
UNCLASSIFIED: Distribution Statement A. Approved for public release

UNCLASSIFIED: Distribution Statement A. Approved for public release

2015 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM
VEHICLE ELECTRONICS AND ARCHITECTURE (VEA) TECHNICAL SESSION

AUGUST 4-6, 2015 – NOVI, MICHIGAN

IMPLEMENTING THE VICTORY ACCESS CONTROL FRAMEWORK IN A
MILITARY GROUND VEHICLE

Leonard Elliott

Vehicle Electronics and Architecture
TARDEC

Warren, MI

 Kim Woodward
Vehicle Software Department

DCS Corporation
Alexandria, VA

 Alex LaBerge

Vehicle Systems Department
DCS Corporation

Warren, MI

Disclaimer: Reference herein to any specific commercial company, product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or the Department of the Army (DoA). The opinions of the authors
expressed herein do not necessarily state or reflect those of the United States Government or the DoA, and shall not
be used for advertising or product endorsement purposes.

ABSTRACT
The Vehicular Integration for Command, Control, Communications, Computers, Intelligence, and

Surveillance/Electronic Warfare (C4ISR/EW) Interoperability (VICTORY) Standard provides an open
architecture and technical specifications to promote sharing and reuse of resources within the military
ground vehicle (MGV). The VICTORY Access Control Framework (VACF) provides services and
mechanisms for protecting many of these shared-resources through the adoption of standards such as
Security Attribute Markup Language (SAML) and eXtensible Access Control Markup Language (XACML).
These technologies are typically used for securing an Enterprise Architecture and no fundamental issues
appear to preclude their successful use within a MGV. However, despite consistent demand and pressure
from Program Managers, and the successful deployment of many other VICTORY components, there has
been no successful demonstration of these security components in an integrated vehicular environment.
This paper presents a brief overview of the VACF and possible solutions for overcoming the practical
challenges associated with implementing it in a MGV.

INTRODUCTION

The Vehicular Integration for Command, Control,
Communications, Computers, Intelligence, and
Surveillance/Electronic Warfare (C4ISR/EW)
Interoperability (VICTORY) standard provides building-
blocks for creating a Service-Oriented Architecture (SOA)
within a MGV and the infrastructure created by combining
these building-blocks is known as the VICTORY Data Bus
(VDB). A SOA can provide a fabric through which vehicle

subsystems can share resources and new capabilities can be
inserted with relative ease. There is an increased need to
protect these increasingly connected resources.
 The VICTORY Access Control Framework (VACF)
prescribes a mechanism for securing web-services connected
to the VDB. The VACF components are a recommended,
not required, feature of the VDB and consists of the
Authentication Service and the VICTORY Authorization
Framework (VAF). The VAF is composed of the Policy

UNCLASSIFIED
Proceedings of the 2015 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Implementing the VICTORY Access Control Framework in a Military Ground Vehicle
UNCLASSIFIED

Page 2 of 7

Enforcement Service (PES), Policy Decision Service (PDS),
Policy Store (PS), and Attribute Store (AS) Services.
Variations of this framework are used in many enterprise
systems (e.g. banking and healthcare). There are no
identified issues which should prevent the successful
implementation of this model in a MGV environment.
Although the VICTORY ACF is not required by the
VICTORY specification, most integrators find that
protection is necessary to secure other services that are
required to be available on the VDB. For example, if fully
implemented, the VICTORY Shared-Processing Unit (SPU)
Service exposes functionality to remotely reconfigure the
host hardware and this is a function that must be protected.
Despite the clear need to protect these distributed resources
with some sort of access control, there has yet to be a
successful deployment of the VACF in an integrated
vehicular environment. Without a functioning VACF and
security policy, integrators are choosing to omit
functionality from required services, leading to failed
VICTORY compliance tests.

In this paper we will briefly describe the VACF and
conceptual operation within an MGV. We then discuss
implementation and evaluation of the VACF by the
VICTORY Standards Maturation (VSM) team at the Tank
and Automotive Research Development and Engineering
Center (TARDEC), and difficulties associated with
deploying the VACF. Finally, we discuss possible solutions
for providing access control to secure VICTORY services.

