
UNCLASSIFIED: Distribution Statement A. Approved for public release

UNCLASSIFIED: Distribution Statement A. Approved for public release

2015 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY
SYMPOSIUM

VEHICLE ELECTRONICS AND ARCHITECTURE (VEA) MINI-SYMPOSIUM
AUGUST 4-6, NOVI MICHIGAN

Technical Challenges Running TARDEC VECTOR Software on ARM

Architecture

Mark Russell
U.S. Army RDECOM-TARDEC

Warren, MI

Disclaimer: Reference herein to any specific commercial company, product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or the Department of the Army (DoA). The opinions of the authors
expressed herein do not necessarily state or reflect those of the United States Government or the DoA, and shall not
be used for advertising or product endorsement purposes.

ABSTRACT

 TARDEC VEA will begin integrating their Vehicular Integration for the Command, Control,
Communications, Computers, Intelligence, Surveillance and Reconnaissance / Electronic Warfare
(C4ISR/EW) Interoperability (VICTORY) Enabled Company Transformation (VECTOR) software onto three
unique military vehicles in FY2015. One of the main objectives of VECTOR is to evaluate the VICTORY
standard. VECTOR will use the aforementioned military vehicles as a platform for integration with the
VICTORY software library (libVictory). The feasibility of expediting component integration and enhancing
vehicles in theatre will be assessed; VECTOR will attempt to leverage the capabilities of libVictory in order
to do so. One of the key deliverables for VECTOR is the capability to port the software applications and
middleware configuration items to an embedded low-cost ARM architecture. The VECTOR team selected a
unique hybrid system that includes both a single board computer and an Ethernet switch. This research paper
will present the rationale for porting VECTOR software to the ARM architecture and explain the details of
overcoming technical challenges therein. Due to the fact that the ARM architecture is designed for mobile
applications, computing hardware resources and software availability are much more limited than common
Intel-based desktop or workstation computers. Consequently, the level of technical risk is greatly increased,
and the viability of executing the required full-blown, graphical desktop application is less likely. This paper
will capture these shortcomings and will illustrate the difficulties of overcoming the hurdles of limited
computing resources. Finally, this paper will provide some quantitative measurements of performance
(resource utilization, graphical interface lag times, and update rate thresholds) as observed on the embedded
ARM processor (also referred to as the target), and how certain optimizations can improve the system.

INTRODUCTION
 The VICTORY Enabled Company Transformation
(VECTOR) is an initiative created by U.S. Army
RDECOM-TARDEC to instantiate the Vehicular
Integration for C4ISR/EW Interoperability
(VICTORY) software library (libVictory) on three
existing military vehicles. libVictory is a software
library containing VICTORY-compliant components
and is openly available on software.forge.mil under
the DoD Community Source License. The three
vehicles that are being outfitted with new VECTOR
hardware and software include the Family of Medium
Tactical Vehicles (FMTV), High Mobility
Multipurpose Wheeled Vehicle (HMMWV), and
Stryker. The three vehicles have varying levels of

VECTOR hardware and software integration. The
outcome of these vehicle transformations will help
provide invaluable data to vehicle Program
Management Offices (PMOs) that document scalable
software and hardware architectures. It will also
document integration and transition efforts of
VICTORY onto their respective vehicles. Ideally, this
effort will reduce risk; both in aiding integration of
legacy components and providing a common
integration package. One of the primary goals of
VECTOR is to develop a modular, reusable, and
adaptable architecture that shares common interfaces
and components. The flexibility and adaptability of
VECTOR software would clearly be demonstrated by
successfully porting to additional computing

UNCLASSIFIED
Proceedings of the 2015 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Technical Challenges Running TARDEC VECTOR Software on ARM

