
UNCLASSIFIED: Distribution Statement A. Approved for public release.

UNCLASSIFIED: Distribution Statement A. Approved for public release.

2015 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY
SYMPOSIUM

VEHICLE ELECTRONICS AND ARCHITECTURE (VEA) TECHNICAL SESSION
AUGUST 4-6, 2015 - NOVI, MICHIGAN

EVALUATION OF DETERMINISTIC ETHERNET FOR THE MODULAR
ACTIVE PROTECTION SYSTEMS FRAMEWORK

David A. Verbree, PhD

DornerWorks Ltd.
Grand Rapids, MI

 Andrey Shvartsman
U.S. Army TARDEC

Warren, MI

ABSTRACT

The U.S. Army Tank-Automotive Research, Development and Engineering Center (TARDEC) contracted
DornerWorks Ltd. to evaluate Ethernet-based networking protocols for the safety-critical RDECOM Modular Active
Protection Systems (MAPS) framework (MAF). The MAF requires a universal and robust high-speed
communication network that can transmit heterogeneous data at near gigabit speeds in a deterministic fashion with
bounded and predictable latency. The objectives were to evaluate candidate protocols through rigorous stressing
scenarios to: 1) assess and estimate upper bound of performance including data throughput and reliability; and, 2)
detect and identify causes and conditions of data loss or corruption. We assessed four protocols: SAE AS6802
(TTEthernet; TTE), ARINC664p7 (rate-constrained; RC), COTS UDP integrated with these two protocols (best-
effort; BE), and UDP on a COTS network under three levels of network saturation and with varying payload sizes.
On an unsaturated network, TTE had the greatest one-way latency (≥595.74µs) and variance of latency (s.d. ≥
275.56 µs) from the applications’ perspectives due to lack of synchronization between the network cycle time and
the application transmittal period; RC and BE had low and nearly identical latencies (40.23- 452.09 µs) that
increased strongly with payload size; and COTS UDP had, by far, the lowest latency (≤92.69) and was relatively
unaffected by payload size. On a saturated network, TTE latency increased by 17.3-44.2% , matching the configured
virtual link period; RC latency also increased slightly; BE latency increased substantially (>21 ms); UDP latency
approximately doubled for larger payload sizes. Surprisingly, with 100% saturation on a full-duplex switched COTS
network, COTS UDP had no lost packets except those originating from the saturating devices..

INTRODUCTION

The goal of this study was to evaluate Ethernet-based
networking protocols for the safety-critical RDECOM
Modular Active Protection Systems (MAPS) framework
(MAF). One of the objectives of the MAPS program is to
incorporate communications network protocols that enable a
modular, flexible, and scalable approach to integrating active
protection system (APS) technologies for ground vehicle
platforms, and to lower lifecycle costs. MAPS is developing
a Modular APS Controller (MAC) that supervises APS
subsystems and ultimately determines the vehicle’s response
to an inbound threat. The MAF and MAC require a universal
and robust high-speed communication network that can
transmit heterogeneous data concurrently with data
prioritization and/or bandwidth allocation. Due to the safety
critical nature of the APS domain, the network protocol must
be deterministic with bounded and predictable latency. The
goal of the present study is to evaluate high-speed network
protocols capable of attaining near gigabit speeds for the
MAF while meeting the determinism requirements. The

objectives were to evaluate candidate protocols through
rigorous stressing scenarios to: 1) assess and determine
bounds on performance including data throughput and
reliability; and, 2) detect and identify causes and conditions
of data loss or corruption.

