
2014 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM
VEHICLE ELECTRONICS AND ARCHITECTURE (VEA) TECHNICAL SESSION

AUGUST 12-14, 2014 – NOVI, MICHIGAN

SOFTWARE SAFETY AND SECURITY BEST PRACTICES: A CASE STUDY
FROM AEROSPACE

Paul Skentzos

DornerWorks, Ltd.
Grand Rapids, MI

ABSTRACT

Software safety and security flaws are costly. Defects found in software systems after
they are deployed have always been costly to fix. However, the importance placed on software
developed today as a key technology for functionality and control of hardware results in even
higher costs when defects and errors cause loss of materiel, and in some cases, personnel.
Serious safety and security flaws have ramifications that often go beyond tangible dollar
amounts or data mishap issues, such as trustworthiness. Safety has always been a major focus
for the aviation community, where engineers follow strict practices that adhere to Federal
Aviation Administration (FAA) guidelines. Security is a more recent concern. We have found
that processes used for safety can often be applied to security.

In this paper we describe the aviation community’s DO-178 processes for safety and
how they might be tailored to the land vehicle community. We will use the development of our
hypervisor as a case study of how we built a system using best practices for both safety and
security processes.

INTRODUCTION

As customers demand more features in smaller,
lighter, and cheaper systems, engineers have
started replacing federated systems, or separate
computing devices for individual features, with
integrated systems running on a common
computing platform. The result is increased
complexity in order to achieve lower size, weight,
and power (SWaP) in integrated systems.
Engineers are writing and modifying more
software than ever before and with that come
increased risks of failure relating to safety and
security. One need not search long to find
examples of safety related failures. More recent
examples highlight the risks to a company’s
reputation and, potentially, bottom line [1].

Security of systems has only recently started
making headlines as various components now
have the capability to be connected to the internet
and other external devices. Two examples
highlight the potential danger. In 2013, a security
researcher demonstrated how one could remotely
attack and take full control of an aircraft [2]. Then
in 2014, Defense Advanced Research Projects
Agency (DARPA) funded researchers showed
how they could easily take complete control of
practically any automobile and disrupt the
steering, braking, and other critical functionality
[3]. Both of these cases highlight that failures in
security could result in catastrophic failures of
safety.

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Software Safety and security Best Practices: A Case Study From Aerospace

Page 2 of 9

This paper will describe security and some of the
processes the government looks for in a secure
system, but will be limited here to showing how
following guidelines for safety can lead to a more
secured system. We will briefly discuss aviation
safety in the context of DO-178. We will discuss
the automotive safety specification, ISO 26262, as
a representative example of how DO-178 easily
maps to other safety specifications. Finally, all of
this will be looked at in the context of the
development of the ARINC 653 Real-Time Linux
on Xen (ARLX) hypervisor developed by
DornerWorks using established DO-178 safety
guidelines.

A BRIEF HISTORY OF SECURITY

 Ensuring security has become more complex
with large, inter-connected systems. Common
security considerations include ensuring that
unsecured and secured data remain properly
separated, and keeping personnel information
from unauthorized access. The Department of
Defense (DoD), the National Institute of Standards
and Technology (NIST), and the National Security
Agency (NSA) created the Trusted Computer
System Evaluation Criteria (TCSEC) that
eventually became a part of Common Criteria
(CC).

COMMON CRITERIA
The Common Criteria consists of a set of

requirements that when followed, provides some
assurance that the implementation of the computer
security product has been conducted in a rigorous
and repeatable manner at a level necessary for the
target of use. Specifically, information assurance
(IA) products can be certified in accordance with
the Common Criteria. In the United States, the
National Information Assurance Partnership
(NIAP) performs Common Criteria evaluations.

The CC is used as the baseline for all
government security certifications. Independent
testing laboratories conduct the testing and
provide certification. The CC certification does
not guarantee security, but it does ensure that what

the organization says about the security attributes
of the system is true. This philosophy can be seen
in DO-178 safety certifications that will be
discussed later.

