

2014 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY

SYMPOSIUM
VEHICLE ELECTRONICS AND ARCHITECTURE (VEA) TECHNICAL SESSION

AUGUST 12-14, 2014 - NOVI, MICHIGAN

THE BENEFITS OF MODEL-BASED DESIGN

AN LHP SOFTWARE TECHNICAL BRIEF

Dr. Steve Fraser
LHP Software
Columbus, IN

 David Fenstermacher
LHP Software
Chicago, IL

Chris Doyle
LHP Software
Columbus, IN

ABSTRACT
Use of the Model-Based Design (MBD) processes is becoming increasingly common in

embedded control system software as a means to manage software complexity, improve quality,

and reduce development costs. The MBD process can achieve these goals by combining the

design, simulation, and implementation of software features into a single, integrated workflow

that reduces development effort and allows extensive software testing to be performed in

simulation. In order to realize the full benefit of MBD, engineering organizations must invest

resources intelligently in the tools, processes, and infrastructure to avoid common mistakes and

pitfalls.

INTRODUCTION
Model-Based Design (MBD) is a software

development

methodology in which the implementation,

verification, and documentation of software

features flow directly from a single description of

the software behavior. The behavior of a software

feature is designed, or “modeled,” in a graphical

environment, such as Mathworks’

MATLAB/Simulink or National Instruments’

LabVIEW, which allows the software design to be

simulated in a virtual environment (Model-in-the-

Loop Simulation).

The embedded, real-time implementation of the

software design is generated automatically from

the model, providing a hard link between the

design, simulation, and implementation of a

software feature. Finally, the graphical model

provides a description of the algorithm that is

easily understandable, without knowledge of a

specific programming language. According to a

study by Siemens [1],companies transition to

MBD to (1) reduce software development time

and resources, (2) gain capability to detect

software errors earlier, (3) improve

communication with colleagues, and (4) reduce

effort for reusing software features in other

deployments. The MBD process offers the

potential to provide enormous benefits in all of

these areas, but a successful deployment of the

MBD paradigm requires that an organization

invest in the correct MBD tools, processes, and

infrastructure. A successful MBD development

environment must be designed to encourage

consistent and readable models, hardware-

independent software models, and reusability of

software, all while maintaining a straightforward

development process from the perspective of the

software design engineer.

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

The Benefits of Model-Based Design An LHP Software Technical Brief

Page 2 of 6

Approved for Public Release, Distribution Unlimited 07/16/2014

BEST PRACTICES FOR MODEL DESIGN

A. The Importance of Proper Model
Design.
In the MBD process, the software model becomes

the sole description of a given software feature;

therefore, it is extremely important to maintain the

quality and integrity of these models. Well-

designed models produce more efficient software

and more meaningful simulation results with less

effort. Additionally, a well-organized model can

provide extremely concise and up-to-date

documentation of the algorithm that is

understandable to all stakeholders in the software

development process, including non-programmers.

Done well, the MBD process can greatly reduce

the need for written software documentation.

B. Managing Signal Flows
The core benefit of graphical software modeling

tools is the ability to show data flow between

logical elements in an intuitive, graphical form.

Ironically, however, presenting data flows in an

easily understandable fashion is also among the

greatest challenges in an MBD environment.

While signal flows can be presented as lines in

simple models, modern embedded software

applications must manage large numbers of

signals, often making it impractical to represent

them all with individual lines. Signal lines can be

broken or combined to save space, but this also

breaks the data flow representation and reduces

the intuitive nature of the graphical representation.

The best model design practice is to encapsulate

adjacent model elements into subsystems, such

that each subsystem has an obvious function but

the smallest possible number of inputs and

outputs.

C. Model Design Standards
Many of the most important model design

practices, such as maintaining logical signal and

execution flows, are quite obvious to any software

designer. However, these best practices can often

be forgotten by software designers when they are

under pressure from deadlines or struggling to

make a complex feature work correctly. Poor

adherence to good model design practices may

allow for faster initial model development, but, in

the long term, will lead to models with extremely

confusing signal and execution flow that are

unmaintainable and too interconnected to simulate

effectively. To avoid this problem, every software

organization should develop and enforce a clear

standard for the appearance and organization of

software models. The standard should detail

naming conventions, which blocks or constructs

are acceptable or unacceptable, best practice

designs for common tasks, etc. Model design

standards not only improve the quality and long-

term maintainability of models, they also improve

communication across an organization through a

consistent model format.

D. Library Elements
The use of library elements also improves the

ability to maintain model consistency and quality

across an organization. When the same logical

construct is required over and over throughout

many models, the logic can be designed once and

placed into a library element which can be reused

anywhere in the software design. Library elements

save time when designing a feature, and improve

quality by providing a single “correct” way to

implement common constructs.

SOFTWARE ARCHITECTURE AND TEAM

ORGANIZATION

A. Component-Based Software
Architecture
Many embedded software projects contain a large

(and constantly growing) number of features.