METHODS

Protocols evaluated
We conducted a literature review to select potential

candidate protocols for this study. Only ARINC 664p7 [1],
SAE AS6802 [2] (Time-Triggered Ethernet; TTE), and
IEEE 802.1BA [3] (Audio Video Bridging; AVB) met our
criteria for ≥500 Mbps throughput, determinism, and
industry support/adoption. Of these three, AVB was
eliminated from consideration because it may become
obsolete for this intended application once implementations
of Time-Sensitive Networking [4] (TSN) are available. TSN
is a collection of open standards that augment AVB by
providing time-synchronization (IEEE 802.1AS [5] based on
IEEE 1588 [6]), frame transmission scheduling [7] (IEEE

UNCLASSIFIED
Proceedings of the 2015 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Evaluation of Deterministic Ethernet for the Modular Active Protection Systems Framework, Verbree and Shvartsman.
UNCLASSIFIED

Page 2 of 9

802.1Qbv), and other enhancements. The switches and end-
points utilized in the evaluation effort simultaneously
support TTE, ARINC 664p7, and standard UDP (User
Datagram Packet; RFC 768 [8]) protocols. Based on this
review, for our study we evaluated four protocols: TTE,
ARINC 664, p7 (rate-constrained; RC), UDP over COTS
network, and UDP (best-effort; BE) over the TTE network.

Test bed hardware and architecture
Our development system consists of two TTE 12-port 1

Gbps development switches and four development PCs (Dell
Precision T1700 with Intel® Dual-core I3-4130 3.4 GHz
processors) with TTE PCIe cards. The development PCs
came pre-installed with Ubuntu® 14.04 LTS and Linux
kernel version 3.13.0-36-generic. An additional PC
(‘testmaster’; Dell® Precision T3610 with an Intel® Xeon®
Quad-core E6-1620 v. 2, 3.70 GHz processor4), with a quad-
port COTS NIC that supports high-resolution hardware time-
stamping (Intel® Ethernet Server Adapter I350-T4), and a
COTS 16-port Gigabit switch (Netgear® ProSAFE, model
GS116E) were purchased to coordinate tests and perform
IEEE 1588 (Precision Time Protocol; PTP) time-
synchronization via a back-end network. An additional
COTS switch (Netgear® ProSAFE, model GS-105) was
purchased to evaluate COTS UDP. Since TTE does not
support time-synchronization to a universal time-base,
‘Linux PTP’, an implementation of IEEE 1588, was used to
synchronize clocks over the back-end COTS network. A bus
tap (DualComm Technology, Inc. 10/100/1000Base-T

Regeneration Tap) and a quad-port COTS NIC captured full-
duplex data from the simulated MAC endpoint. Figure 1
illustrates our network configuration.

Test bed software framework
The Test Bed framework is meant to simulate the MAC,

APS sensors, and APS counter-measures. All traffic is to and
from the MAC with no direct communication between
simulated sensors or counter-measures. We simplified the
software design and test scenarios to assess communication
between the MAC and any individual node (or end-system),
agnostic of whether the node would represent a counter-
measure or a sensor.

The Test Bed framework was designed to be modular,
cross-platform, and extensible. The Test Bed consists of
three applications: a server application on the testmaster
loads and validates the test configuration and sends tasks to
the development PCs; a client application on each
development PC receives and executes tasks, logs results,
and transmits logs back to the testmaster; and a log
processing application on the testmaster post-processes the
logs and executes scripts to statistically analyze the results
via the GNU R Statistical language (version 3.0.2). The Test
Bed was written in POSIX-compliant (IEEE Std 1003;
ISO/IEC 9945) C++11(ISO/IEC 14882:2011). It utilizes the
Libxml2 library (version 2.9.1) for reading, writing, and
validating XML configuration files; the TTE API library
(version 66556) for interfacing with the TTE NICs; the GNU
Scientific Library (version 1.16) to aggregate data; and, the

COTS
NIC

PC 1
Simulated MAC

PC 2
Simulated sensors

and counter
measures

PC 3
Simulated sensors

and counter
measures

PC 4
Simulated sensors

and counter
measures

Bus
monitor

Server
Test

Master

COTS
NIC

COTS
NIC

COTS
NIC

PC 1 RX capture

PC 1 TX capture

TTE
NIC

TTE
NIC

TTE
NIC

TTE
NIC

Test control

COTS
NIC

Inject bad packets,
configure switch

COTS
NIC

COTS
NIC

COTS
NIC

COTS
NIC

COTS
NIC

COTS
NIC

COTS
NIC

Frontend
COTS switch

Backend
COTS switch

Frontend
TTE

switch

Thru

Thru

TX
mon
RX

mon

Figure 1. Test Bed Architecture

UNCLASSIFIED
Proceedings of the 2015 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Evaluation of Deterministic Ethernet for the Modular Active Protection Systems Framework, Verbree and Shvartsman.
UNCLASSIFIED

Page 3 of 9

PF_RING-enabled version of libpcap (version 1.1.1) for
high-speed packet capture with nanosecond-resolution
hardware time-stamps and packet injection. All applications
and libraries were compiled using the GNU Compiler
Collection g++, version 4.8.2-19.