UNCLASSIFIED

Page 2 of 7

architectures; doing so would be a significant
achievement for the program. In particular, the ARM
architecture was targeted due to its low-cost, mobile,
and embedded nature. Custom-build software items
that are required to run on the target include the
VICTORY software library (libVictory), and the
VECTOR main applications, middleware components
and custom adapters. The target will also require the
configuration and use of low-level interfaces and
drivers. Demonstrating that VECTOR software can
execute directly on an ARM single-board computer
(SBC) will speak to the inexpensive nature of the
VICTORY architecture. In addition, it benefits the
project to maximize the use of ARM processors to
reduce size, weight, power, and cost (SWaP-C)
constraints. These findings could help provide
confidence to current and future programs of record
that higher-end Line Replaceable Units (LRUs) could
execute the same VECTOR software on existing
platforms with greater ease. After completing the
initial challenge of physically porting all of the related
software configuration items to the ARM processor,
the resulting process could provide a much more
defined developmental and integration roadmap. For
the majority of the engineering development,
VECTOR code and third party applications and
libraries were created on Intel© x86 / 64 hosts. This
research will focus on difficulties that were overcome
in migrating to ARM. Additionally, this research will
address hardware selection, Operating System (OS)
selection, SWaP-C savings, and will expound upon
application performances on the target hardware.

HARDWARE SELECTION

 VECTOR systems engineers engaged in an
Analysis of Alternatives (AoA) process to determine
the best possible hardware solutions early in the
project acquisition phase. There were many
ruggedized processing units that were available from
various defense manufacturers. Engineers first
selected an Intel-based mission processor to host
VECTOR applications, however, the VECTOR
project also desired an embedded low-cost processor
to benchmark against the dedicated mission processor.
Combining this need with the requirement to have a
ruggedized networking switch guided the team’s
market research to investigate multi-function
computing and networking systems. The new vehicle
system architecture requires a managed switch for all
VICTORY data and streaming video network traffic.
An explicit requirement of VECTOR is to reduce
SWaP-C constraints whenever possible; procuring a
computing appliance that combines a managed
network switch with a single board computer (SBC)

satisfies this requirement. Finding suitable appliances
that conform to ruggedized military standards greatly
limits purchasing options, as there is not much market
penetration for these uniquely hardened and
consolidated systems. Further adding complication to
the hardware selection process is VECTOR project’s
optional requirement to run 18 VICTORY software
components simultaneously within one device. The
search was narrowed down to two competing
products, which are labeled option A and B. Option A
is an ARM-based product, and Option B is a similar
product, but with higher-end components running on
Intel architecture. Table 1 below summarizes the
comparable features of each.

Feature Option A Option B
SBC
Processor

Dual-core ARM
Cortex-A9 800 Mhz

Dual-Core Intel
Core i7 2.2 GHz

SBC RAM 1 GB DDR3 8 GB DDR3
SBC Storage 16 GB Flash (8 GB

usable)
128 – 1000 GB
SSD

Power ~23W average ~90W average
Weight 6.5 lbs 20 lbs
Size ~ 10.5" x 7.5" x 3.0" ~ 6.6” x 6.75' x

6.25”
Switch Managed 16-port

Gigabit
Cisco 5915 18-
port Embedded
Services Router

I/O Interfaces Gig Ethernet, CAN,
AIO, DIO, RS232/422,
USB, VGA, DVI, RS-
170, GPS, IMU

Gig Ethernet,
RS232, Audio,
USB, VGA,
HDMI, DIO, PS2,

Supported
OSes

Linux Linux, Windows 7
& Embedded

Unit Cost ~ $8,500.00 ~ $23,700.00
Table 1 - Hardware Comparison

The system engineers chose Option A because of its

smaller size and weight, efficient power consumption,
lower cost, and extensive feature set. It fulfills the
project’s wishes for a light weight embedded platform.
This device will now be referred to as “VICTORY-in-
a-box”, as it provides switching capabilities,
VICTORY Shared Processing Unit (SPU)
functionality, and legacy I/O adaption. VECTOR
requirements state that hardware shall be capable of
communicating with an inertial navigation unit (INU),
Controller Area Network (CAN) device, Global
Position Service (GPS) device, Commander’s Remote
Weapon Station (CROWS), Solider-Machine
Interface (SMI), threat sensor, and pan-tilt-zoom
(PTZ) camera. When legacy components are used that
do not have VICTORY compliant interfaces, the
VECTOR solution is to provide adaptation of legacy
Inputs/Outputs (I/O) with the SPU to run the
libVICTORY software. Figure 1 below is a graphical
depiction of the how the VICTORY-in-a-box device