SEPARATION KERNEL PROTECTION PROFILE
Any system that is certified under the Common

Criteria must conform to a Security Target (ST)
that may be compliant with a Protection Profile
(PP). The US Government has a Protection Profile
for Separation Kernels in Environments Requiring
High Robustness. This is often referred too as the
Separation Kernel Protection Profile or SKPP. The
SKPP is intended to isolate and separate partitions
and control information flow between different
security domains. The SKPP must prove that there
are no channels for information flow between
domains other than data flow that is explicitly
defined.

It is interesting to note that conformance to the
SKPP does not ensure a secured product. “…
conformance to this protection profile, by itself,
does not offer sufficient confidence that national
security information is appropriately protected in
the context of a larger system in which the
conformant product is integrated.” [4]

In light of this and other issues such as the high
cost of certification and increased complexity of
systems, the NSA has deprecated the SKPP [5].
While the NSA is no longer supporting
certification of the SKPP, they continue to support
the sound design for security-critical systems.

FORMAL METHODS
Formal Methods use mathematical logic to

model and verify requirements of computing
systems. Formal methods is required as part of the
common criteria certification for Evaluation
Assurance Level (EAL) of six (6) or higher. There
are seven levels of EAL and are described in the
table below.

EAL Definition Explanation
1 Functionally Applicable to

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Software Safety and security Best Practices: A Case Study From Aerospace

Page 3 of 9

Tested systems where
threats to
security are not
viewed as
serious

2 Structurally
tested

Requires a low
to moderate
level of
independently
assured
security

3 Methodically
tested and
checked

Requires a
moderate level
of
independently
assured
security and
thorough
investigation
of TOE

4 Methodically
designed,
tested, and
reviewed

Applicable
when moderate
to high level of
independently
assured
security is
required

5 Semi-formally
designed and
tested

Applicable
where a high
level of
independently
assured
security in a
planned
development
and a rigorous
development
approach is
needed

6 Semiformal
verified design
and tested

Applicable to
the
development
of security

TOEs for
application in
high risk
situations.

7 Formally
verified design
and tested

 Applicable to
TOEs with
tightly focused
security
functionality
that is
amenable to
extensive
formal analysis

Table 1: EAL Levels

As one might image the costs for increased

levels of EAL increase with the associated level of
complexity and completeness required for the
classifications. The picture below shows the cost
range depending on the level or EAL certification.

Figure 1:EAL Certification Costs [6]

Formal methods are very good at addressing

security requirements, specifically requirements of
the “shall not” type. “shall not” requirements are
difficult in general because it is impossible to
thoroughly test a negative requirement. The safety
world has traditionally focused on testing to prove
adequacy. Therefore, where safety concerns itself
with “shall” requirements, security and formal
methods concerns itself with “shall not”
requirements.

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Software Safety and security Best Practices: A Case Study From Aerospace

Page 4 of 9

BRIEF HISTORY OF DO-178
Avoiding aircraft accidents has always been a

priority of the aviation community. However the
increased use of software in aviation systems
resulted in the need for a set of industry accepted
standards for airworthiness requirements that
resulted in the RTCA/DO-178 specification, first
released in 1982.

COMPARISON TO OTHER SAFETY MODELS

 Figure 2 below describes the design flow
mapping of DO-178 to ISO 26262. Given the
maturity of DO-178, one will find that DO-178
safety processes can be tailored to a number of
other security processes such as ISO 26262. As
one can see in Figure 3, the artifact output from
DO-178 can map to those from other safety
guidelines, in this specific case, ISO 26262.

Figure 2: DO-178 Comparison to ISO 26262

Figure 3: Artifact Mapping

ARINC 653 REAL-TIME LINUX ON XEN

ARINC 653 Real-time Linux on Xen or ARLX
is the Xen based, open-source; type 1 hypervisor

DornerWorks developed with both internal
funding and SBIR funding from the US Navy and
DARPA. Figure 4 shows the general architecture
of the ARLX Hypervisor.