Because of the complexity of the requirements and

the resulting large amount of software logic

needed to implement them, it is often impractical

for the software design for an entire system to be

placed in a single model file. Formal partitioning

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

The Benefits of Model-Based Design An LHP Software Technical Brief

Page 3 of 6

Approved for Public Release, Distribution Unlimited 07/16/2014

of software models into smaller “software

components” provides a structure to maintain

coherency of data flow throughout the software

and enables many engineers to work in parallel on

different software features. All data moving into

and out of the component must pass through a pre-

defined, documented interface, thereby enforcing

a certain amount of organization in the software

base. This encapsulation prevents software

components from directly accessing data from

other components or operating system (OS)

software, which maintains hardware-independence

and allows for much easier reuse of the code

across platforms and applications.

B. The Development Environment
While MBD has the potential to dramatically

increase productivity by abstracting away the

details of the software implementation, it

invariably reduces the flexibility of the designer in

implementing novel constructs, and there is a

potential for the applications engineer to become

bogged down in overly complicated models. To

manage this problem, an MBD system needs to

migrate to a different resource paradigm. In a

traditional development environment, the systems

engineer designs the expected behaviors of the

system and the software engineer writes embedded

code based on the design, often with little

knowledge of the underlying principles behind the

design. In an MBD development environment this

is reversed: The application engineer

simultaneously designs and implements the

software logic, whereas the software engineer

creates an infrastructure that allows model-

generated code to integrate and interact with other

software features and with the target hardware

platform. This infrastructure layer abstracts the

hardware functionality, such as hardware I/O and

datalink communications, into a format that is

usable in software models, and provides reusable

utilities, and palettes for common operations.

These infrastructure elements may be

implemented as external hand coded C/C++, by

higher order models of native elements, by

integrating external scripting languages, or even

external object libraries. Rather than coding

specific application designs, software engineering

resources are reallocated to producing optimized

low level implementations that are reusable across

a variety of applications. For example, from the

perspective of the applications engineer, the

inclusion of a specific J1939 message can be as

simple as pulling a PGN element from a library

and selecting the data element to pull out from a

port. The low level implementation of the code to

accomplish this task is developed beforehand

using the most efficient implementation (be it

MBD primitives or C code), implementing only

the sufficient functionality that is needed by the

application requirements.

C. Functional Reuse of Model-Based
Designs
In the MBD development environment, the

reusability of software elements is enhanced in a

number of ways. By abstracting the application

design, the deployment does not have to be

optimized to a specific hardware platform. Only at

code generation is the design optimized for a

specific platform, which will include tradeoffs

between maximizing throughput versus RAM and

flash space, use of floating point verses fixed

point data implementations, and taking advantage

of compiler optimizations. The graphical nature of

the code can also make it easier to integrate

software components and modules. However,

according to a recent study [2], MBD alone does

not improve model reuse unless a reuse concept is

applied. When a model becomes too big or is

poorly structured, it becomes difficult to cut and

paste without having to re-work significant

portions of the original implementation. If

componentized software architecture is used, as

described in Section A, many software

components can be reused without modification.

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

The Benefits of Model-Based Design An LHP Software Technical Brief

Page 4 of 6

Approved for Public Release, Distribution Unlimited 07/16/2014

D. Not All Implementations are Suited to
MBD
The use of MBD as an algorithmic design tool is

most powerful when the application naturally

follows a signal flow model. Not all software

logic can be intuitively described in a signal flow

form. MBD does not lend itself well to low-level

hardware interface and device driver

implementations, nor generic data parsing such as

the implementation of communications protocols

and CLIs. In addition, heavily iterative processes

and dynamic resource allocations do not fit well

with the physically representative nature of

graphical models. An effective MBD embedded

process will use a combination of graphical and

text-based design tools as appropriate. Elements

that themselves cannot be implemented as models

are typically linked to library elements that can be

referenced in the MBD environment.

MODELING, SIMULATION, AND CODE
GENERATION TOOLS
The primary tool required for an MBD

environment is the algorithm design tool, which

provides a graphical interface to construct

software models. Since MATLAB/Simulink is the

de-facto standard for development of real-time

embedded control algorithms in most industries,

many of the third party tools for code generation,

simulation, and testing are either based on it or

compatible with it. National Instruments’

LabVIEW is also used to develop simulations and

software for some embedded applications.

LabVIEW does not have as many third-party

compatible tools, yet, National Instruments

provides a fairly comprehensive suite of code

generation, simulation, and verification tools.

MODEL INTEGRATION
In most cases, multiple software behavior

descriptions (either models, hand-written C code,

or object code) from multiple sources must be

combined in order to simulate the entire system,

or to build the complete software for the target

hardware platform. Due to the complexity of

many embedded software projects, it is usually

desirable to have a software tool to automate the

integration process. Such an integration tool

should allow the user to define interfaces to

application software components and low-level

OS functions and utilities, and to abstract the

process of integrating models and code into larger

simulations and software builds. UML-based tools

provide an application-generic method for high-

level software design and simulation in a C/C++

environment, but the component wrappers that

they create are not well integrated with the

graphical tool environment. Specialized

commercial software, such as dSPACE

SystemDesk or the Vector DaVinci suite for

AUTOSAR systems, suffers from the requirement

that they be generic and agnostic to tool

selections. Very often the optimal solution is a

custom designed system integration tool that

provides build integration and simulation

capabilities as well as configuration management.

