain constant between all services. Consequently,

this would mean that the processes shared similar

execution and sleep states; implying that the core of

the services do approximately the same amount of

work. The only variability would be the amount of

time the process was using for I/O and sensor related

computations.

PERFORMANCE OF WEB-SERVICE-BASED
SERVICE MANAGEMENT
 The goal of this experiment was to measure the

overhead on the BeagleBoard by exercising its web-

service interfaces. In this scenario, the example

described above in the service management

description was again utilized. The Position Service

was executed with synthetic position data, thereby

factoring out the overhead associated with I/O to

external sensors. The test was started by running the

Position Service and was connected to the

corresponding Position Management Client. To

determine how well the web-server technologies

Proceedings of the 2012 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

UNCLASSIFIED

Performance of an Embedded Platform Aggregating and Executing Core Vehicular Integration for C4ISR/EW

Interoperability (VICTORY) Services

Page 4 of 5

perform under heavy utilization, the Position

Management Client was utilized to request vehicle

position data at increasing frequencies. As a

precursor, the time it takes for the client to request

and receive a data point is 5 milliseconds. This

duration was calculated using timers provided by the

Linux real time clock in time.h. Table 2 illustrates the

load the service is placed under at various RPC

frequencies, and illustrates the fidelity at which the

data was sent/received:

Frequency % Average

CPU

Utilization

of dropped

Ethernet packets

1 Hz .54 0

10 Hz 2.77 0

100 Hz 25.22 0

200 Hz 49.14 0

Table 2: Service Performance to Client Loads

Finally, the limits of the Position Service web

server were tested. Realistically, there are not many

systems where a client needs to obtain data at such

high frequencies; however, it is still valuable to

understand the limits of the system. After increasing

the frequency of the data request, it was found that

the client could make RPCs to the service application

at a maximum rate of 200 Hertz; simply because it

takes the client .005 seconds to request/receive a

position data point. Consequently, for this single

client and server test, the server was unable to be

exercised at frequencies higher than 200 Hertz. It is

also noteworthy that the OS statistics did not record a

single dropped Ethernet packet. This implies that the

gSOAP client/server implementation is a very

reliable transportation model. In addition, this test

suggests that the VDB provides high-availability,

which may help mitigate some of the concerns

regarding the fidelity of the VDB request/response

model.

POWER CONSUMPTION
 The BeagleBoard’s 5 Volt power supply was

attached to a non-invasive current probe which

connected to a digital oscilloscope. The oscilloscope

captured the current draw of the system in its basic

running state, which includes the following: the

Ubuntu OS executing a 2.6 Linux kernel, running a

stripped-down X-windows GUI that was being driven

to an LCD display, and having no user applications

executing. This state shall be referred to as the

system having VICTORY services/applications at

rest. It shall be used as a baseline and is a benchmark

for future tests. Recording the power measurements

in this state illustrates that a stable 0.62 Amps were

being drawn, implying a 3.10 Watts accordingly.

 The amount of additional power consumption was

almost negligible after starting the core VICTORY

services / processes. The average current grew to

only 0.02 Amps to 0.64, while power consumption

rose merely 0.1 Watts to 3.2. Viewing a small

snapshot in time while running the services, Figure

3Error! Reference source not found. and Figure 4

below depict the current draw as measured on the

BeagleBoard:

Figure 3: Current Draw(Amps)- VICTORY

Services at Rest

Figure 4: Current Draw(Amps) with VICTORY

Services in Operation

Therefore, the electrical draw on the system incurs

a very small usage on the overall system when

running the services.

Proceedings of the 2012 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

UNCLASSIFIED

Performance of an Embedded Platform Aggregating and Executing Core Vehicular Integration for C4ISR/EW

Interoperability (VICTORY) Services

Page 5 of 5

As a comparison, the same tests were performed on

our development workstations, which are Dell

Workstation PCs running 6-cores. The same tests

were executed while running the same VICTORY

services; this resulted in an observed 0.85 Amps

RMS. This consequently computes to a total average

power consumption of 72.12 Watts. Thus, the

magnitude of 72.12 Watts versus the 3.15 Watts

measured on the BeagleBoard represents a savings of

68.97 Watts, and is 95.6% more efficiently to run the

very same services!

CONCLUSION
 Running multiple VICTORY-based services on the

ARM-powered BeagleBoard demonstrated power

savings, efficient execution, and VICTORY-service

functionality. For a small, light-weight, low-powered

system, it performed well beyond expectations. The

most demanding experiments that were performed

showed little overhead on the system. In summary,

executing multiple VICTORY data services, and

reading multiple VICTORY-compliant sensors at the

same time resulted in the following performance

measurements for the system:

 0.64 Amps / 3.15 Watts Power Consumption at

run-time.

 Roughly 0.77% System Memory Utilization per

Service

 1.05%, 0.433%., 0.531% average CPU

utilization for Position, Direction of Travel, and

Orientation Services, respectively.

 Less than 1.7 milliseconds processing time

(Building and Publishing Full Featured

VICTORY XML Messages).

 A delta of 68.97 Watts between workstation and

BeagleBoard, which is 95.6% more efficient.

Therefore, it is proven that boards based on this

type of architecture are an excellent candidate for

running VICTORY services while providing

significant reductions in SWAP-C for the VICTORY

1.0 project.

REFERENCES

[1] BeagleBoard-xM Rev C System Reference

Revision 1.0, BeagleBoard.org, 2010.

http://beagleboard.org/static/BBxMSRM_latest.pdf

[2] Vehicular Integration for C4ISR/EW

Interoperability (VICTORY) Standard Specifications

Version 1.0, VICTORY Standards Support Office,

2011.

[3] Van Engelen, Robert, gSOAP 2.8.9 User Guide,

Genivia Inc., 2012.

http://www.cs.fsu.edu/~engelen/soapdoc2.html
[4] Kerrisk, Michael, The Linux Programming

Interface, No Starch Press, San Francisco, 2010

http://beagleboard.org/static/BBxMSRM_latest.pdf