Some modifications to the Ubuntu default environment
were necessary to improve measurement accuracy and
performance. Power management was disabled and
SpeedStep® was disabled in the bios to prevent clock
frequency scaling. The sizes of the UDP read and write
buffers were increased to 8 MB and the maximum size for
message queues was set to 64 MB.

Test configuration
Tests are configured in XML (Extensible Markup

Language) file format and validated at runtime using an
XML Schema Definition file (XSD). Each test consists of
tasks executed on each development PC. A task is
configured with a direction (receive, transmit, or relay),
virtual link or route ID, protocol, payload size, and payload
type (sequential or randomly generated data). A message
header with a message ID, message sequence number, and
an additional 32-bit CRC is added to the payload of each
transmission. At each transmission (send and receive), the
message headers, CRC verification status, source and
destination, and 64-bit 1588-synchronized CPU time-stamps
are recorded on each end-system and the log files are copied
to the testmaster at the end of each test. Special tasks are
configured for data capture and packet injection. The log
processor application on the testmaster builds a tracking
history of each message as a series of links. The actual
tracking history of each message is compared against the test
configuration to identify lost or misdirected messages.
Statistics for one-way latency, round-trip latency, and
transmittal period between subsequent messages are
calculated and reported.

Test scenarios and evaluation criteria
Several test scenarios were developed to evaluate each

protocol for latency, throughput, determinism, jitter, and
reliability. For each protocol, we evaluated the influence of
payload size, bus saturation level, transmission period, and
bandwidth allocation gap on one-way and round-trip
communication between two end-systems. Payload sizes
consisted of 64, 128, 256, 512, 1024, and 1472 B (the
maximum UDP payload size supported by TTE and RC
protocols). Bus saturation was achieved by injecting UDP
packets on the bus at 500 and 1000 Mbps or 50% and 100%
of bus saturation, respectively. All scenarios were executed
with a 2-ms and then 510-ms application transmission
period. This corresponds to two times the standard minimum
and maximum period and bandwidth allocation gap (BAG)
that can be configured for the TTE switch and end-systems.

The application transmittal rate must sufficiently exceed the
configured period or BAG because the TTE NIC and switch
start of frame cannot be synchronized with the application’s
start of period. If the application transmits multiple messages
within a single TTE NIC or switch cycle, data loss will
occur. Each transmission is replicated approximately 1000
times to ensure adequate data points should it be necessary
to filter potential context switch events. Due to the use of
multiple threads and processes for servicing different classes
of traffic, for data logging, and for time synchronization, it
was necessary to allow context switches during idle time to
allow lower priority processes limited access to the two
processor cores available (4 hyperthreads).

Our measurement of transmission latency includes
latencies from the API, driver, protocol stack, hardware
(NIC, wire, switch), and protocol packet overhead. It was
determined by subtracting each message’s reception time
from its transmittal time using the IDs and sequence
numbers embedded in the payload. The data throughput (or
effective bandwidth) is calculated as the transmitted payload
size over the transmission latency and is influenced by the
period or BAG, bandwidth saturation, and the payload size
relative to the protocol overhead. The determinism of a
protocol is assessed by multiple sources of jitter. Application
transmit period jitter is calculated as the total variance of
time between subsequent data transmissions which includes
jitter caused by the scheduler, any context switches, and
user-space major-frame time-synchronization functions (e.g.
nanosleep(), clock_gettime(), etc). Receive period jitter is
calculated as the total variance of time between subsequent
data receptions and represents the total transmission jitter for
periodic messages from the application’s perspective..
Hardware jitter is calculated (for RC and TTE traffic classes)
as the variance of the hardware timestamps of packets
captured using libpcap via the bus tap. Network reliability
and data loss is assessed in all tests by comparing logs of
sent and received messages with test configuration data.
Data reliability and corruption is assessed by validating 32-
bit CRCs embedded in the payload of every message.
Although this is of minimal value because corrupted packets
are usually discarded automatically by the hardware due to
failed checksums in the protocol headers. To the application,
it may appear as a lost packet.