Figure 4: ARLX Hypervisor

 ARLX is developed for systems that require a

high degree of safety and security. Safety is
achieved through following DO-178C processes
for level A as tailored by DornerWorks and by
implementing the ARINC 653 software
partitioning specification that provides
deterministic use of computer resources. Strictly
following the ARINC 653 standard and then
judiciously applying formal methods analysis to
the target of evaluation gives the system an
initially good level of security due to the
restrictions that ARINC 653 places on the
computer resources.

SAFETY PROCESS FOR ARLX

As part of the Navy SBIR, DornerWorks
proposed that we would develop a safe and secure
hypervisor along with all the necessary processes
and artifacts that one would need to truly validate
safety and security. In the development of these
plans and standards, we showed how they map
directly back to the DO-178C standard.

DO-178C has five safety levels shown in the
table below.

DO-178
Level

Definition Description

A Catastrophic Prevents

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Software Safety and security Best Practices: A Case Study From Aerospace

Page 5 of 9

continued safe
flight or
landing, many
fatal injuries

B Hazardous/Severe Potential fatal
injuries to a
small number
of occupants

C Major Impairs crew
efficiency,
discomfort, or
possible
injuries to
occupants

D Minor Reduced
aircraft safety
margins, but
well within
crew
capability

E No Effect Does not
affect the
safety of the
aircraft at all

Table 2: FAA DO-178C Criticality Levels

DO-178 requires five plans and three

development standards.
• Plans

o Plan for Software Aspects of
Certification (PSAC)

o Software Development Plan (SDP)
o Software Verification Plan (SVP)
o Software Configuration

Management Plan (SCMP)
o Software Quality Assurance Plan

(SQAP)
• Development Standards

o Software Requirements Standards
(SRS)

o Software Design Standards (SDS)
o Software Coding Standards (SCS)

Inspections of these artifacts are conducted in
events called Stages of Involvement (SOI). The

SOI is the opportunity for the Designated
Engineering Representative (DER) to inspect
artifacts and for the development and quality
assurance teams to respond and make correction to
artifacts, documents, and processes. SOIs are
normally conducted on systems and not on
specific software tools. Since there was no
program of record that ARLX was being
implemented on, mock SOIs were conducted. That
is, SOIs were handled as if there was a complete
system, although this was not the case.

The planning documents were tailored
specifically for the ARLX project. These
documents are described below. The development
standards are already established standards that
DornerWorks practices and has documented for all
projects at DornerWorks. The development
standards will not be discussed further except to
note that the company has established practices for
coding, design, and requirements.

PLAN FOR SOFTWARE ASPECTS OF

CERTIFICATION
The PSAC is the top-level safety certification

plan created by the developer and agreed upon
with the certifying authority.

The PSAC is normally one of the first documents
written and submitted to the DER. This is done in
order to ensure that the project has established
compliant processes and other appropriate project
items so that the product’s safety assurance can be
demonstrated by appropriate objective evidence.

The PSAC for the ARLX program was formally
reviewed internally and then submitted to the DER
for her review. The DER made comments on
PSAC that were corrected or explained during the
first SOI.

SOFTWARE DEVELOPMENT PLAN
This document is written for the developers

working on the project so that they understand
how the development should proceed. In the SDP
for the ARLX project we documented specific
procedures and processes that we would follow,

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Software Safety and security Best Practices: A Case Study From Aerospace

Page 6 of 9

including the software lifecycle model we used.
Specifically we described the documents that
discussed the standards we would follow such as
for software requirements and software design.
We also discussed project specific coding
standards in the document.

The software lifecycle was also discussed in
terms of planning, configuration management,
quality assurance, verification of the software, and
how we would address compliance and document
approval for deviation of some issues from the
DER inspections.

Lastly we described the development
environment that engineers would be expected to
use while on the project.

Additionally, much of this information was
documented on our internal wiki for everyone to
view. The use of the wiki was to document some
of these plans in more of a “how-to” mechanism
making it easier for engineers to consistently refer
to the plan and make comments on lessons learned
while following the plan.

