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ABSTRACT 

The U.S. Army Tank-Automotive Research, Development and Engineering Center (TARDEC) contracted 
DornerWorks Ltd. to evaluate Ethernet-based networking protocols for the safety-critical RDECOM Modular Active 
Protection Systems (MAPS) framework (MAF). The MAF requires a universal and robust high-speed 
communication network that can transmit heterogeneous data at near gigabit speeds in a deterministic fashion with 
bounded and predictable latency. The objectives were to evaluate candidate protocols through rigorous stressing 
scenarios to: 1) assess and estimate upper bound of performance including data throughput and reliability; and, 2) 
detect and identify causes and conditions of data loss or corruption. We assessed four protocols: SAE AS6802 
(TTEthernet; TTE), ARINC664p7 (rate-constrained; RC), COTS UDP integrated with these two protocols (best-
effort; BE), and UDP on a COTS network under three levels of network saturation and with varying payload sizes. 
On an unsaturated network, TTE had the greatest one-way latency (≥595.74µs) and variance of latency (s.d. ≥ 
275.56 µs) from the applications’ perspectives due to lack of synchronization between the network cycle time and 
the application transmittal period; RC and BE had low and nearly identical latencies (40.23- 452.09 µs) that 
increased strongly with payload size; and COTS UDP had, by far, the lowest latency (≤92.69) and was relatively 
unaffected by payload size. On a saturated network, TTE latency increased by 17.3-44.2% , matching the configured 
virtual link period; RC latency also increased slightly; BE latency increased substantially (>21 ms); UDP latency 
approximately doubled for larger payload sizes. Surprisingly, with 100% saturation on a full-duplex switched COTS 
network, COTS UDP had no lost packets except those originating from the saturating devices.. 

 
INTRODUCTION 

The goal of this study was to evaluate Ethernet-based 
networking protocols for the safety-critical RDECOM 
Modular Active Protection Systems (MAPS) framework 
(MAF). One of the objectives of the MAPS program is to 
incorporate communications network protocols that enable a 
modular, flexible, and scalable approach to integrating active 
protection system (APS) technologies for ground vehicle 
platforms, and to lower lifecycle costs. MAPS is developing 
a Modular APS Controller (MAC) that supervises APS 
subsystems and ultimately determines the vehicle’s response 
to an inbound threat. The MAF and MAC require a universal 
and robust high-speed communication network that can 
transmit heterogeneous data concurrently with data 
prioritization and/or bandwidth allocation. Due to the safety 
critical nature of the APS domain, the network protocol must 
be deterministic with bounded and predictable latency. The 
goal of the present study is to evaluate high-speed network 
protocols capable of attaining near gigabit speeds for the 
MAF while meeting the determinism requirements. The 

objectives were to evaluate candidate protocols through 
rigorous stressing scenarios to: 1) assess and determine 
bounds on performance including data throughput and 
reliability; and, 2) detect and identify causes and conditions 
of data loss or corruption. 

 
METHODS 

Protocols evaluated 
We conducted a literature review to select potential 

candidate protocols for this study. Only ARINC 664p7 [1], 
SAE AS6802 [2] (Time-Triggered Ethernet; TTE), and 
IEEE 802.1BA [3] (Audio Video Bridging; AVB) met our 
criteria for ≥500 Mbps throughput, determinism, and 
industry support/adoption.   Of these three, AVB was 
eliminated from consideration because it may become 
obsolete for this intended application once implementations 
of Time-Sensitive Networking [4] (TSN) are available. TSN 
is a collection of open standards that augment AVB by 
providing time-synchronization (IEEE 802.1AS [5] based on 
IEEE 1588 [6]), frame transmission scheduling [7] (IEEE 
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802.1Qbv), and other enhancements. The switches and end-
points utilized in the evaluation effort simultaneously 
support TTE, ARINC 664p7, and standard UDP (User 
Datagram Packet; RFC 768 [8]) protocols. Based on this 
review, for our study we evaluated four protocols: TTE, 
ARINC 664, p7 (rate-constrained; RC), UDP over COTS 
network, and UDP (best-effort; BE) over the TTE network. 

