
2013 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM
VEHICLE ELECTRONICS AND ARCHITECTURE (VEA) MINI-SYMPOSIUM

AUGUST 21-22, 2013 - TROY, MICHIGAN

BEYOND VICTORY – CLOUD COMPUTING IN MILITARY VEHICLES

Mr. David Jedynak
Chief Technical Officer, COTS Solutions

Curtiss-Wright Controls Defense Solutions
Austin, TX

ABSTRACT

This paper will define a number of levels of abstracted cloud computing for vehicles. First, the

transition from current architectures of dedicated hardware to basic dedicated virtualization of processes with

hardware defined networks will be detailed using Commercial-of-the-Shelf (COTS) hardware and operating

systems available now. Second, the transition to cloud-based processes with hardware defined networks will be

detailed using the same hardware baseline. Third, the transition to software defined networks will be shown

using the same hardware baseline. Once this new baseline of cloud based processing is detailed on existing

hardware, the diffusion of the cloud onto an increased number of more SWaP-C optimized processing elements

(specifically, ARM) will be shown. Each level of abstraction will be rated with a number of figures of merit and

correlation to vehicle metrics / capabilities. A clear roadmap towards implementation will be shown, with

defined phases to adapt and mature technologies to implement cloud computing in military vehicles.

INTRODUCTION
Use of dedicated computing and network assets in the

enterprise is rapidly giving way to cloud-based architectures,

leveraging multiple methods for virtualization of computing

systems and distribution of computational tasks across

physical assets. Recent advances in Software Defined

Networking further enable the use of cloud architectures by

abstracting the logical network from the physical network.

The cloud approach gives enterprise data centers a number

of advantages with regard to reliability, commonality, cost,

power, scalability, and flexibility of the computing

infrastructure over dedicated hardware approaches.

Like commercial vehicles, military ground vehicles utilize

a number of processors and various internetworking

standards to link and coordinate various control and operator

systems. Unlike commercial vehicles, military vehicles of

all types (ground, air, sea, manned, & unmanned) are rapidly

becoming small scale mobile datacenters, overburdening the

vehicle’s constrained SWaP-C budget with sophisticated

computing requirements. Multiple computational and

internetworking systems are used to provide a myriad of

mission and platform capabilities for the warfighter. Until

recently, however, those systems remained completely

separate and lacked any sort of interoperability. The US

Army’s VICTORY Architecture provides the important

primary step of defining the network level interoperability

between these various system, allowing the sharing and

integration of data as well as initial steps towards the sharing

of hardware assets. Nevertheless, most current C4ISR/EW

systems still utilize dedicated hardware assets for processing

with tightly defined network architectures.

Over the past several years, Curtiss-Wright performed

research into network centric approaches specifically for

Heavy Brigade Combat Team (HBCT) Vehicle Electronics.

That research contained investigation into various cloud /

process sharing architectures. Coupled with Curtiss-

Wright’s expertise in multiprocessor High Performance

Embedded Computing (HPEC) for processing intensive

ISR/EW applications, this paper will describe the next steps

beyond VICTORY to create cloud-computing architecture

for vehicles.

This paper will define appropriate Figures of Merit and

how those correlate to vehicle metrics and capabilities.

These will then be used in both the discussion of various

levels of abstractions, and summarized in a set of tables.

FIGURES OF MERIT
To fully understand the benefits of abstraction to cloud

computing, a number of figures of merit appropriate to the

approach are presented below, with quick explanations.

These will be applied to the various levels of abstraction as

described later on in this paper.

Proceedings of the 2013 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Beyond VICTORY – Cloud Computing in Military Vehicles, D. Jedynak.

Page 2 of 9

Overall Cloud Processing Capability
This is simply the sum of all the processing capability of

all the processors in the defined cloud. It can be measured

any particular way, such as FLOPS, MIPS, or as a

normalized dimensionless performance benchmark against a

known processor. To stay focused on the relative merits of

cloud abstraction versus the particular capabilities of a

current generation of processor technology, the normalized

approach will be used in this paper.