SOFTWARE VERIFICATION PLAN
The SVP is the document used to describe the

verification of the software and includes
inspection, analysis, and test processes.

In the SVP for ARLX, we described how we
would ensure verification independence as
required by DO-178. This was accomplished
through the use of peer reviews and ensuring that
the peer reviewing the material did not actually
write the article under review.

The SVP also discussed the methods for testing
and analysis, tools used to verify software, and
since we were implementing the ARINC 653
partitioning standard, how we would verify the
space and time partitioning correctness of the
software.

The process names that are used internally to
DornerWorks were often different from the DO-
178C processes names. We had to ensure that we
were following the DO-178C processes, so we
provided a mapping of the DO-178C process

names to the DornerWorks process name. This
information is shown in Table 3 below and was
documented in the SVP.

DO-178C Process Name

DornerWorks Process
Name

Software Planning Process

Project Planning

Software Requirements
Process

Requirements Definition
(HLRs)

Software Design Process Design & Development
(Architecture & LLRs)

Software Coding Process Design & Development
(Code)

Integration Process Design & Development
(Integration)

Software Verification
Process

Verification & Validation

Software	
 Configuration	

Management	
 Process	
 	

Configuration	
 Management

Software	
 Quality	

Assurance	
 Process	
 	

Quality	
 Assurance	

Certification	
 Liaison	

Process

N/A	

Table 3: Process Mapping

SOFTWARE CONFIGURATION MANAGEMENT

PLAN
The purpose of the SCMP is to establish the

Software Configuration Management (SCM)
related policies and methods to be adopted and
implemented during the lifecycle development of
the program.

The SCMP was written for the ARLX system
and is fully implemented for development of the
program. The SCMP documents the plan of how
the software artifacts associated with this project
are identified, configured, controlled, archived,
and tracked.

The SCMP specifically discusses the various
configuration management tools and how each
tool will be used. In the case of ARLX, we
mentioned using the open source tools Subversion
and Mercurial (and eventually git) for tracking
documents and code. One thing to note about this
is that we started out using Mercurial since that
was the source code control tool of choice for the

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Software Safety and security Best Practices: A Case Study From Aerospace

Page 7 of 9

Xen community. However, the Xen community
formally changed to the git source code control
tool and similarly, we did do. This required a
modification of the SCMP document because of
this change. We also tracked issues and problem
reports using a commercial product call Jira. The
document also describes how parts numbers are
established in addition to change management.

SOFTWARE QUALITY ASSURANCE PLAN
The SQAP documents software lifecycle

processes and their output for assurance that the
objects set fourth in the planning documents are
satisfied, deficiencies are detected, evaluated,
tracked, and resolved, and that the software
product and software lifecycle data conform to the
certification requirements.

For the ARLX project, the software quality
assurance activities are documented in the SQAP
and in Table 4.

Software Quality Assurance Activities
Prepare and Maintain the Software Quality Assurance Plan
(or delegate)

Change Authority
Review planning documents (PSAC, SDP, SVP, SQAP and
SCMP)
Audit reviews of HLRs, Architecture, LLRs, & Source Code

Audit reviews of High-Level Verification Cases and
Procedures, Low-Level Verification Cases and Procedures,
and verification results

Audit execution of High-Level Verification Cases and
Procedures & Low-Level Verification Cases and Procedures
Perform Software Conformity Review

Submit certification artifacts to the customer and/or
Certification Authority

Table 4: Software QA Activities

DornerWorks has a full time QA manager who is

responsible for QA at the company and projects on
which DornerWorks performs.