 
Test bed hardware and architecture 
Our development system consists of two TTE 12-port 1 

Gbps development switches and four development PCs (Dell 
Precision T1700 with Intel® Dual-core I3-4130 3.4 GHz 
processors) with TTE PCIe cards. The development PCs 
came pre-installed with Ubuntu® 14.04 LTS and Linux 
kernel version 3.13.0-36-generic. An additional PC 
(‘testmaster’; Dell® Precision T3610 with an Intel® Xeon® 
Quad-core E6-1620 v. 2, 3.70 GHz processor4), with a quad-
port COTS NIC that supports high-resolution hardware time-
stamping (Intel® Ethernet Server Adapter I350-T4), and a 
COTS 16-port Gigabit switch (Netgear® ProSAFE, model 
GS116E) were purchased to coordinate tests and perform 
IEEE 1588 (Precision Time Protocol; PTP) time-
synchronization via a back-end network. An additional 
COTS switch (Netgear® ProSAFE, model GS-105) was 
purchased to evaluate COTS UDP. Since TTE does not 
support time-synchronization to a universal time-base, 
‘Linux PTP’, an implementation of IEEE 1588, was used to 
synchronize clocks over the back-end COTS network. A bus 
tap (DualComm Technology, Inc. 10/100/1000Base-T 

Regeneration Tap) and a quad-port COTS NIC captured full-
duplex data from the simulated MAC endpoint. Figure 1 
illustrates our network configuration. 

 
Test bed software framework 
The Test Bed framework is meant to simulate the MAC, 

APS sensors, and APS counter-measures. All traffic is to and 
from the MAC with no direct communication between 
simulated sensors or counter-measures. We simplified the 
software design and test scenarios to assess communication 
between the MAC and any individual node (or end-system), 
agnostic of whether the node would represent a counter-
measure or a sensor.  

The Test Bed framework was designed to be modular, 
cross-platform, and extensible. The Test Bed consists of 
three applications: a server application on the testmaster 
loads and validates the test configuration and sends tasks to 
the development PCs; a client application on each 
development PC receives and executes tasks, logs results, 
and transmits logs back to the testmaster; and a log 
processing application on the testmaster post-processes the 
logs and executes scripts to statistically analyze the results 
via the GNU R Statistical language (version 3.0.2). The Test 
Bed was written in POSIX-compliant (IEEE Std 1003; 
ISO/IEC 9945) C++11(ISO/IEC 14882:2011). It utilizes the 
Libxml2 library (version 2.9.1) for reading, writing, and 
validating XML configuration files; the TTE API library 
(version 66556) for interfacing with the TTE NICs; the GNU 
Scientific Library (version 1.16) to aggregate data; and, the 
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PF_RING-enabled version of libpcap (version 1.1.1) for 
high-speed packet capture with nanosecond-resolution 
hardware time-stamps and packet injection. All applications 
and libraries were compiled using the GNU Compiler 
Collection g++, version 4.8.2-19. 

Some modifications to the Ubuntu default environment 
were necessary to improve measurement accuracy and 
performance. Power management was disabled and 
SpeedStep® was disabled in the bios to prevent clock 
frequency scaling. The sizes of the UDP read and write 
buffers were increased to 8 MB and the maximum size for 
message queues was set to 64 MB. 

 
Test configuration 
Tests are configured in XML (Extensible Markup 

Language) file format and validated at runtime using an 
XML Schema Definition file (XSD). Each test consists of 
tasks executed on each development PC. A task is 
configured with a direction (receive, transmit, or relay), 
virtual link or route ID, protocol, payload size, and payload 
type (sequential or randomly generated data). A message 
header with a message ID, message sequence number, and 
an additional 32-bit CRC is added to the payload of each 
transmission. At each transmission (send and receive), the 
message headers, CRC verification status, source and 
destination, and 64-bit 1588-synchronized CPU time-stamps 
are recorded on each end-system and the log files are copied 
to the testmaster at the end of each test. Special tasks are 
configured for data capture and packet injection. The log 
processor application on the testmaster builds a tracking 
history of each message as a series of links. The actual 
tracking history of each message is compared against the test 
configuration to identify lost or misdirected messages. 
Statistics for one-way latency, round-trip latency, and 
transmittal period between subsequent messages are 
calculated and reported. 