For example, a system containing three processors of

performance levels 0.5, 1.0, and 1.25 would have a total

cloud capacity of 0.5 + 1.0 + 1.25 = 2.75.

Useable / Unusable Capacity
Just because a processor has a particular performance

capacity doesn’t mean all of it is useable. A processor

which is able to run only a single process will have

essentially a useable capacity equal to the demands of that

single process. For example, if a single-task processor has a

process running on it that utilizes 25% of the processor, then

the useable capacity is 25% and the unusable capacity is

75%. If, on the other hand, a processor is able to run

multiple tasks, and is able to do that with only 5% required

to manage the scheduling of the multiple tasks, then the

processor’s useable capacity is 95%.

This can be applied to Overall Cloud Processing Capacity

(OCPC). Taking the example above, if the third processor

(1.25) is single-task only with a task consuming 20% and the

other two processors are multi-task with a scheduling

overhead of 5%, then the Useable Overall Cloud Processing

Capability is:

(0.5 * 95%) + (1.0 * 95%) + (1.25 * 20%) =

0.475 + 0.95 + 0.25 = 1.675

Attention is drawn to the Usable Capacity of the third

processor specifically to demonstrate that significant raw

processing capability can be unusable, and in fact contribute

less than a lower capability processor to the Overall Cloud

Processing Capability.

Network Overprovisioning Overhead
Rather than in the commonly used context of bandwidth

allocation for Quality-of-Service needs, Network

Overprovisioning here is used in the context of additional

links and infrastructure equipment in order to meet a

particular performance goal. The figure here is counted in

an overhead of additional network ports, with the normal

assumption that a single processing element would require a

single port attached to it. Anything more is considered

overprovisioning overhead, and adds additional ports, often

in pairs (one at the processing element, and another at an

infrastructure device, such as a switch).

For example, a normally provisioned processor has a

network requirement of 2 ports (processor and switch). A

processor overprovisioned for redundancy has a network

requirement of 4 ports (2 processor and 2 switch). The

overprovisioning overhead is therefore the excess, a total of

4 minus the base of requirement of 2, equaling 2.

Failure Criticality / Cloud Resilience
Failure analysis is a deep and well-studied subject. Rather

than apply a deep and formal Failure Modes, Effects, and

Criticality Analysis (FMECA) to this discussion, two simple

high level metrics are introduced, Failure Criticality and

Cloud Resilience.

Failure Criticality is measured in three levels:

 Function Lost – the essential function of the thing is

no longer available

 Function Maintained – the essential function of the

thing is available at normal performance levels

 Function Degraded – the essential function of the

thing is available but at a degraded performance

level

Cloud Resilience is a similar, related concept, and provides

the measure of the cloud to survive a number of physical

failures. It is described as follows:

 No Resilience – any single failure means the cloud

suffers a Function Lost

 X Redundancies Resilience – a set of X failures in

redundancies means the cloud suffers a Function

Lost

 Limited Process Resilience – the cloud can

experience failures but suffers at most a Function

Degraded

 Full Resilience – the cloud can experience failures

but those result in Function Maintained

It is implied that a maximum number of tolerable failures

is provided in the Limited Process Resilience and Full

Resilience cases.

Total Cost of Ownership (TCO)
This is a standard metric, usually expressed in monetary

values. For this discussion, similar to processing capability,

it is expressed in a normalized qualitative value against the

TCO for a single component (processor or infrastructure).

At a high level, it is broken into three major portions:

 Non-recurring Acquisition Cost

 Recurring Unit Cost

 Sustainment Cost (included Training)

Proceedings of the 2013 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Beyond VICTORY – Cloud Computing in Military Vehicles, D. Jedynak.

Page 3 of 9

Total Cost of Ownership will be used in the context of the

total system comprising the cloud.

Supportability / Maintainability / Reliability
These are standard terms for acquisition; however in this

context, the key focus is on qualitative metrics (High /

Medium / Low).