VICTORY ACCESS CONTROL FRAMEWORK
 The VACF components leverage the SAML 2.0 and
XACML 2.0 standards which are general purpose languages
for describing and communicating security related
information and transactions in an arbitrary security
architecture. SAML and XACML provide comprehensive
language to support security in complex systems and so the
message sets and processing semantics are complex relative
to the rest of the VICTORY specification (e.g. the SAML
and XACML 2.0 core documents alone are several hundred
pages) [1, 2]. Figure 1 illustrates a typical configuration of
the VACF and the communication sequence for a successful
access control request on the VICTORY Position Service.
When a client attempts to perform an action on the Position
Service, the security handler sends the client’s credentials
(i.e. username/password, X509, or SAML token) to the
Authentication Service to verify authenticity. Upon
notification of successful authentication, the security handler
constructs and sends a SAML authorization decision query
to the PES. The PES forwards the query to the PDS which
queries the AS and PS, evaluates the retrieved information,
and returns the authorization decision to the PES. The PES
then returns the authorization decision to the resource who

either executes the request or returns a “Not Authorized”
message to the client.

Figure 1: VACF Architecture and Communication
Sequence

VACF PROTOTYPING AND VALIDATION
 The VSM team at TARDEC has evaluated portions of the
VICTORY specifications since version 0.7. The VSM
team’s primary goals are to ensure that the specifications are
complete and unambiguous, but also to verify that the
resulting components are practical logistically, and can
operate in a MGV environment. The VSM team also
verifies that software specifications can be implemented
using a variety of programming languages and software
tools, on a representative set of processing architectures and
operating systems. When possible, open-source or
commercial software packages are used to implement
VICTORY components (e.g. the VICTORY Time Service
was implemented using the open-source ntpd package). If no
“turn-key” solutions exist then the VSM team designs and
builds custom software to implement the component. In
many cases, these prototypes are then integrated into a
Government Open-Source Software VICTORY library
called libVictory, which is available to other government
organizations and contractors via https://software.forge.mil.

Position
Service
Client

Position
Service Security

Handler
Protected
Resource

Policy Enforcement
Service (PES)

Policy Decision
Service (PDS)

Attribute Store
(AS)

Policy Store
(PS)

Authentication
Service

1

2 3

4 11

5 10

6 7 8 9

12

VICTORY
Authorization
Framework

https://software.forge.mil/

UNCLASSIFIED
Proceedings of the 2015 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Implementing the VICTORY Access Control Framework in a Military Ground Vehicle
UNCLASSIFIED

Page 3 of 7

VACF Market Research
After studying the SAML and XACML specifications we

suspected, given the relative complexity of these adopted
standards, that sophisticated software would be needed to
support the VACF. Market research was conducted to
determine if existing software packages could be used to
implement the VACF components. Many toolkits and
products, primarily written in Java, supported both SAML
2.0 and XACML 2.0 to various degrees of conformance. In
particular, the PDS was an item of concern due to the
criticality of its role (i.e. interpreter of security policies), the
complexity of XACML security policy processing rules, and
the potential complexity of the security policies themselves.
There were many PDS products available, both open-source
and commercial. Many of the products identified were not
fully compliant with the XACML specification and
conformance test suite [3, 4]. The compliance status for a
particular product was not always easy to assess and self-
certification appeared to be standard. Table 1 lists a sample
of XACML PDS engines including all of those that we
identified as being fully XACML conformant.

Name License Compliant Language
Axiomatics Commercial Yes Java/C#
Heras-AF Open-Source Yes Java
IBM Tivoli Commercial Yes Java
Jericho Commercial Yes Java
SunXACML Open-Source No Java
XEngine Open-Source No Java

Table 1: Sample of XACML Policy Decision Engines

These products all use Java and a Security Technical
Implementation Guide (STIG) for Java does exist, but
whether Java applications could be supported by MGV
platforms was unknown. Given the high-frequency of zero-
day vulnerabilities reported and the large attack surface
provided by the Java core libraries [5], versus the
comparatively slow patching cycle for vehicle systems, it
was unclear whether Java would be prohibited for security
reasons. Various organizations, including the VICTORY
Information Assurance Working Group (IAWG), were
queried to determine whether Java was definitely supported
in a vehicular environment, but we were unable to identify a
source to confirm this. Given this information, and the
VSMs normal activity of verifying that VICTORY services
could be supported by a wide variety of programming
languages, the decision was made to build and evaluate
VACF component prototypes written in C++ and using
gSOAP for web-service support.