UNCLASSIFIED
Proceedings of the 2015 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Technical Challenges Running TARDEC VECTOR Software on ARM

UNCLASSIFIED

Page 3 of 7

could be connected to various hardware components.
The green circles represent “adapter software” for
legacy or non-VICTORY-compliant interfaces.

Figure 1 – VICTORY-In-A-Box Device

Connectivity

Executing VECTOR software on both the mission
processor and the VICTORY-in-a-box device will
demonstrate the scalable nature and can provide
excellent side-by-side comparisons for project
stakeholders.

FEASIBILITY OF ARM ARCHITECTURE

The first ARM processors were introduced to the
market roughly 30 years ago in 1985. Technically
speaking, ARM is a family of instruction set
architectures that is built around a reduced instruction
set (RISC) architecture. One of the largest advantages
to the RISC architectures is the fewer numbers of
transistors needed for the reduced number of
instructions. Fewer transistors means less power use,
less heat, and less cost. This feature makes ARM
processors particularly appealing to mobile and
embedded devices where resources are at a greater
premium. Contrast this ARM technology to a complex
instruction set (CISC) architecture, i.e. Intel© x86,
where processors typically run much hotter and
consume more power. The ARM Cortex-A9
processor built into the VICTORY-in-a-box device is
very representative of hardware that is built into
cellular devices. However, this strength also happens
to be one of ARM’s weaknesses as well. The ARM-
based system used for VECTOR is constrained by
available resources including limited voltage, limited
computing horsepower, and limited storage.
Concurrently executing multiple complex VECTOR
software processes will present a greater challenge.

An additional downside of using the ARM architecture
is its’ more limited support for software, particularly
when it comes to open source and enterprise Operating
Systems.

OPERATING SYSTEM SELECTION

 A study was conducted early in the software
development phase. The purpose was twofold: first, to
conduct an early use case analysis to drive the initial
VECTOR requirements and architecture; and second,
to select one or more Operating Systems to support the
VECTOR hardware. Two requirements that steered a
majority of the Operating System analysis included
preferring commercial off the shelf (COTS) products
as well as ensuring compatibility with multiple
hardware architectures. Four major types of Operating
System types were initially considered, including
Linux variants, BSD Unix, Windows variants, and
Real Time Operating Systems (RTOS). BSD Unix
was quickly ruled out because of its’ limited hardware
support. RTOSes were also ruled out because they
tend to be largely proprietary and the project had no
hard real-time requirements. Continuing further, the
Linux flavors that were candidates were RedHat,
CentOS, Debian, and Ubuntu. Alternatively, the
Windows candidates were Enterprise 7, Embedded
Standard 7, Enterprise 8, Embedded Standard 8, and
RT. After an investigation of Operating System
suitability, all Windows variants were ruled out
largely in part because of their lack of cross
architecture compatibility. The study determined that
all Windows candidates, with the exception of RT, ran
exclusively x86/x64 systems, while RT runs only on
ARM. The study made additional arguments against
selecting Windows as the VECTOR software is not
currently Windows compatible, as Windows’ limited
POSIX support is not well suited for embedded
platforms. The study identified that Linux has many
advantages for VECTOR, including its level of POSIX
compliance, compatibility with existing VICTORY
software, availability of standard packages/libraries,
excellent hardware support, and the availability of
Security Technical Implementation Guides (STIGS).
For these reasons, Linux was the winner for Operating
System type, but it was still necessary to select one of
four Linux variants (flavors). RedHat and CentosOS
do not support alternative architectures at all, thus the
two remaining viable choices were Ubuntu and
Debian. The Linaro engineering organization has
successfully created Ubuntu ports onto many different
ARM architectures. However, at the time of the study,
ARM boards were not officially supported by
Ubuntu’s producer, Canonical, with the exception of
two development boards [1]. Therefore, Debian was