Test bed queues and processes
The test bed consists of several prioritized processes,

buffers, and message queues (Figure 2) designed to avoid
pre-emption and to shift as much processing as possible
away from the time-critical servicing threads that ultimately
transmits and receiver data and timestamps each
transmission. Since the TTE API is not thread-safe, there is a
single TTE servicing thread for TTE and RC traffic and a
separate servicing thread for COTS UDP traffic. When a test

UNCLASSIFIED
Proceedings of the 2015 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Evaluation of Deterministic Ethernet for the Modular Active Protection Systems Framework, Verbree and Shvartsman.
UNCLASSIFIED

Page 4 of 9

is executed, a test thread is started which, in turn, executes
and waits on a task thread for each configured task. A task
thread can be a receiver, a sender, a relay (round-trip), a
packet injector, or a packet capture. A sender task builds a
message and sends it to a servicing thread to be transmitted
via a dedicated message queue. The servicing threads
receive incoming packets and send them to receiving tasks
waiting on dedicated message queues. The servicing threads
send a copy of every transmitted and received packet to a
dedicated message queue for logging. The logging thread
then receives the message from the log message queue,
validates the payload CRC, and writes only essential
information (headers, CRC status, timestamps, etc.) to a
ramdisk log file which is sent to the testmaster at the end of
the test.

RESULTS

Time-synchronization
Transmission latency calculations can only be as good as

the timestamp resolution and time-synchronization accuracy
across multiple end-systems. Although TTE provides limited
support for PTP, the TTE NICs do not provide hardware
timestamp support. The TTE API provides a TTE timestamp
in the form of a drift-corrected time offset from NIC
initialization that can be acquired via a status message
returned from a receive API call or a dedicated API call.
Unfortunately, these timestamps are not synchronized to a
universal time-base across the TTE network. Therefore, we
considered using Linux PTP to synchronize hardware time-
stamps over the backend COTS network with the integrated

COTS NICs (I217-LM rev. 4) which support hardware time-
stamping. However, we discovered a hardware bug whereby
reading the time-counter register at frequencies greater than
1 MHz causes register corruption and the driver (e1000e-
3.1.0.2) performs back-to-back reads to detect rollover
conditions while avoiding the locking of interrupts, thereby
exasperating the problem. Therefore, we purchased and
installed four additional I210 (rev 3) NICs which overcame
this limitation. We also found that reading directly from the
PTP hardware clock (PHC) device (e.g. “/dev/ptpX”) was
vulnerable to large deviations in latency which warrants
further investigation. So, we assessed the overhead and
vulnerability of other userspace time sources including the
processor time-stamp counter (RDTSC), the system wall-
clock time (CLOCK_REALTIME), and the system
monotonic time (CLOCK_MONOTONIC) and compared
them with the 1588-synchronized NIC time via the PHC
interface (Table 1).

Table 1. Latencies of various clock sources read 1M times from
user-space on testmaster PC.

clock source
Latency

mean† median stdev min max

ns

CPU MONOTONI

602 628 307 488 188989
CPU REALTIME 600 628 247 488 117542
PTP/PHC 4817 4799 544 3632 194216
RDTSC 52 40 594 24 411848
† Latency measurements were conducted by a high-priority thread with affinity
set to a single processor core.

The RDTSC clock source had by far the lowest average
latency of 52 ns after 1M executions on testmaster with the
processor relatively unloaded. However, it also had the

Figure 2. End-system software architecture.