APPROACH TO VEHICLE METRICS
The various figures of merit are correlated to the key

vehicle metrics of:

 Size, Weight, and Power and Cooling (SWaP-C)

 Survivability (as it pertains to C4ISR/EW)

 Degradation (as it pertains to C4ISR/EW)

SWaP-C is largely dependent on physical number and type

of components. The efficiency of use of those components

(e.g. Useable Capacity, Network Overprovisioning

Overhead, etc.) is an area to examine to reduce SWaP-C

waste.

Survivability and Degradation are closely coupled to

Cloud Resilience and Failure Criticality. The overall

Survivability of a vehicle’s C4ISR/EW systems depends on

the Cloud Resilience. Similarly, the Degradation of the

vehicle’s C4ISR/EW systems depends on individual

function Failure Criticality.

In that context, the core concept of “move / shoot /

communicate” for a vehicle is discussed, driving to a logical

and reasoned connection between vehicle level cloud

computing and essential vehicle capabilities.

LEVEL 0 – FUNCTIONAL ENCAPSULATION
The decoupling of systems from proprietary and legacy

interfaces is the fundamental layer of abstraction, upon

which everything else grows. Proprietary interfaces may

still exist in deeper levels of design, but are encapsulated via

standard interfaces. VICTORY provides that Level 0

abstraction by ensuring that functions (either as a physical

component or a virtual service), are formally encapsulated

with open standard interfaces on a networked databus.

With full implementation at this level, the function itself is

no longer intertwined with the specific implementation of

hardware and software tasks (sub-functions) used to achieve

the function. This is not to say that the performance of the

function is not dependent on the specific hardware and

software to implement the function, as the quality,

optimization, and capability of the implementation has a

direct correlation with the performance of the function itself.

For example, a Position Function is fundamentally a

location and accuracy, coupled with a refresh rate

(timeliness and availability). A surveyor and his tools of the

trade can provide highly accurate information, but not with a

very high rate of refresh. A cellular device with

understanding of local tower locations can give a high rate

of refresh, but with a poor level of accuracy compared to the

surveyor, or a more advanced system, such as GPS.

Nevertheless, if all these systems provide their fundamental

data in a standardized format, other functions can use this

information at will, regardless of the underlying

technologies used to gather the information. With full

disclosure of the quality of the information, the overall

performance of the system in meeting its required

capabilities can be assessed, optimized, and accommodated.

In this fashion, a box is drawn around the function, and the

box is painted black. This is VICTORY today, as shown in

Figure 1, depicting Functions A-D attached to the

VICTORY Databus (VDB).

Figure 1: Level 0 – Functional Encapsulation

LEVEL 1 – APPLICATION ABSTRACTION
With Level 0 abstraction, basic components and services

(functions) are now black boxes. The internal

implementation is no longer relevant for its own sake, and is

only important as it pertains to the quality of the function.

Consider again the example of position information. A

black box function provides position with a given quality

using a standardized interface. For an application (such as

moving map) to utilize the function, it must have access to

the standardized interfaces. Without Level 0 abstraction, an

application would be highly intertwined with the particular

proprietary interfaces to the function. With functional

encapsulation, the application only has a strong dependency

on the standardized interfaces, and relies heavily on the

presence of those interfaces in its operating environment.

Application abstraction comes about by ensuring that all

applications are created to solely rely on the standard

interfaces, disallowing the use of a proprietary interface to

both functions and its local operating environment. At this

point, significant concern can arise in that application

Proceedings of the 2013 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Beyond VICTORY – Cloud Computing in Military Vehicles, D. Jedynak.

Page 4 of 9

developers may urgently cite multiple operating

environment dependencies which are thought to be essential

to the application’s performance. This is a valid concern

when viewed in the context of “external functions” (e.g.

position function) and “local capabilities” (e.g. hardware

accelerated graphics for mapping graphics); however,

reframing the graphics capability instead to an encapsulated

function, with a standard set of interfaces (e.g. OpenGL),

preserves the model of application abstraction from the local

operating environment.