 
Test scenarios and evaluation criteria 
Several test scenarios were developed to evaluate each 

protocol for latency, throughput, determinism, jitter, and 
reliability. For each protocol, we evaluated the influence of 
payload size, bus saturation level, transmission period, and 
bandwidth allocation gap on one-way and round-trip 
communication between two end-systems. Payload sizes 
consisted of 64, 128, 256, 512, 1024, and 1472 B (the 
maximum UDP payload size supported by TTE and RC 
protocols). Bus saturation was achieved by injecting UDP 
packets on the bus at 500 and 1000 Mbps or 50% and 100% 
of bus saturation, respectively. All scenarios were executed 
with a 2-ms and then 510-ms application transmission 
period. This corresponds to two times the standard minimum 
and maximum period and bandwidth allocation gap (BAG) 
that can be configured for the TTE switch and end-systems. 

The application transmittal rate must sufficiently exceed the 
configured period or BAG because the TTE NIC and switch 
start of frame cannot be synchronized with the application’s 
start of period. If the application transmits multiple messages 
within a single TTE NIC or switch cycle, data loss will 
occur. Each transmission is replicated approximately 1000 
times to ensure adequate data points should it be necessary 
to filter potential context switch events. Due to the use of 
multiple threads and processes for servicing different classes 
of traffic, for data logging, and for time synchronization, it 
was necessary to allow context switches during idle time to 
allow lower priority processes limited access to the two 
processor cores available (4 hyperthreads). 

Our measurement of transmission latency includes 
latencies from the API, driver, protocol stack, hardware 
(NIC, wire, switch), and protocol packet overhead. It was 
determined by subtracting each message’s reception time 
from its transmittal time using the IDs and sequence 
numbers embedded in the payload. The data throughput (or 
effective bandwidth) is calculated as the transmitted payload 
size over the transmission latency and is influenced by the 
period or BAG, bandwidth saturation, and the payload size 
relative to the protocol overhead. The determinism of a 
protocol is assessed by multiple sources of jitter. Application 
transmit period jitter is calculated as the total variance of 
time between subsequent data transmissions which includes 
jitter caused by the scheduler, any context switches, and 
user-space major-frame time-synchronization functions (e.g. 
nanosleep(), clock_gettime(), etc). Receive period jitter is 
calculated as the total variance of time between subsequent 
data receptions and represents the total transmission jitter for 
periodic messages from the application’s perspective.. 
Hardware jitter is calculated (for RC and TTE traffic classes) 
as the variance of the hardware timestamps of packets 
captured using libpcap via the bus tap. Network reliability 
and data loss is assessed in all tests by comparing logs of 
sent and received messages with test configuration data. 
Data reliability and corruption is assessed by validating 32-
bit CRCs embedded in the payload of every message. 
Although this is of minimal value because corrupted packets 
are usually discarded automatically by the hardware due to 
failed checksums in the protocol headers. To the application, 
it may appear as a lost packet.  

 
Test bed queues and processes 
The test bed consists of several prioritized processes, 

buffers, and message queues (Figure 2) designed to   avoid 
pre-emption and to shift as much processing as possible 
away from the time-critical servicing threads that ultimately 
transmits and receiver data and timestamps each 
transmission. Since the TTE API is not thread-safe, there is a 
single TTE servicing thread for TTE and RC traffic and a 
separate servicing thread for COTS UDP traffic. When a test 
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is executed, a test thread is started which, in turn, executes 
and waits on a task thread for each configured task. A task 
thread can be a receiver, a sender, a relay (round-trip), a 
packet injector, or a packet capture. A sender task builds a 
message and sends it to a servicing thread to be transmitted 
via a dedicated message queue. The servicing threads 
receive incoming packets and send them to receiving tasks 
waiting on dedicated message queues. The servicing threads 
send a copy of every transmitted and received packet to a 
dedicated message queue for logging. The logging thread 
then receives the message from the log message queue, 
validates the payload CRC, and writes only essential 
information (headers, CRC status, timestamps, etc.) to a 
ramdisk log file which is sent to the testmaster at the end of 
the test. 