UNCLASSIFIED
Proceedings of the 2015 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Evaluation of Deterministic Ethernet for the Modular Active Protection Systems Framework, Verbree and Shvartsman.
UNCLASSIFIED

Page 5 of 9

greatest variance and maximum latency compared to all
other clock sources. The RDT registers are processor core
specific and all processes that need a common time-source
must set their affinity to execute on the same core. This may
be achievable on a real-time kernel; however, the non-real-
time kernel used in this study does not support CPU
shielding necessary to block other processes from using the
same core. Scheduling processes to run on specific cores
without CPU shielding caused excessive latencies due to
context switches. Further, there are no mechanisms to
synchronize the RDT timestamps across multiple end-
systems. The system clock timers (CPU_MONOTONIC and
CPU_REALTIME) had acceptable latencies and variance.
Linux PTP provides an additional utility (phc2sys) which
synchronizes the system wall-clock time to the PHC/PTP
NIC time. Therefore, we chose to use the low-latency
CLOCK_REALTIME with the added accuracy and time
synchronization provided by PTP.

The start-up sequence is critically important for time
synchronization. Before synchronizing the system clock to
NIC time on each end-system, all NIC hardware clocks
needed to be initialized and synchronized to a common wall-
clock time. This ensures that the timestamps on all log files
are accurate and consistent across end-systems. To achieve
this, the testmaster system clock is synchronized to a time
server via the NTP protocol. The NIC is initialized to system
clock time using the Linux PTP phc_ctl command. The PTP
server process (ptp4l) and the system clock synchronization
process (phc2sys) are forked in the background. When a test
is launched, the testmaster commands each end-system over
the back-end COTS network to synchronize their system
clocks to a time server using NTP. This brings the system
clocks within range for phc2sys to take over using frequency
scaling to correct for drift between the NIC and system
clocks. Each end-system then forks a PTP client process
(ptp4l) and the system clock synchronization process
(phc2sys) to run in the background and waits for the system
and NIC clocks to synchronize and stabilize. Each end-
system also runs a calibration routine to determine minimum
latency of reading the system clock. This latency is
subtracted from all subsequent readings. The testmaster
transmits a common test start time to each end-system. This
value is subtracted from all timestamps to avoid 64-bit
rollover conditions when processing and analyzing log data.

On each end-system, phc2sys was executed with a
proportionality constant (kp) of 0.35 and an integral constant
(ki) of 0.15 to reduce over-adjustment of the clock frequency
that occurred occasionally using the defaults of 0.7 and 0.3,
respectively. The CLOCK_REALTIME adjustment rate was
set to the defaults of once per second using the fastest of five
master clock readings per update. The resultant clock
synchronization accuracy for a 1000-s test had a root mean
square error of 8257 and 2765 and a maximum drift of

36772 and 11946 µs per second on two different end-
systems, respectively.

Payloads sizes and bus saturation rates
The maximum transmission unit (MTU) supported by TTE

and ARINC664, p7 is 1500 B. This consists of a 1472-B
payload, an 8-B UDP header, and a 20-B IPv4 header. There
is an additional 38-B overhead from the Ethernet frame
which consists of a 7-B preamble, 1-B start delimiter, 14-B
header, 4-B CRC, and a 12-B inter-packet gap. Therefore
payload sizes evaluated in this study ranged from 64-B to
1472-B by powers of two.

Two end-systems were configured to transmit a flood of
packets to two other end-systems while they communicate
with one another to assess each protocol under full-duplex
network saturation levels. Due to high overhead of the
POSIX sendto() and lbpcap pcap_inject() functions, the bus
was saturated using three concurrent threads on each end-
system sending bursts of packets followed by a delay using
the nanosleep() function. Bursts of 10 packets minimized the
60-ms average overhead of the nanosleep() function while
keeping saturation levels as constant as possible over time.
Sending bursts of packets was a reasonable approach given
that the transmission of packets at such high frequencies
would likely require hardware or software buffering and
batch delivery at some point along the path. The packet
transmittal interval to achieve different bus saturation levels
are described in Table 2. For example, to achieve 100% bus
saturation while end-system 1 communicates with end-
system 2 requires that three threads on each end-system 3
and 4 transmit bursts of 10 packets followed by a 369-ms
delay (12.3 µs x 3 threads x 10 packet bursts) to end-system
1 and 2, respectively.