INU

Threat

CROWS

PTZ Camera

GPS

Automotive/CAN

Soldier Machine

UNCLASSIFIED
Proceedings of the 2015 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Technical Challenges Running TARDEC VECTOR Software on ARM

UNCLASSIFIED

Page 4 of 7

chosen because of its official support for a wide range
of architectures, including ARM (target) and Intel
(host) architectures. The only criterion that did not
pass with Debian was a security requirement stating
that the Operating System shall be a trusted Operating
System. This is a hurdle that could be overcome. All
but one other Linux distributions also fell victim to
meeting this requirement. The final decision to make
was selecting Debian version 7.2 or version 8.0. This
decision is not trivial and will be explained later in this
research.

VICTORY-IN-A-BOX DEVICE INITIAL SYSTEM
DIFFICULTIES

The VECTOR software engineers soon learned that
there was a customized version of the Ubuntu 11
Operating System installed onto the target as the
factory default. This version of Ubuntu had many
patched Linaro updates applied to it that allowed it to
run on the board’s unique architecture. Unfortunately,
this distribution was released in 2011 and is not a long-
term support (LTS) product. Because Ubuntu 11
software packages are no longer available on their
trusted repositories, additional dependencies required
of libVictory and other VECTOR modules could not
be installed. Consequently, the software could not
compile. Therefore, it was decided the engineers
would follow the recommendation of the study to
install the Debian Operating System on the target.
Choosing between the current stable or newest
unstable version of Debian also came with its own set
of challenges. Note: at the time of this work, the stable
version of Debian was named “Wheezy” (version 7),
and the unstable version was named “Jessie” (version
8). There were a lot of hang-ups in getting a working
Linux system for the target. It is imperative to first
find a Linux kernel that is compatible with the Linux
userland, which are user applications that run outside
of privileged kernel space. Many permutations of
system configurations failed. Most failures involved
kernel boot failures or non-functioning hardware /
peripherals. For example, the combination of a Jessie
kernel and a Jessie userland resulted in strange 2-
colored video output from the VGA port. It was
obvious the custom driver in the kernel was not setup
correctly. There were a lot of ARM-based kernels
available for Jessie, but they only somewhat
resembled the actual VICTORY-in-a-box hardware.
Each kernel attempted resulted in a kernel panic or a
malfunctioning hardware device driver. Only after
using the original stock Ubuntu kernel shipped with
the target in combination with the Jessie userland was
progress made. Fortunately for the project, the ability
to execute all user applications proved that the

userland had backwards compatibility with our older
kernel and was able to make the system operational.
At the end of the day however, Jessie did not complete
its’ booting process. Jessie replaces the older UNIX
System V init-based boot stages with “systemd”.
Systemd is a basic building block for Operating
Systems. It has containers for groups of processes
called Control Groups (cgroups). Cgroups are used in
controlling, managing, and throttling groups of
processes with one interface. Because the older
Ubuntu kernel does not have built-in support for
cgroups, the boot process would end abruptly at a
single-user command-line only mode as the root user.
Users were required to manually start the required
startup scripts, the X server, and associated VECTOR
applications to continue. This type of system user
interface would not pass the most basic of security
certification tests. Therefore Jessie was abandoned in
place of the older Wheezy version of Debian. Finally,
Wheezy allowed for a full booting process that
completes the System V five stage init process and
automatically launches the X-windowing interface.
The difficulties encountered with Debian Wheezy will
be discussed in the next section.