 
RESULTS 

Time-synchronization 
Transmission latency calculations can only be as good as 

the timestamp resolution and time-synchronization accuracy 
across multiple end-systems. Although TTE provides limited 
support for PTP, the TTE NICs do not provide hardware 
timestamp support. The TTE API provides a TTE timestamp 
in the form of a drift-corrected time offset from NIC 
initialization that can be acquired via a status message 
returned from a receive API call or a dedicated API call. 
Unfortunately, these timestamps are not synchronized to a 
universal time-base across the TTE network. Therefore, we 
considered using Linux PTP to synchronize hardware time-
stamps over the backend COTS network with the integrated 

COTS NICs (I217-LM rev. 4) which support hardware time-
stamping. However, we discovered a hardware bug whereby 
reading the time-counter register at frequencies greater than 
1 MHz causes register corruption and the driver (e1000e-
3.1.0.2) performs back-to-back reads to detect rollover 
conditions while avoiding the locking of interrupts, thereby 
exasperating the problem. Therefore, we purchased and 
installed four additional I210 (rev 3) NICs which overcame 
this limitation. We also found that reading directly from the 
PTP hardware clock (PHC) device (e.g. “/dev/ptpX”) was 
vulnerable to large deviations in latency which warrants 
further investigation. So, we assessed the overhead and 
vulnerability of other userspace time sources including the 
processor time-stamp counter (RDTSC), the system wall-
clock time (CLOCK_REALTIME), and the system 
monotonic time (CLOCK_MONOTONIC) and compared 
them with the 1588-synchronized NIC time via the PHC 
interface (Table 1). 
 
Table 1. Latencies of various clock sources read 1M times from 
user-space on testmaster PC. 

clock source 
Latency 

mean† median stdev min max 

 
ns 

CPU MONOTONI
 

602 628 307 488 188989 
CPU REALTIME 600 628 247 488 117542 
PTP/PHC 4817 4799 544 3632 194216 
RDTSC 52 40 594 24 411848 
† Latency measurements were conducted by a high-priority thread with affinity 
set to a single processor core. 
  

The RDTSC clock source had by far the lowest average 
latency of 52 ns after 1M executions on testmaster with the 
processor relatively unloaded. However, it also had the 

Figure 2. End-system software architecture. 
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greatest variance and maximum latency compared to all 
other clock sources. The RDT registers are processor core 
specific and all processes that need a common time-source 
must set their affinity to execute on the same core. This may 
be achievable on a real-time kernel; however, the non-real-
time kernel used in this study does not support CPU 
shielding necessary to block other processes from using the 
same core. Scheduling processes to run on specific cores 
without CPU shielding caused excessive latencies due to 
context switches. Further, there are no mechanisms to 
synchronize the RDT timestamps across multiple end-
systems. The system clock timers (CPU_MONOTONIC and 
CPU_REALTIME) had acceptable latencies and variance. 
Linux PTP provides an additional utility (phc2sys) which 
synchronizes the system wall-clock time to the PHC/PTP 
NIC time. Therefore, we chose to use the low-latency 
CLOCK_REALTIME with the added accuracy and time 
synchronization provided by PTP. 

The start-up sequence is critically important for time 
synchronization. Before synchronizing the system clock to 
NIC time on each end-system, all NIC hardware clocks 
needed to be initialized and synchronized to a common wall-
clock time. This ensures that the timestamps on all log files 
are accurate and consistent across end-systems. To achieve 
this, the testmaster system clock is synchronized to a time 
server via the NTP protocol. The NIC is initialized to system 
clock time using the Linux PTP phc_ctl command. The PTP 
server process (ptp4l) and the system clock synchronization 
process (phc2sys) are forked in the background. When a test 
is launched, the testmaster commands each end-system over 
the back-end COTS network to synchronize their system 
clocks to a time server using NTP. This brings the system 
clocks within range for phc2sys to take over using frequency 
scaling to correct for drift between the NIC and system 
clocks. Each end-system then forks a PTP client process 
(ptp4l) and the system clock synchronization process 
(phc2sys) to run in the background and waits for the system 
and NIC clocks to synchronize and stabilize. Each end-
system also runs a calibration routine to determine minimum 
latency of reading the system clock. This latency is 
subtracted from all subsequent readings. The testmaster 
transmits a common test start time to each end-system. This 
value is subtracted from all timestamps to avoid 64-bit 
rollover conditions when processing and analyzing log data. 