Table 2. Bus saturation levels and packet injection rates

Saturation level†
Data rate Packet interval‡

10-packet burst
interval

Mbps µs µs
25% 250 49.2 492
50% 500 24.6 246
75% 750 16.4 164

100% 1000 12.3 123
† Level of full duplex saturation on a 1 Gbps link
‡ Each packet consists of a 1472-B UDP payload + 8-B UDP header + 20-B
IPv4 header + 38-B Ethernet frame overhead.

Application transmittal period and jitter
The application transmittal period characteristics are

relatively unaffected by the actual test executed. As
illustrated in Figure 3, the periods have relatively low
variance without using an interrupts-based solution for data
transmission. The only difference among tests was center of
the distribution which corresponded with the configured
application period for the test. Nonetheless, there were some
outliers likely due to scheduler pre-emption. There was also

UNCLASSIFIED
Proceedings of the 2015 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Evaluation of Deterministic Ethernet for the Modular Active Protection Systems Framework, Verbree and Shvartsman.
UNCLASSIFIED

Page 6 of 9

a trend of greater period variance for payload sizes greater or
equal to 1024 B.

Figure 3. Representative density plot of transmittal periods for
tasks configured with a 2-ms major frame

Figure 4. Representative box plot of transmittal periods for tasks
configured with a 2-ms major frame.

Performance on an unsaturated network
From the application’s perspective, the protocols evaluated

differed greatly in latency, variance (jitter), and determinism
(Table 3 and Figure 5). On an unsaturated network, with an
application transmit period of 2 ms, a TTE period of 1 ms,
and a RC BAG of 1ms, COTS UDP had the lowest average
one-way latency and variance. It was also least affected by
payload size with a range from 79.48 - 92.69 µs for payloads
of 64 -- 1472 B, respectively. RC and BE latencies were
lower than COTS UDP for payloads smaller than 256 B but
increased strongly up to 452 µs for larger payloads. RC
latencies and BE latencies were nearly identical for a given
payload size on an uncongested network. The TTE switch is
configured by default with a delta raster parameter of one

which indicates that subsequent switch clock cycles alternate
between transmitting TTE and transmitting RC or BE
messages. RC and BE throughput should therefore be
comparable on an uncongested network and indeed they are.
Both RC and BE protocols were the most affected by
payload size possibly as a result of the raster which may
effectively reduce the transmit window in half. The one-way
latency of TTE was higher than the other protocols. It ranged
from 595.74 – 985.45 µs and increased with increasing
payload sizes but with a substantial variance across all
payload sizes.

Surprisingly, the protocol that was expected to be the
most-deterministic (TTE) was the least deterministic and had
the highest variance from the application’s perspective, even
though it was deterministic on the wire. This was due to the
lack of synchronization between the TTE hardware cycle
time and the application’s transmit time. This level of
synchronization would make meeting the MAPS
requirement for modularity as well as supporting legacy
sensors much more difficult. But without it, even a slight
drift or frequency difference between the switch and
application timing mechanisms can result in multiple packets
sent to the TTE hardware within one period or BAG of a
virtual link. In which case, only the last packet would be
transmitted. Therefore, it is necessary for the application
transmit cycle to be sufficiently larger than the virtual link
period or BAG as we have implemented, which,
unfortunately, reduces the effective bandwidth by up to
50%. However, this results in the application sending
messages at various times within a virtual link’s period and
causes excessive variance in the time lag between
application transmittal time and the TTE hardware
transmittal time. This effect is evident in the TTE density
histogram (Figure 5) whereby the latency is caused primarily
by the difference between these two major frames.

Performance on a saturated networks
Network saturation affected all protocols to varying

degrees (Table 3 and Figure 5) but there did not appear to be
any substantial differences between 50 and 100% saturation.
The only dropped packets were found with BE traffic with
payload sizes greater than 256 B at both 50 and 100%
saturation. The lack of dropped packets with COTS UDP on
a 100%-saturated network was surprising. It is possible that
the incoming buffers of the COTS switch are serviced and
forwarded to the destinations in a round-robin fashion. This
would cause packets to be dropped that originate from the
saturating device but not from devices that do not exceed an
equitable proportion of total bandwidth. This rudimentary
scheduling provided by a COTS switch may provide

UNCLASSIFIED
Proceedings of the 2015 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Evaluation of Deterministic Ethernet for the Modular Active Protection Systems Framework, Verbree and Shvartsman.
UNCLASSIFIED

Page 7 of 9

Table 3. One-way latencies of four protocols evaluated on a network with three levels of saturation with a 2-ms application transmittal period.