The System level capability of “show my current location

on a moving map” becomes decomposed into an application

which joins a position with a map, receiving position from a

position function and providing output to a graphics function

that simply renders graphical elements per the desired

graphical design (e.g. a blue icon with accuracy circle

layered on a satellite photograph).

The critical step here is that the application no longer

needs to run on a particular processor associated with the

particular non-standard I/O of a function’s inner-workings.

The application solely needs to run on an open standard

networked host which ensures network connectivity to the

application’s required functions, as shown in Figure 2.

Figure 2: Level 1 – Application Abstraction

A host processor with a standard operating environment

which provides access to the networked databus is the

fundamental requirement for the application to run. A

standard Commercial-of-the-Shelf (COTS) hardware host

running a standard operating system (e.g. Linux) can provide

this basic environment.

When multiple applications are involved, the simplistic

approach is to deploy additional hosts, one for each

application, in a single-task manner, as shown in Figure 3.

Figure 3: Single-task application hosting

Unless the host processor capabilities are exactly sized to

the application processing requirements, this approach

results in significant unusable capacity. For example, if the

applications each require 50% of the host processor, and the

host processors have processor capabilities of 1.0, then the

Overall Cloud Processing Capacity is 2.0, but the Useable

Overall Cloud Processing Capacity is (1.0 * 50%) + (1.0 *

50%) = 1.0. From a SWaP-C perspective, half is wasted on

unusable capacity. Other similar figures of merit have a

level of waste as well, such as TCO and the various logistic

metrics.

Since applications are abstracted at the operating

environment level, various methods of virtualizing the

operating environment can be employed, ranging from basic

task scheduling (multi-tasking) in a shared environment, to

virtual machines (e.g. Java), to virtualized guest hosts. The

particular method is not of concern in this discussion, but the

end result is critical – multiple applications reside upon a

single host processor (see Figure 4), making better use of the

SWaP-C, reducing TCO, supportability, and maintainability.

Negatively, however, reliability can be seen as dropping,

directly affecting the survivability of a vehicle since a single

host failure results in multiple Functions Lost.

Figure 4: Multi-task application hosting

An important aspect of this is that the particular network

connection from the databus to the host is well defined, and

Proceedings of the 2013 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Beyond VICTORY – Cloud Computing in Military Vehicles, D. Jedynak.

Page 5 of 9

static (hardware defined). Reliability can be increased by

overprovisioning, through the use of additional network

ports from the host to the databus, but the fundamental

topology of the databus (application on host connected at

defined ports) does not change.

Simply progressing to this level of abstraction is an

important step, but fails to realize the true benefits of cloud

based computing concepts, as overall survivability is

decreased since multiple Functions Lost can occur with a

number of single failures (host failure, switch failure, cable

failure). For this reason, pressing forward to the next level

of abstraction is critical.

LEVEL 2 – HOST ABSTRACTION
An important aspect of cloud computing is abstracting the

hosts of applications in such a way that the particular

physical host is no longer relevant. All that matters is that

there are hosts which create a cloud in which applications

can run, as shown in Figure 5.

Figure 5: Level 2 – Host Abstraction (Host Cloud)

This approach immediately provides both benefits and

drawbacks versus Level 1. The very nature of a cloud with

multiple hosts capable of running multiple applications

means that the redundancy starts to build into the system, as

it’s possible that a single host failure could result in Function

Maintained, or at least Function Degraded. Now that a

cloud exists, a level or Resilience starts to grow, at minimum

X Redundancies Resilience based on the number of hosts in

the cloud and the Overall Cloud Processing Capability

versus the applications’ processing requirements.

The immediate drawback is also clear: SWaP-C has gone

back up from a multi-task host in a Level 1 approach.

However, a subtle alteration to TCO occurs – it is possible

that the multiple hosts are common part numbers, resulting

in a better TCO than dissimilar single-task hosts. This is

largely due to reduced acquisition and sustainment costs

(single part), and secondarily due to increased volumes

leading to reduced recurring costs.