On each end-system, phc2sys was executed with a 
proportionality constant (kp) of 0.35 and an integral constant 
(ki) of 0.15 to reduce over-adjustment of the clock frequency 
that occurred occasionally using the defaults of 0.7 and 0.3, 
respectively. The CLOCK_REALTIME adjustment rate was 
set to the defaults of once per second using the fastest of five 
master clock readings per update. The resultant clock 
synchronization accuracy for a 1000-s test had a root mean 
square error of 8257 and 2765 and a maximum drift of 

36772 and 11946 µs per second on two different end-
systems, respectively. 

 
Payloads sizes and bus saturation rates 
The maximum transmission unit (MTU) supported by TTE 

and ARINC664, p7 is 1500 B. This consists of a 1472-B 
payload, an 8-B UDP header, and a 20-B IPv4 header. There 
is an additional 38-B overhead from the Ethernet frame 
which consists of a 7-B preamble, 1-B start delimiter, 14-B 
header, 4-B CRC, and a 12-B inter-packet gap. Therefore 
payload sizes evaluated in this study ranged from 64-B to 
1472-B by powers of two. 

Two end-systems were configured to transmit a flood of 
packets to two other end-systems while they communicate 
with one another to assess each protocol under full-duplex 
network saturation levels. Due to high overhead of the 
POSIX sendto() and lbpcap pcap_inject() functions, the bus 
was saturated using three concurrent threads on each end-
system sending bursts of packets followed by a delay using 
the nanosleep() function. Bursts of 10 packets minimized the 
60-ms average overhead of the nanosleep() function while 
keeping saturation levels as constant as possible over time. 
Sending bursts of packets was a reasonable approach given 
that the transmission of packets at such high frequencies 
would likely require hardware or software buffering and 
batch delivery at some point along the path. The packet 
transmittal interval to achieve different bus saturation levels 
are described in Table 2. For example, to achieve 100% bus 
saturation while end-system 1 communicates with end-
system 2 requires that three threads on each end-system 3 
and 4 transmit bursts of 10 packets followed by a 369-ms 
delay (12.3 µs x 3 threads x 10 packet bursts) to end-system 
1 and 2, respectively. 

 
Table 2. Bus saturation levels and packet injection rates 

Saturation level† 
Data rate Packet interval‡ 

10-packet burst  
interval 

Mbps µs µs  
25% 250 49.2 492 
50% 500 24.6 246 
75% 750 16.4 164 

100% 1000 12.3 123 
† Level of full duplex saturation on a 1 Gbps link 
‡ Each packet consists of a 1472-B UDP payload + 8-B UDP header + 20-B 
IPv4 header + 38-B Ethernet frame overhead. 

 
Application transmittal period and jitter 
The application transmittal period characteristics are 

relatively unaffected by the actual test executed. As 
illustrated in Figure 3, the periods have relatively low 
variance without using an interrupts-based solution for data 
transmission. The only difference among tests was center of 
the distribution which corresponded with the configured 
application period for the test. Nonetheless, there were some 
outliers likely due to scheduler pre-emption. There was also 
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a trend of greater period variance for payload sizes greater or 
equal to 1024 B. 

 

 
Figure 3. Representative density plot of transmittal periods for 
tasks configured with a 2-ms major frame 

 

 
Figure 4. Representative box plot of transmittal periods for tasks 
configured with a 2-ms major frame. 

 
Performance on an unsaturated network 
From the application’s perspective, the protocols evaluated 

differed greatly in latency, variance (jitter), and determinism 
(Table 3 and Figure 5). On an unsaturated network, with an 
application transmit period of 2 ms, a TTE period of 1 ms, 
and a RC BAG of 1ms, COTS UDP had the lowest average 
one-way latency and variance. It was also least affected by 
payload size with a range from 79.48 - 92.69 µs for payloads 
of 64 -- 1472 B, respectively. RC and BE latencies were 
lower than COTS UDP for payloads smaller than 256 B but 
increased strongly up to 452 µs for larger payloads. RC 
latencies and BE latencies were nearly identical for a given 
payload size on an uncongested network. The TTE switch is 
configured by default with a delta raster parameter of one 

which indicates that subsequent switch clock cycles alternate 
between transmitting TTE and transmitting RC or BE 
messages. RC and BE throughput should therefore be 
comparable on an uncongested network and indeed they are. 
Both RC and BE protocols were the most affected by 
payload size possibly as a result of the raster which may 
effectively reduce the transmit window in half. The one-way 
latency of TTE was higher than the other protocols. It ranged 
from 595.74 – 985.45 µs and increased with increasing 
payload sizes but with a substantial variance across all 
payload sizes. 