Payload size
Unsaturated network

50% saturated network

100% saturated network

N lost mean s.d. N lost mean s.d. N lost mean s.d.
bytes no. no. us us

no. no. us us

no. no. us us

TTE Protocol
64 1000 0 595.74 279.86

1000 0 858.94 342.50

1000 0 771.43 313.37

128 1000 0 597.83 275.56

1000 0 782.82 314.52

1000 0 762.87 327.81
256 1000 0 613.68 276.94

1000 0 843.03 299.28

1000 0 846.94 323.41

512 1000 0 672.96 285.98

1000 0 911.58 304.40

1000 0 936.25 315.72
1024 1000 0 831.27 301.22

1000 0 1031.92 313.11

1000 0 1066.41 307.77

1472 999 0 985.45 306.92

999 0 1180.04 319.60

999 0 1155.74 298.09
RC Protocol

64 1000 0 40.23 2.92

1000 0 249.60 119.59

1000 0 248.47 119.61
128 999 0 57.50 2.88

999 0 257.42 116.04

999 0 258.98 115.42

256 999 0 94.13 3.15

999 0 298.34 115.97

999 0 295.20 115.90
512 999 0 168.82 2.88

999 0 379.13 119.68

999 0 370.11 115.77

1024 999 0 320.96 2.88

999 0 520.35 118.39

999 0 520.43 119.15
1472 998 0 452.06 6.01

998 0 653.49 119.61

998 0 628.17 115.72

BE Protocol
64 1000 0 47.66 2.67

1000 0 21205.31† 306.57

1000 0 21199.17 317.18

128 1000 0 67.27 2.62

1000 0 20781.54 283.55

1000 0 21372.63 289.55
256 1000 0 104.73 3.04

1000 0 21765.33 283.54

1000 0 21569.34 386.68

512 1000 0 174.14 3.47

1000 32 22102.62 409.31

1000 28 22020.19 346.71
1024 1000 0 322.26 5.78

1000 959 24522.79 384.90

1000 962 24968.11 66.77

1472 999 0 452.09 9.38

999 943 24856.16 360.36

999 941 24885.00 319.85
UDP Protocol

64 1000 0 81.90 3.31

1000 0 72.08 17.58

1000 0 55.99 11.97
128 1000 0 79.48 1.99

1000 0 180.09 86.73

1000 0 53.01 13.03

256 1000 0 84.86 1.86

1000 0 170.44 85.47

1000 0 55.65 12.58
512 1000 0 85.58 1.88

1000 0 172.26 85.14

1000 0 160.18 58.74

1024 1000 0 89.52 1.70

1000 0 181.82 74.97

1000 0 170.97 59.74
1472 999 0 92.69 2.08

1000 0 186.36 66.84

1000 0 186.62 60.03

† Further investigation is needed to determine the exact cause of the high latency and variance for BE under saturated conditions.

sufficient Quality of Service (QOS) and determinism for
many applications.

The 50 and 100% saturation levels increased TTE latency
to approximately 1 ms, slightly exceeding the maximum
theoretical latency which is the virtual link period
configured on the switch and end-points. Both saturation
levels also increased RC latency by up to 210.31 µs,
averaging approximately half of the configured BAG of 1
ms. The 50 and 100% saturation levels resulted in extremely
high latencies for BE traffic that exceeded 20 ms. The exact
cause of this is still under investigation. Saturation affected
COTS UDP differently than the other protocols. Fifty
percent saturation increased latency for payloads greater
than 64 B by over 100% whereas 100% saturation increased
latency for payloads greater than 256 B by 87-101%. These
differences may have been caused by the timing offset
between the start of applications’ major frames and the
bursts of saturating traffic. Nonetheless, COTS UDP had, by
far, the lowest latency of 55.99 -186.62 µs on a fully
saturated network.