From a vehicle standpoint, survivability increases, since

the cloud allows for applications to run in any available host

capacity within the cloud, and for the first time, a managed

and graceful degradation is possible via prioritization of

applications within the cloud (e.g. prioritize communications

function over vetronics if that is the commander’s intent)

Nevertheless, a major weakness is still apparent in the host

abstraction – the network databus. The physical connection

to hosts is a single point failure. The Network

Overprovisioning Overhead involved in adding a secondary,

overlapping databus, with multiple connections to each host

and the various functions is not insignificant, resulting

increased port counts, switch counts, and network

management efforts, as shown in Figure 6. In this case, the

Network Overprovisioning Overhead is 6 additional ports

(assuming a single function for the example), 3 additional

cables, and 1 additional VDB infrastructure switch. Taken

as a whole, this is a doubling of network items.

Figure 6: Redundant Network for Host Cloud

Nevertheless, two faults, one on each redundant databus

(in broken yellow), could degrade the cloud such that a

Function Lost occurs, as shown in Figure 7. The cloud loses

half of its capacity from the view of either of the two

redundant networks despite the fact that both hosts in the

cloud are still functioning.

Figure 7: Broken Redundant Network

Proceedings of the 2013 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Beyond VICTORY – Cloud Computing in Military Vehicles, D. Jedynak.

Page 6 of 9

Ultimately, the hardware-based network becomes a

limitation to the potential of abstracted hosts, and demands a

further level of abstraction, involving the network itself.

LEVEL 3 – NETWORK ABSTRACTION
With the advent of more capable processors, able to

process network traffic in software at rates previously

needing purpose-built network hardware, software defined

networking (SDN) becomes possible. Similar to the

abstraction of hosts into a cloud, at its core, SDN abstracts a

group of physical network switches into a single network

switch fabric, which appears essentially as one giant switch,

with software driven logical topology. Without SDN, the

simple modification to the Broken Redundant Network in

Figure 7 of connecting the two databuses together would

require significant careful network management to ensure

that the network remained converged and coherent. Each

switch would need to be individually managed to carefully

update the topology to return the cloud to a fully connected

state. With SDN, the network is seen as one manageable

entity, by a central management application, which itself can

reside in the host cloud, as shown in Figure 8 (still showing

the two broken network paths).

Figure 8: Level 3 – Network Abstraction

The key to this level of abstraction is that the system itself

becomes extremely flexible and resilient since any network

topology and any application / host allocation can be

performed, and can be managed dynamically. It is this very

concept that results in a highly survivable system which can

be managed through graceful degradation while driving the

Useable Cloud Processing Capacity as high as possible.

Information Assurance Considerations
The very nature of cloud computing and software defined

networking is complete control and encapsulation of data

and processes. Despite the mix of processes and data on a

common set of network and processing hosts, separation of

enclaves is, by its very nature, absolutely critical to the

proper function of a cloud. The underlying cloud

technology will need assessment and concerns addressed,

after which it should be a common platform for multi-

enclave systems.

Real-time Ethernet concerns
As discussed in the previous paper “Open Standard

Approach for Real-time Control over Ethernet” (D.

Jedynak), the real-time performance of applications on the

cloud can be addressed using common shared clocks and

well-defined multi-task scheduling / virtualization.

END STATE – DIFFUSION
Given both host and network abstraction, an interesting

and useful phenomenon can occur – diffusion of the entire

system into all available computing assets.

Revisiting highly federated pre-VICTORY systems, each

has its own dedicated single-task processing systems and no

real interconnection between functions. The Overall Cloud

Processing Capacity was high, but with very low useable

capacity. Failure Criticality was often high (Lost), and

there was no Cloud Resilience at all, as shown in Figure 9.

Figure 9: Pre-VICTORY Federated system

When considering a fully implemented VICTORY system

implementation, including VICTORY interfaces on all

systems, regardless of how insignificant (e.g. a 28VDC

power distribution unit), it becomes immediately apparent

that the very hosts required to provide VICTORY interfaces

can immediately join a cloud through the use of open

standard cloud management software. Through multiple

network interface ports on the host processors, standalone

SDN-capable switches are rapidly augmented with SDN on

the individual multi-port hosts in each of the various

functions. The end state is that the very concept of

centralized host processors for applications evaporates into a

Proceedings of the 2013 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Beyond VICTORY – Cloud Computing in Military Vehicles, D. Jedynak.