Surprisingly, the protocol that was expected to be the 
most-deterministic (TTE) was the least deterministic and had 
the highest variance from the application’s perspective, even 
though it was deterministic on the wire. This was due to the 
lack of synchronization between the TTE hardware cycle 
time and the application’s transmit time. This level of 
synchronization would make meeting the MAPS 
requirement for modularity as well as supporting legacy 
sensors much more difficult. But without it, even a slight 
drift or frequency difference between the switch and 
application timing mechanisms can result in multiple packets 
sent to the TTE hardware within one period or BAG of a 
virtual link. In which case, only the last packet would be 
transmitted. Therefore, it is necessary for the application 
transmit cycle to be sufficiently larger than the virtual link 
period or BAG as we have implemented, which, 
unfortunately, reduces the effective bandwidth by up to 
50%. However, this results in the application sending 
messages at various times within a virtual link’s period and 
causes excessive variance in the time lag between 
application transmittal time and the TTE hardware 
transmittal time. This effect is evident in the TTE density 
histogram (Figure 5) whereby the latency is caused primarily 
by the difference between these two major frames.  

 
Performance on a saturated networks 
Network saturation affected all protocols to varying 

degrees (Table 3 and Figure 5) but there did not appear to be 
any substantial differences between 50 and 100% saturation. 
The only dropped packets were found with BE traffic with 
payload sizes greater than 256 B at both 50 and 100% 
saturation. The lack of dropped packets with COTS UDP on 
a 100%-saturated network was surprising. It is possible that 
the incoming buffers of the COTS switch are serviced and 
forwarded to the destinations in a round-robin fashion. This 
would cause packets to be dropped that originate from the 
saturating device but not from devices that do not exceed an 
equitable proportion of total bandwidth. This rudimentary 
scheduling provided by a COTS switch may provide 
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Table 3. One-way latencies of four protocols evaluated on a network with three levels of saturation with a 2-ms application transmittal period. 