CONCLUSION

In this study, TTE was shown to have higher latency and
variance from the application’s perspective as compared to
other protocols, even if it is deterministic on the wire. This
study demonstrates that a deterministic network and
deterministic applications can be nondeterministic if they are
not synchronized with each other. The worse-case latencies

are still bounded, which is an advantage, but the worse-case
latency is amplified by the number of unsynchronized
components in the communication chain. Without
synchronization, TTE messages must be configured to have
a much smaller period than the communicating applications,
resulting in a substantial loss in effective bandwidth.
Further, the transmission time is reserved for TTE even if
there is no message to transmit. Therefore, TTE is most
appropriate for critical periodic and low-bandwidth
messages. Suitable uses may include status reporting, health-
monitoring, and position or state-change announcements. If
time-synchronization (e.g. 1588) of the network and the
application was included as an integral part of the TTE
protocol, we might envision more uses for TTE in certain
markets.

RC also performed as expected with the exception of the
increased latency for larger payload sizes. It is comparable if
not faster than UDP for very small payloads. Bandwidth
partitioning schemes such as this are a good compromise
between throughput and determinism. We look forward to
seeing how the TSN protocol performs using AVB-based
bandwidth partitioning with time scheduling and
synchronization. The fast, robust, and low-overhead COTS
UDP protocol remains the standard to which all other
protocols are compared. Although it includes no QOS
services, it can be very well-behaved on a saturated full-
duplex switched network depending on the fairness method
that COTS switches use to service incoming buffers.

UNCLASSIFIED
Proceedings of the 2015 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Evaluation of Deterministic Ethernet for the Modular Active Protection Systems Framework, Verbree and Shvartsman.
UNCLASSIFIED

Page 8 of 9

TTE

RC

BE

UDP

Unsaturated 50% saturation 100% saturation

Figure 5. Density plots of one-way latencies by protocol and bus saturation level. Further investigation is
needed to determine the cause of high latency of BE on a saturated network.

UNCLASSIFIED
Proceedings of the 2015 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Evaluation of Deterministic Ethernet for the Modular Active Protection Systems Framework, Verbree and Shvartsman.
UNCLASSIFIED

Page 9 of 9

ACKNOWLEDGEMENTS
This research was conducted by DornerWorks Ltd. funded

and contracted by the U.S. Army Tank-Automotive
Research, Development and Engineering Center (TARDEC)
via Alion Science and Technology Corporation.

REFERENCES

[1] Aeronautical Radio, Inc., "Aircraft Data Network Part 7.

Avionics Full Duplex Switched Ethernet (AFDX)
Network.," ARINC Specification 664p7, 27 June 2005.

[2] SAE Aerospace, "SAE AS 6802. Time-Triggered
Ethernet," November 2011.

[3] IEEE Computer Society, "IEEE Standard for Local and
Metropolitan Area Networks---Audio Video Bridging
(AVB) Systems," 19 May 2008.

[4] Time-Sensitive Networking Task Group, "Time-sensitive
networking," IEEE 802.1, Not yet ratified.

[5] Time-Sensitive Networking Task Group, "Timing and
Synchronization for Time-Sensitive Applications,"
802.1AS-Rev.

[6] IEEE Instrumentation and Measurement Society, "A
Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems," IEEE 1588-2008,
2008.

[7] Time-Sensitive Networking Task Group, "Enhancements
for Scheduled Traffic," IEEE 802.1Qbv, 15 May 2012.

[8] J. Postel, "User Datagram Protocol," USC/Information
Sciences Institute, 1980.

	ABSTRACT
	INTRODUCTION
	METHODS
	Protocols evaluated
	Test bed hardware and architecture
	Test bed software framework
	Test configuration
	Test scenarios and evaluation criteria
	Test bed queues and processes

	RESULTS
	Time-synchronization
	Payloads sizes and bus saturation rates
	Application transmittal period and jitter
	Performance on an unsaturated network
	Performance on a saturated networks

	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