SECURITY PROCESS FOR ARLX

ARLX is built with safety and security from the
ground up. DornerWorks used two companies to
aid in formal methods analysis. The goal of

security in ARLX is to support a DoD MILS
environment and the need to protect data up to the
level of Top Secret/Sensitive Compartmented
Information. During the Phase I portion of the
SBIR funding, the company Galois was
commissioned to analyze a scheduler for the
hypervisor that implemented the ARINC 653
standard. They performed this analysis using
manual methods. It was costly in both actual
money and time to perform. It was determined that
we needed a quicker, more cost effective method
to run formal analysis on ARLX that supported the
open source business model on which we built
ARLX.

The advantage DornerWorks had with
establishing some level of security was due to
including ARINC 653 in the ARLX system.
ARINC 653 is an aviation software specification
for partitioning computer hardware in space and
time for the purpose of enhancing its function
safety. With this open standard, one can develop
multiple applications on the same hardware with
different DO-178 software safety levels. ARINC
653 has very strict requirements for memory,
processor and device I/O usage. This fits very
nicely in a security paradigm where information
flow needs to be strictly enforced.

DornerWorks contracted with Rockwell Collins
(RC) to perform the formal analysis on ARLX
during the next phase of the project. RC has
developed a tool called the Data Flow Logic
(DFL). The DFL is a domain specific language for
use in specifying and verifying information flow
properties of secure systems, implemented as an
extension to the GCC compiler. The DFL is
automated and as a result reduces costs
significantly. The analysis performed with the
DFL is consistent with activities associated with
Common Criterial EAL6 and above and DO-178
Level A certification.

DornerWorks worked with Rockwell Collins to
establish a target of evaluation (TOE) and in
determining what the security domains and

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Software Safety and security Best Practices: A Case Study From Aerospace

Page 8 of 9

resulting security policy would be. Security
domains are the objects of policy statements.

DornerWorks and Rockwell Collins specified
and analyzed the scheduling subsystem of ARLX.
The classification process is time consuming and
requires an understanding of the system security
policy and an intimate knowledge of the
implementation. We minimized the overhead of
this work and focused on the subset of the
scheduling TOE.

Out of this work, the security policy was created
and five security domains were established:

• ARLX_INIT – read only data used to
initialize the rest of the system

• ARLX_CONFIG – configuration data that
is written during initialization

• ARLX_XEN – the state of the Xen
hypervisor

• ARLX_DOM0 – the state of the Xen
Dom0 (or control) domain

• ARLX_DOMU[i] – the state associated
with the guest domains

A graphical picture of the ARLX security policy,
showing that the flow is one way, is shown below.

Figure 5: ARLX Security Policy

After the policy was established, the DFL tool

was used to analyze the TOE source to ensure that
the data flows as indicated in the policy.
Exceptions and failures to the rule are documented
in the report. Some of the source code included

assembly language that was not analyzed by the
DFL since it is not able to analyze assembly
language at this time.

We received a final report from Rockwell
Collins that presented what was done during the
evaluation. The final report separated its findings
into exceptions and failures. Exceptions were
issues that need to be further analyzed since they
could either be a real issue or explainable through
manual analysis. Failures were issues that the DFL
tool determined were issues going against the
security policy. The final report also stated the
results and gave recommendations for what could
be done to further enhance security.

Addressing the findings in the final report is an
important task since failures and exceptions might
be positively explainable after manual analysis.
Analyzing the report was a useful effort, in our
case, for two reasons. One, we found that in only a
single case, the DFL analysis reported a failure.
The procedure it failed on was called
ioapic_guest_write(). It turns out that this function
assigns an integer to a bit-mapped structure and
was not in the TOE. It was good experience to go
back to review the analysis and take a visual look
at the source code to determine the failure. The
other case was in analyzing the exceptions. As an
example, we had two exceptions in the function
a653sched_do_schedule(). The first exception was
due to the fact that we had inline assembly in the
code and the DFL tool is not capable of analyzing
the assembly language sections. These need to be
done manually at this point. The other exception
in the function indicated that the function return
value may contain information from a local
variable allocated on the call stack. This is
significant to the DFL tool since the function
returns a stack-allocated structure whose fields are
individually populated in the body of the function.
If there is slack in the structure implementation,
the slack regions of the structure would never get
initialized. It is unlikely that there is slack in this
particular structure, but the DFL tool was unable
to determine that for sure and as a result manual

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Software Safety and security Best Practices: A Case Study From Aerospace

Page 9 of 9

analysis will need to be done to ensure that this
not a potential issue.