Prototyping VACF Components using C++
Prototypes for the PES, PDS, PS, and AS were built using

C++ with the Genivia gSOAP toolkit being used to generate
the appropriate C++ bindings from the VICTORY, SAML,
and XACML schemas. The software prototypes were built
to implement the behavior described in the VICTORY
specification associated with the interfaces defined in the
following Web-Service Definition Language (WSDL) files:

• Authentication.wsdl
• PolicyEnforcement.wsdl
• PolicyDecision.wsdl
• PolicyStore.wsdl
• AttributeStore.wsdl

The VACF services were implemented and evaluated, and

detailed reports are available in the restricted section of the
Defense Technical Information Center. Although these C++
prototypes adequately demonstrated basic operation of the
VACF, problems were encountered when they were
evaluated for compliance. The SAML and XACML
specifications define languages in themselves and the
resulting messages can be constructed in complex and varied
forms. The subset of messages, formats, and options
supported by the C++ prototype were adequate for providing
basic access control functionality, but were nowhere near
conformant with the SAML and XACML specifications.
For example, the SAML specification requires that the
VACF components have the ability to encrypt individual
XML elements within a message. The C++ prototypes
provided connection encryption via Transport Layer
Security (TLS), and application-layer encryption via WS-
Security encryption of the entire Simple Object Access
Protocol (SOAP) message body, but lacked the ability to
encrypt individual XML elements within the SOAP body.
Several attempts were made to augment the C++ prototypes
with additional resources like the OpenSAML library.
After several months of continued effort it became apparent
that it is likely not cost-effective to implement the VACF
components in C or C++. The complexity of the VACF
message sets and the preponderance of existing open-source
support for SAML and XACML are built into languages like
Java and the re-use of these tools is the most feasible option
for implementing the VACF. These solutions are often
deployed as Java servlets so the use of web-servers like
Apache and an accompanying web-service stack like AXIS2
may also be required.

The VSM has conducted performance testing on the
VICTORY services that are written in C++ with gSOAP
support [6] and these services (contained within libVictory)
have been tested on a variety of architectures including Intel,
PowerPC, and ARM. The libVictory software is supported

UNCLASSIFIED
Proceedings of the 2015 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Implementing the VICTORY Access Control Framework in a Military Ground Vehicle
UNCLASSIFIED

Page 4 of 7

by Linux and it has been tested on several variations
including Debian, Embedded, Red Hat, Ubuntu, and Wind
River Linux. The libVictory web-services supported by
gSOAP are generally an order of magnitude faster than Java
based web-servers [7]. There is a possibility that integrators
may be more restricted in their choice of target hardware for
hosting the VACF components, but this may not be an issue
given the ever-increasing computational power provided by
military hardware.

VACF Validation Conclusion
The VSM team’s process of prototyping and evaluating

VACF components using C++ showed that VACF
components could be used to protect web-service on the
vehicle. We also found that it would probably require
sophisticated software and that, compared to our experience
with other VICTORY services, there are a different set of
issues impeding the deployment and configuration of the
VACF. To summarize, the following problems were
identified as significant obstacles to successfully deploying
the VACF in an integrated vehicular environment:

• Complexity of the SAML/XACML specifications and

availability of supporting software precludes the cost-
effective implementation of VACF components in
languages such as C/C++

• Unknown support for Java in mobile MGV
environments

• Development of XACML policies for distributed
systems can be complicated and may require special
tools and/or the adoption of a reduced set of language
constructs

• VACF components need to be running on each vehicle
rather than a centralized location, as is common for
enterprise systems

• Potential large cost impact on MGV programs if
commercial enterprise software is procured on a per
vehicle basis

• Use of servers and web-service stacks such as Apache
and AXIS2 require significantly more memory and
processing time than other web servers such as
gSOAP

• Use of servers and web-service stacks such as Apache
and AXIS2 may restrict choice of embedded targets
for hosting VACF

• VACF is a potential bottleneck and single-point of
failure for message traffic on the vehicle