Page 7 of 9

diffuse SDN-connected processing cloud across all of the

various functions installed in the system, as shown in Figure

10.

Figure 10: End State – Diffusion

What becomes even more interesting is the realization that

the diffusion of the cloud means that previously unusable

capacity is now available to what was previously

overburdened capacity in other systems. For instance, a

modest ARM processor in a power controller could now

provide critical processing capability to a sensor or software

defined radio application which is currently driving up

significant SWaP-C, TCO, and other negative metrics (e.g.

poor reliability due to excessive thermal).

In order for this to happen, the next step is to understand

the system as one large task, which is then distributed across

its cloud automatically. This sort of task management is

common in the “Big Data” applications.

HADOOP AND AN ARMY OF ARMS
“Big Data” involves the massively complex processing of

data which is generally unmanageable (too big) by common

discrete tools. The fundamental approach to Big Data is to

Map the task out to a very large number of sub-tasks, then

Reduce the results of the sub-tasks to easily useable /

actionable / presentable information. This complex

approach is fully implemented in the Open Source High-

availability distributed object-oriented platform (HADOOP).

It reduces complex tasks into small chunks which can be run

on numerous modest commodity hardware hosts, including a

distributed file system, and even handles lost processing

nodes.

Embedding low cost and SWaP-C optimized ARM

processors supporting HADOOP on a vehicle would provide

a Fully Resilient Cloud for operating the vehicle and its

C4ISR/EW needs.

The effect of this is dramatic. SWaP-C would be

significantly more optimized because the untapped

processing capability of extremely low cost processors

would be available to even the most sophisticated algorithms

needing to run on the vehicle. The resilient nature of the

cloud would mean that failures due to damage would be

fully mitigated or gracefully degraded per the current

priorities of “move / shoot / communicate”, resulting in a

higher level of overall vehicle survivability. The processor

technology aspect of TCO could be largely sidestepped since

the intent is to use modest processors with standard

interfaces, embracing a COTS model significantly more than

in current federated systems.

METRIC SUMMARIES
The following tables include summaries of the various

levels and approaches.

Table 1: Pre-VICTORY Federated

Metric Value

Overall Cloud Processing

Capability

Sum of subsystem

processors

Useable Capacity Sum of subsystem processes

Network Overprovisioning

Overhead

None (no network)

Failure Criticality Per subsystem, Function

Lost

Cloud Resilience None

TCO Sum of subsystems

Supportability /

Maintainability / Reliability

Per subsystem

SWaP-C Sum of subsystems

Survivability Independent systems

Degradation Per subsystem

Proceedings of the 2013 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Beyond VICTORY – Cloud Computing in Military Vehicles, D. Jedynak.

Page 8 of 9

Table 2: Level 0 – Functional Encapsulation

Metric Value

Overall Cloud Processing

Capability

Sum of subsystem

processors

Useable Capacity Sum of subsystem processes

Network Overprovisioning

Overhead

None (single network)

Failure Criticality Per subsystem, Function

Lost

Cloud Resilience None

TCO Sum of subsystems

Supportability /

Maintainability / Reliability

Per subsystem, with some

increase in supportability

due to open standards for

interfacing

SWaP-C Sum of subsystems

Survivability Independent systems

Degradation Per subsystem

Table 3: Level 1 – Application Abstraction (reduced hosts)

Metric Value

Overall Cloud Processing

Capability

Sum of host processors

Useable Capacity OCPC – multi-task overhead

Network Overprovisioning

Overhead

Negative (reduced

connections)

Failure Criticality Multiple Function Lost

possible

Cloud Resilience None (single fault)

TCO Reduced Acquisition and

Sustainment

Supportability /

Maintainability / Reliability

Higher Supportability and

Maintainability due to

merged hosts, lower

reliability (single point)