Payload size 
Unsaturated network 

 
50% saturated network 

 
100% saturated network 

N lost mean s.d.   N lost mean s.d.   N lost mean s.d. 
bytes no. no. us us 

 
no. no. us us 

 
no. no. us us 

TTE Protocol 
64 1000 0 595.74 279.86 

 
1000 0 858.94 342.50 

 
1000 0 771.43 313.37 

128 1000 0 597.83 275.56 
 

1000 0 782.82 314.52 
 

1000 0 762.87 327.81 
256 1000 0 613.68 276.94 

 
1000 0 843.03 299.28 

 
1000 0 846.94 323.41 

512 1000 0 672.96 285.98 
 

1000 0 911.58 304.40 
 

1000 0 936.25 315.72 
1024 1000 0 831.27 301.22 

 
1000 0 1031.92 313.11 

 
1000 0 1066.41 307.77 

1472 999 0 985.45 306.92 
 

999 0 1180.04 319.60 
 

999 0 1155.74 298.09 
RC Protocol 

64 1000 0 40.23 2.92 
 

1000 0 249.60 119.59 
 

1000 0 248.47 119.61 
128 999 0 57.50 2.88 

 
999 0 257.42 116.04 

 
999 0 258.98 115.42 

256 999 0 94.13 3.15 
 

999 0 298.34 115.97 
 

999 0 295.20 115.90 
512 999 0 168.82 2.88 

 
999 0 379.13 119.68 

 
999 0 370.11 115.77 

1024 999 0 320.96 2.88 
 

999 0 520.35 118.39 
 

999 0 520.43 119.15 
1472 998 0 452.06 6.01 

 
998 0 653.49 119.61 

 
998 0 628.17 115.72 

BE Protocol 
64 1000 0 47.66 2.67 

 
1000 0 21205.31† 306.57 

 
1000 0 21199.17 317.18 

128 1000 0 67.27 2.62 
 

1000 0 20781.54 283.55 
 

1000 0 21372.63 289.55 
256 1000 0 104.73 3.04 

 
1000 0 21765.33 283.54 

 
1000 0 21569.34 386.68 

512 1000 0 174.14 3.47 
 

1000 32 22102.62 409.31 
 

1000 28 22020.19 346.71 
1024 1000 0 322.26 5.78 

 
1000 959 24522.79 384.90 

 
1000 962 24968.11 66.77 

1472 999 0 452.09 9.38 
 

999 943 24856.16 360.36 
 

999 941 24885.00 319.85 
UDP Protocol 

64 1000 0 81.90 3.31 
 

1000 0 72.08 17.58 
 

1000 0 55.99 11.97 
128 1000 0 79.48 1.99 

 
1000 0 180.09 86.73 

 
1000 0 53.01 13.03 

256 1000 0 84.86 1.86 
 

1000 0 170.44 85.47 
 

1000 0 55.65 12.58 
512 1000 0 85.58 1.88 

 
1000 0 172.26 85.14 

 
1000 0 160.18 58.74 

1024 1000 0 89.52 1.70 
 

1000 0 181.82 74.97 
 

1000 0 170.97 59.74 
1472 999 0 92.69 2.08 

 
1000 0 186.36 66.84 

 
1000 0 186.62 60.03 

† Further investigation is needed to determine the exact cause of the high latency and variance for BE under saturated conditions. 
 

sufficient Quality of Service (QOS) and determinism for 
many applications. 

The 50 and 100% saturation levels increased TTE latency 
to approximately 1 ms, slightly exceeding the maximum 
theoretical latency which is the virtual link period 
configured on the switch and end-points. Both saturation 
levels also increased RC latency by up to 210.31 µs, 
averaging approximately half of the configured BAG of 1 
ms. The 50 and 100% saturation levels resulted in extremely 
high latencies for BE traffic that exceeded 20 ms. The exact 
cause of this is still under investigation. Saturation affected 
COTS UDP differently than the other protocols. Fifty 
percent saturation increased latency for payloads greater 
than 64 B by over 100% whereas 100% saturation increased 
latency for payloads greater than 256 B by 87-101%. These 
differences may have been caused by the timing offset 
between the start of applications’ major frames and the 
bursts of saturating traffic. Nonetheless, COTS UDP had, by 
far, the lowest latency of 55.99 -186.62 µs on a fully 
saturated network. 

 
CONCLUSION 

In this study, TTE was shown to have higher latency and 
variance from the application’s perspective as compared to 
other protocols, even if it is deterministic on the wire. This 
study demonstrates that a deterministic network and 
deterministic applications can be nondeterministic if they are 
not synchronized with each other. The worse-case latencies 

are still bounded, which is an advantage, but the worse-case 
latency is amplified by the number of unsynchronized 
components in the communication chain. Without 
synchronization, TTE messages must be configured to have 
a much smaller period than the communicating applications, 
resulting in a substantial loss in effective bandwidth. 
Further, the transmission time is reserved for TTE even if 
there is no message to transmit. Therefore, TTE is most 
appropriate for critical periodic and low-bandwidth 
messages. Suitable uses may include status reporting, health-
monitoring, and position or state-change announcements. If 
time-synchronization (e.g. 1588) of the network and the 
application was included as an integral part of the TTE 
protocol, we might envision more uses for TTE in certain 
markets. 

RC also performed as expected with the exception of the 
increased latency for larger payload sizes. It is comparable if 
not faster than UDP for very small payloads. Bandwidth 
partitioning schemes such as this are a good compromise 
between throughput and determinism. We look forward to 
seeing how the TSN protocol performs using AVB-based 
bandwidth partitioning with time scheduling and 
synchronization. The fast, robust, and low-overhead COTS 
UDP protocol remains the standard to which all other 
protocols are compared. Although it includes no QOS 
services, it can be very well-behaved on a saturated full-
duplex switched network depending on the fairness method 
that COTS switches use to service incoming buffers.
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Figure 5. Density plots of one-way latencies by protocol and bus saturation level. Further investigation is 
needed to determine the cause of high latency of BE on a saturated network. 
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