VACF COMPONENT DEPLOYMENT OPTIONS
 In this section we discuss several deployment options
available to MGV integrators wishing to secure their web-
services. For many VICTORY Services, including the

Position, Orientation, Direction-of-Travel, SPU, Threat
Detection and Reporting, Remote Weapon Services, and
VDB Manager, the VSM prototypes have been incorporated
into libVictory, a freely-available option for vehicle
integrators wanting to deploy VICTORY components.
There are also other reference code packages provided by
the VICTORY Standards Support Office (VSSO). These
alternatives provide sample code which leverage either the
Qt framework or Java. However, TARDEC’s libVictory is
the only reference software which provides a well-
documented C application programming interface (API),
which significantly reduces the integration burden placed on
software developers. The libVictory software also has
additional support features such as formal bug reporting and
tracking. The libVictory software is written in C++ and does
not support the VACF components.
 MGV integrators will most likely have to use Java to
implement the VACF (either by leveraging the VSSO
reference code, or other COTS Java packages). This means
that vehicular software for Java is a prerequisite for
successful deployment of the VACF. We decided to expand
our search to definitively ascertain whether Java applications
would be permitted to run on the vehicle. We were able to
contact individuals from Project Manager Mission
Command (PM-MC) who were able to verify that Java was
in fact being used on the vehicle and that a product called
Tactical Services Security System (TS3), which is written in
Java, is currently fielded and provides web-service security
within the MGV. This means that there is a precedent for
using Java on the MGV and we assume that VICTORY
applications may be developed in Java in accordance with
the applicable STIGs. In the subsequent sections we further
explore several options integrators have for providing web-
service security including leveraging the VICTORY
reference software, developing the VACF components from
scratch, and adopting TS3 which, as we will show, provides
similar interfaces and functionality to what the VACF
currently attempts to provide.

VICTORY Reference Software
Since there is a precedent to assume that Java software

may be used within the vehicle, it can be assumed that the
VICTORY Reference Code provided by the VSSO is a
viable option for integrators wishing to implement the
VACF components. This software was intended to be a
general purpose reference so integrators wishing to leverage
it will have to address the following challenges:

• No API for integrating platform specific logic (e.g.

XACML policies are hard-coded)
• Not fully SAML and XACML conformant

UNCLASSIFIED
Proceedings of the 2015 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Implementing the VICTORY Access Control Framework in a Military Ground Vehicle
UNCLASSIFIED

Page 5 of 7

• Licensing appears to be more restrictive than other
government software licenses (an applicant must
petition the VSSO for a license)

• Ability to handle parallel access is not well understood
• No persistent storage for attributes and policies

Limitations such as these are common for any software

that is originally used for proof-of-concept. This reference
software is useful for validating the VICTORY specification
however integrators may face significant challenges and
costs correcting the SAML/XACML conformance
deficiencies and inserting platform-specific features such as
persistent storage.

VACF Components from Scratch

 VICTORY provides web-service interface definitions and
some degree of specification for communication semantics.
Since this information is readily available, integrators and
vendors may choose to implement VACF components
without leveraging reference code. We do not think that it
would be cost-effective to build SAML 2.0 and XACML 2.0
conformant VACF components without using existing open-
source or commercial libraries and tools, but vendors may
choose to implement the VICTORY and other vehicle
specific logic.

Building VACF components “from scratch” would allow
developers to have more control over the licensing of their
product, but they will likely incur significant development
costs to realize the same level of base functionality that is
already provided by the VSSO reference code. Additionally,
they will have to address the same obstacles that were
identified for deploying the VSSO reference code including
handling of parallel access, persistent storage, and
SAML/XACML conformance. There may also be
significant costs associated with implementing other non-
essential features of VICTORY (e.g. Auto-discovery),
VICTORY compliance testing, and other types of
accreditation and certification efforts.