SWaP-C Lower (merged)

Survivability Lower (single point)

Degradation Allows some management

Table 4: Level 2 – Host Abstraction Cloud (no redundant network)

Metric Value

Overall Cloud Processing

Capability

Sum of cloud processors

Useable Capacity OCPC – multi-task overhead

Network Overprovisioning

Overhead

None

Failure Criticality Potential for Function

Maintained and Function

Degraded. Single points still

possible

Cloud Resilience Limited Process Resilience

TCO Potential for reductions

(commonality)

Supportability /

Maintainability / Reliability

Potentials for improvement

in Sustainability and

Maintainability with

commonality, higher

Reliability

SWaP-C Sum of hosts and network

Survivability Higher due to resilience

Degradation Allows significant

management

Table 5: Level 2 – Host Abstraction Cloud (redundant network)

Metric Value

Overall Cloud Processing

Capability

Sum of cloud processors

Useable Capacity OCPC – multi-task overhead

Network Overprovisioning

Overhead

Equal to original network

Failure Criticality Potential for Function

Maintained and Function

Degraded. Single points still

possible

Cloud Resilience Limited Process Resilience

TCO Potential for reductions

(commonality)

Supportability /

Maintainability / Reliability

Potentials for improvement

in Sustainability and

Maintainability with

commonality, higher

Reliability with network

redundancy

SWaP-C Sum of hosts plus double

network

Survivability Higher due to resilience

Degradation Allows significant

management

Proceedings of the 2013 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Beyond VICTORY – Cloud Computing in Military Vehicles, D. Jedynak.

Page 9 of 9

Table 6: Level 2 – Network Abstraction

Metric Value

Overall Cloud Processing

Capability

Sum of cloud processors

Useable Capacity OCPC – multi-task overhead

Network Overprovisioning

Overhead

Ranges based on network

reliability required (single,

dual, multiple, or mesh

connected)

Failure Criticality Potential for Function

Maintained and Function

Degraded. Single points at

edge functions only

Cloud Resilience Full Resilience

TCO Potential for reductions

(commonality)

Supportability /

Maintainability / Reliability

Potentials for improvement

in Sustainability and

Maintainability with

commonality, higher

Reliability with full

resilience

SWaP-C Sum of hosts plus network

Survivability Higher due to resilience

Degradation Allows significant

management

Table 7: Level 2 – Diffusion

Metric Value

Overall Cloud Processing

Capability

Sum of cloud processors

Useable Capacity OCPC – multi-task overhead

Network Overprovisioning

Overhead

Ranges based on network

reliability required (single,

dual, multiple, or mesh

connected)

Failure Criticality Potential for Function

Maintained and Function

Degraded. Single points at

edge functions only

Cloud Resilience Full Resilience

TCO Potential for reductions

(commonality)

Supportability /

Maintainability / Reliability

Potentials for improvement

in Sustainability and

Maintainability with

commonality, higher

Reliability with full

resilience

SWaP-C Blended back into edge

functions (big reduction)

Survivability Higher due to resilience

Degradation Allows significant

management

ROADMAP FORWARD
Rather than attempting to move from Level 0 (VICTORY)

through Levels 1, 2, and 3, the better roadmap is to force

diffusion immediately by requiring that all new systems

support the common cloud environment (e.g. HADOOP) on

any processing elements. Mission Computing assets should

be the first target, along with small microprocessor systems

using ARM or other highly optimized processors in edge-

functions. This greedy approach will immediately free up a

significant amount of unusable processing capacity for use

in over-capacity systems, leading to a first round of load

balancing.

The next major step is to create the unified task model of

the vehicle, showing it as one large “Bit Data” style process,

which can be simulated and deployed on the actual system,

fully integrated and proven.

CONCLUSION
The next steps beyond VICTORY lead to a formidable

level of SWaP-C optimization and survivability for Military

Vehicles. With a holistic vehicle task view, cloud

computing concepts can be used to great benefit in a creating

more capable, survivable, and supportable vehicle.