Control and data flow can be made visible by

giving the integration tool the capability to

generate UML views of the system.

SIMULATION AND VERIFICATION
One of the most powerful elements of MBD is the

ability to test software at nearly all levels of the

software development process. However, adapting

test procedures to an MBD approach requires a

top down reconsideration of the entire software

test process, including unit/component testing,

integration testing and system testing, and

exploiting the power of simulation at every level.

Since the models themselves can be simulated,

software designers can test the software directly

on their PC during the design process. Similarly,

simulation testing can be performed at all levels

of scope, from a small unit test of a single feature

all the way up to a simulation of the entire

software system against a sophisticated plant

model. This testing can even be automated to a

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

The Benefits of Model-Based Design An LHP Software Technical Brief

Page 5 of 6

Approved for Public Release, Distribution Unlimited 07/16/2014

great extent, thus eliminating much of the tedious

work involved in software verification.

Studies have shown that most companies that

migrate to an MBD software development process

experience a front-end loading of test activities

compared to the traditional design approach [1].

In order to achieve the benefits of MBD-based

simulation testing in the long term, companies

must invest resources up front to develop robust

simulation testing tools, procedures, and plant

models. After the initial investment, the resulting

enhanced testing capability allows for more issues

to be discovered early in the development process,

before the software is ever run on the target

hardware platform. Simulation testing not only

reduces costs associated with testing software on-

hardware, but also reduces overall software

development time and costs. Large amounts of

data can be recorded from a simulation to relay

back to the software designer in the case of a test

failure; this allows the designer to quickly locate

and fix the issue. Additionally, the updated

software can be immediately deployed back to the

simulation environment. Surprisingly, the

opportunity to find and correct problems in

simulation testing is often missed or not leveraged

effectively by many organizations because of

reluctance to make the upfront investment in test

infrastructure or because of poor software design

practices. Testing must be considered throughout

the software design process: The application

software must be well abstracted from any low-

level OS functions to allow hardware platform-

independence, and the software designer must

refrain from using model constructs that cannot be

simulated (such as calls to hand-written software

functions).

THE LHP COMPETITIVE ADVANTAGE
LHP Software was a pioneer in the adoption of

MBD in the automotive industry and continues to

be heavily engaged with Model-Based Design and

development for a variety of customers. By

working with multiple development platforms and

toolsets, our engineers have a much broader and

deeper experience than would be possible from

working with a single platform in a single

industry. LHP has extensive experience at all

levels of the development process, from system

architecture and process migration issues, tools

and platform support, and adaptation to a

customer environment. LHP continues to grow its

capabilities by investing in proprietary processes

and models and by experimenting with new

technologies.

CONCLUSIONS
Adoption of the Model-Based Design process

allows enormous potential improvements to

software quality, cost, and development time. The

time required for software development is

significantly reduced by condensing the design

and implementation of most software into a single

step. The enhanced simulation capability of the

MBD system allows for software problems to be

detected much earlier in the development process,

before the software is ever run on the target

hardware platform. Software models also provide

an extremely concise and always up-to-date

description of the software behavior that is

accessible even to non-programmers, thus

facilitating easier communication and

understanding of software concepts throughout an

organization. When the best practices for MBD

software design and architecture are followed, the

resulting software is packaged into hardware

platform-independent software components that

are easily re-used across applications.

Although the potential benefits of MBD are

substantial, the process of creating an MBD

infrastructure involves many difficult choices that

must be carefully considered to avoid common

pitfalls. Before making the substantial investment

needed to implement MBD, an organization

should develop a deep understanding of the MBD

process and an appreciation for the sometimes

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

The Benefits of Model-Based Design An LHP Software Technical Brief

Page 6 of 6

Approved for Public Release, Distribution Unlimited 07/16/2014

painful lessons learned. Choosing suppliers and

development partners with significant experience

in MBD is an excellent way to leverage the

existing knowledge base within the industry to

ensure a successful deployment of the MBD

process.

REFERENCES

[1] Fieber, F., Regnat, N. , Rumpe, B., “Assessing

usability

of model driven development in industrial

projects”,Siemens AG, Corporate Technology

CT SE 1, Otto-Hahn-Ring 6, 81739 München,

Germany

[2] Kirstan, S., Zimmermann, J., “Evaluating costs

and

benefits of model-based development of

embedded

software systems in the car industry – Results of

a qualitative Case Study”, ALTRAN GmbH & Co.

KG,

Bernhard-Wiki-Str.3, 80636 Munich, Germany.