Tactical Services Security System (TS3)
TS3 software was initially identified during the effort to

check the assumption that Java can be used to implement
VACF components on the vehicle. TS3 is a government off-
the-shelf (GOTS) software package that has been under
development for over a decade and is managed by
Communications-Electronics Command (CECOM) Software
Engineering Center. TS3 was designed to provide security
to web-services in a tactical environment and was developed
in accordance with, and largely conforms to the Net-Centric
Enterprise Services (NCES) security model, developed by
the Defense Information Systems Agency (DISA) [11]. The
Army has already invested approximately $10M developing
this software and the PM estimates that approximately

$700,000 - $800,000 per year is spent on maintaining and
updating this product to be compliant with the STIGs [8].
We were informed that this yearly maintenance cost is
comparable to what vendors typically charge for annual
maintenance on similar COTS products [9]. TS3 has been
accredited for use in the field and is used by the Army’s
Data Dissemination Services (DDS), Army Common
Software services, and Global Command & Control System
Army (GCCS-A) v4.3 widgets and services [10]. We were
able to obtain a copy of the software with code samples and
developer’s guide.

 The TS3 developer’s guide provides extensive
documentation describing the theory of operation and
specifics of configuring and integrating with the TS3
software. Figure 2 depicts TS3 architectural components
with a sample communication sequence for a successful
access control request.

Figure 2: TS3 Architecture and Communication Sequence

When a client attempts to perform an action on the web-
service, the security handler optionally sends the client’s
X509 certificate to the Certificate Validation Service. Upon
successful certificate validation, the security handler sends
the client’s credentials (i.e. username/password, X509, or
SAML token) to the Authentication Service to verify
authenticity. Upon notification of successful authentication,
the security handler constructs and sends a SAML

XACML
Security Policies

Web
Service
Client

Web
Service Security

Handler
Protected
Resource

Policy Decision
Service (PDS)

Attribute Service
(AS)

Certificate
Validation

Service

1

2 3

6 9
10

Authentication
Service

4 5

User & Attribute
Directory

7 8

UNCLASSIFIED
Proceedings of the 2015 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Implementing the VICTORY Access Control Framework in a Military Ground Vehicle
UNCLASSIFIED

Page 6 of 7

authorization decision query to the PDS. The PDS queries
the AS and evaluates the retrieved information against its
policy set, and returns the authorization decision to the
resource who either executes the request or returns a “Not
Authorized” message to the client.
 The similarities between the TS3 architecture and the
VACF are significant. Both use SAML 2.0 and XACML 2.0
and in many cases use the same messages. Many of the
components within each framework are the same including
the Authentication Service, Policy Decision Service, and
Attribute Service and both use SOAP and provide freely
available WSDLs with similarly defined operations. TS3
even leverages the same XACML engine that is used within
the VSSO reference code. TS3 additionally provides
security handlers that can be easily integrated into Java or
.NET based web-services. The software also provides other
functionality such as the ability to check certificate
revocation status via the Online Certificate Status Protocol
(OCSP), auditing, and graphical configuration tools. Given
the similarities between each system’s functionality,
interfaces, and communication formats, TS3 actually seems
well positioned to provide “turn-key” access control
functionality to the VDB even though it is not technically
VICTORY compliant. Vehicle integrators should consider
TS3 interfaces as a viable “free” option for implementing
security for their web-service interfaces. It is surprising
given the capabilities, maturity, and the Army’s investment
in TS3 that the VICTORY Work Groups (WG) did not
consider adopting TS3 interfaces.

CONCLUSION
 In this paper we provided a basic overview of the VACF
and described the VSM team’s effort to prototype and
evaluate VACF components and the results of this effort.
We provided evidence that suggests that it is not cost-
effective to implement VACF components without
leveraging existing Java resources or products. We have
shown that VACF components (and any software
conformant to the full SAML and XACML specifications)
must be sophisticated and therefore potentially costly. We
explored the limitations of the VSSO reference software and
concluded that any attempt to implement and deploy
production grade VACF components could place a large
software development burden on vehicle programs,
particularly if efforts are duplicative. Finally, we provided
an overview of TS3, a freely available GOTS product that
has existed for over decade, has been fielded in MGV
environments, and has actively been supported with over
$10M in investment through the CECOM Software
Engineering Center. We examined the TS3 architecture and
showed that it provides functions and interfaces similar to
those of the VACF including use of the same protocols and
message sets.