CONCLUSION

Software is being used on more systems that
involve moving people. It is, therefore, becoming
more important and even a requirement in some
areas, such as aviation, to have an established
software development process that can result in
certified systems. Following safety and security
processes from the beginning of a project helps to
deal with errors early.

A lack of emphasis on safety becomes readily
apparent when bugs are discovered. Unfortunately
the result of finding problems once a product is
released to the public causes consumers to
question how an organization could have released
such a product. Safety requires well-established
processes and engineers who are trained in thoses
processes and have an attention to detail in making
sure that the product development is safety
focused.

Safety has always been critically important in the
aviation industry. Formal aviation safety criteria
have matured much over 30 years. The process for
developing a system under the guidelines of DO-
178C are time consuming and result in higher
software development costs, however the costs are
necessary to achieve the level of safety the
aviation world has come to expect.

This case study discussed safety in the context of
aviation, specifically DO-178C. We introduced
the ARLX hypervisor and described how ARLX
was developed using the aviation safety
specification. We also introduced security in the
context of the Common Criteria and how
DornerWorks used the ARINC 653 standard as the
architecture for the formal methods analysis. We
described the documents created throughout the
safety process. Lastly we described security steps
that we followed in creating security artifacts for
ARLX. The military and civilian markets that
DornerWorks plans to introduce the ARLX

hypervisor will demand the safety and security
artifacts described in this case study. ARLX is
focused on safety critical systems and proven
safety and security can only be achieved through
processes developed from established guidelines.

REFERENCES
[1] Henderson, P. and Lienert, P. 2014, GM safety crisis

grows with recall of 3 million more cars for ignition
issues [Online]. Available at:
http://www.reuters.com/article/2014/06/17/us-
generalmotors-idUSKBN0ER2Q220140617 [Accessed:
22 June 2014]

[2] Storm, Darlene 2013, Hacker uses an Android to
remotely attack and hijack and airplane [Online].
Available at:
http://blogs.computerworld.com/cybercrime-and-
hacking/22036/hacker-uses-android-remotely-attack-
and-hijack-airplane [Accessed: 25 June 2014]

[3] Greenberg, Andy 2014, DARPA-Funded Researchers
Help You Learn To Hack A Car For A Tenth The Price
[Online]. Available at:
http://www.forbes.com/sites/andygreenberg/2014/04/08/
darpa-funded-researchers-help-you-learn-to-hack-a-car-
for-a-tenth-the-price/ [Accessed: 25 June 2014].

[4] U.S. Government Protection Profile for Separation
Kernels in Environments Requiring High Robustness,
Version 1.03, June 2007. Available at: https://www.niap-
ccevs.org/pp/pp.cfm?id=pp_skpp_hr_v1.03/&CFID=262
03994&CFTOKEN=f7667ce3bc6ae71f-40F73C94-
97C5-F776-C2540D8048D9BA22 [Accessed: 30 June
2014]

[5] Carol Saulsbury Houck, Director, NIAP. Email sent to
affected commercial partners. Available at:
https://www.niap-
ccevs.org/pp/pp.cfm?id=pp_skpp_hr_v1.03/&CFID=262
03994&CFTOKEN=f7667ce3bc6ae71f-40F73C94-
97C5-F776-C2540D8048D9BA22 [Accessed: 30 June
2014

[6] “Range of completion times and costs for Common
Criteria evaluations at EAL2 through EAL4”, US
government report GAO-06-392, From Wikimedia
Commons, the free media repository, Creative Commons
License,
http://en.wikipedia.org/wiki/Evaluation_Assurance_Leve
l#mediaviewer/File:Common_Criteria_evaluation_costs.
gif [Accessed: 6 July 2014]