Moving forward, we believe that the VICTORY
community has a tremendous opportunity to provide value to
the MGV community by: 1) considering the adoption of TS3
software interfaces and 2) leveraging the significant
investment that the Army has already made in this software.
This would enable the reuse of the proven TS3 software
while still decoupling interfaces and implementation;
allowing integrators to choose different software if desired.
This information is timely, due to the fact that minimal
investment in VACF software needs to be discarded, given
that little work on production-grade VACF components has
occurred. We have brought this to the attention of the
VICTORY IAWG group and are actively collaborating with
them to explore this potential solution. In addition, the VSM
team is researching the integration of libVictory services
with TS3. Our expectation is to help guide MGV integrators
in the near future towards a relatively low-risk, low-cost
solution, for securing their VICTORY web interfaces.

REFERENCES
[1] OASIS, “Assertions and Protocols for the OASIS

Security Assertion Markup Language (SAML) V2.0”,
OASIS Standard, [Online]. Available: http://docs.oasis-
open.org/security/saml/v2.0/saml-core-2.0-os.pdf March
2005.

[2] OASIS, “eXtensible Access Control Markup Language
(XACML) Version 2.0”, OASIS Standard, [Online].
Available: http://docs.oasis-
open.org/xacml/2.0/access_control-xacml-2.0-core-spec-
os.pdf February 2005.

[3] OASIS, “XACML 2.0 Conformance Tests (Draft)”, Oct.
2005. [Online]. Available: https://www.oasis-
open.org/committees/download.php/14877/Conformance
Tests.html October 2005.

[4] N. Li, J. Hwang, and T. Xie, “Multiple-Implementation
Testing for XACML Implementation”, [Online].
Available:
http://web.engr.illinois.edu/~taoxie/publications/tavweb0
8xacml.pdf November 2008.

[5] D. Svoboda, “Java Zero Day Vulnerabilities”, [Online].
Available: https://blog.sei.cmu.edu/post.cfm/java-zero-
day-vulnerabilities December 2014.

[6] M. Russell, “Performance of an Embedded Platform
Aggregating and Executing Core VICTORY Services”,
Defense Technical Information Center, August 2012.

[7] M. Govindaraju et al., “Toward Characterizing the
Performance of SOAP Toolkits”, Fifth IEEE/ACM
International Workshop on Grid Computing, pages 365-
372, November 2004.

[8] J.A. Landmesser, private communication, May 2015.

http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
https://www.oasis-open.org/committees/download.php/14877/ConformanceTests.html
https://www.oasis-open.org/committees/download.php/14877/ConformanceTests.html
https://www.oasis-open.org/committees/download.php/14877/ConformanceTests.html
http://web.engr.illinois.edu/%7Etaoxie/publications/tavweb08xacml.pdf
http://web.engr.illinois.edu/%7Etaoxie/publications/tavweb08xacml.pdf
https://blog.sei.cmu.edu/post.cfm/java-zero-day-vulnerabilities
https://blog.sei.cmu.edu/post.cfm/java-zero-day-vulnerabilities

UNCLASSIFIED
Proceedings of the 2015 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Implementing the VICTORY Access Control Framework in a Military Ground Vehicle
UNCLASSIFIED

Page 7 of 7

[9] J.A. Landmesser, private communication, April 2015.
[10] C. Smith, “Security First…Protecting the Army’s Web

Services”, The Link, pages 20-21, [Online]. Available:
http://cecom.army.mil/THE-
LINK/2014/spring/files/assets/common/downloads/CEC
OMLink-Mar14-WEB.pdf March 2014.

[11] DISA, “A Security Architecture for Net-Centric
Enterprise Services (NCES)”, Version 0.3, March 2004.

http://cecom.army.mil/THE-LINK/2014/spring/files/assets/common/downloads/CECOMLink-Mar14-WEB.pdf
http://cecom.army.mil/THE-LINK/2014/spring/files/assets/common/downloads/CECOMLink-Mar14-WEB.pdf
http://cecom.army.mil/THE-LINK/2014/spring/files/assets/common/downloads/CECOMLink-Mar14-WEB.pdf

	ABSTRACT
	INTRODUCTION
	VICTORY ACCESS CONTROL FRAMEWORK
	VACF PROTOTYPING AND VALIDATION
	VACF Market Research
	Prototyping VACF Components using C++
	VACF Validation Conclusion

	VACF COMPONENT DEPLOYMENT OPTIONS
	VICTORY Reference Software
	VACF Components from Scratch
	Tactical Services Security System (TS3)

	CONCLUSION
	REFERENCES