SOFTWARE INTEGRATION STUMBLING
BLOCKS
 In addition to overcoming hurdles with the
configuration of the VICTORY-in-a-box Operating
System, there were many obstacles in generating
complete and working application binaries for the
target. There were three complex issues that required
troubleshooting to overcome. Two of these issues
involved external libraries that are not maintained by
TARDEC. The three stumbling blocks are listed
below; the first being TARDEC’s own libVictory:
 1. Finding a suitable compiler toolchain for the board
hardware and Operating System proved to be more
challenging than expected. The first steps in
compiling libVictory involved creating target binaries
by cross-compiling on a build host. One mandatory
dependency that libVictory requires is the use of the
newer C++11 coding standards. LibVictory requires
C++11 threading and time-related features, which
were introduced in to the GNU compiler toolchain
(GCC) in version 4.7.3. The first arm toolchain used,
arm-linux-gnueabi-4.7, did not have the necessary
C++11 support available yet because it was not
revision 3. The second arm toolchain, arm-linux-
gnueabihf-4.8, which did have C++11 support, had a
newer version of the low-level libc than the libc
resident on the target. For these reasons, the resulting
binaries did not run on the target and the project was
forced to switch to the stable “Wheezy” release of

UNCLASSIFIED
Proceedings of the 2015 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Technical Challenges Running TARDEC VECTOR Software on ARM

UNCLASSIFIED

Page 5 of 7

Debian. Initially, when engineers built libVictory in
Debian Wheezy, the same problem C++11 existed as
described above. The compiler did not have the
necessary C++11 updates and features. Luckily for
libVictory software, there was an update for the native
GCC compiler on Debian’s repository. This update
provided the necessary C++11 features that were
added as of 4.7.3, and thus created a working binary
directly on the target.
 2. The graphical warfighter machine interface
(WMI) display screens host a visually intensive
application. The WMI merges many technologies
together into one large graphical-based Qt windowing
environment. The software was written for and tested
on Intel workstations, and comes bundled with a
handful of dependent third-party libraries. For an
understanding of just how large and complex this
software is; it takes developers 30 minutes to compile
the WMI application from source using an Intel
workstation with four cores simultaneously. First, a
week was spent trying to cross-compile the third party
libraries, but with very limited success. Those who
may be familiar with cross-compiling applications will
tell you that the practice can be a black art; the process
of configuring Linux Makefiles is never the same from
one application to the next. There are often unmet
dependencies as well. This task was no exception and
the roadblocks continued. The next course of action
was to begin compiling natively on the target itself.
This certainly eases integration and level of difficulty,
but a large margin of performance is sacrificed to
accommodate the much slower computing speed used
in compiling. One benefit of operating natively on the
target itself is the ability to install pre-installed Debian
packages that are available on the Debian repository.
The WMI application required third party libraries
including video decoding capabilities (codecs),
mapping tools, image manipulation, geospatial data
abstraction, distributed messaging systems,
cartographic projections, and Qt. Some of these were
available as Debian packages, while others had to be
compiled from the source distribution. Potentially the
greatest challenge was compiling the Data
Distribution Service (DDS), which is a highly
configurable, high-performance publish/subscribe
messaging system. The WMI application is highly
dependent upon the Prismtech’s commercial Vortex
OpenSplice DDS library for its intra-node
communications. Without a working DDS
implementation, the WMI would not be useable. More
specifically, the application is built around Vortex
OpenSplice version 5, and ARM architecture support
was not introduced until version 6. Version 6
represents a major upgrade from version 5 and is not

backwards compatible. Naturally, version 5 did not
compile for the target, as there are some optimizations
built in that are written in assembly for Intel-only
architecture. The solution to this problem involved the
non-trivial route of replacing the Intel assembly with
ARM assembly. Surprisingly, the software
successfully built and ran; it is potentially one of the
only version 5 Vortex OpenSplice implementations
running on an ARM system.
 3. At the backbone of libVictory software’s
management feature set lies Genivia Inc’s gSOAP
library. gSOAP is full-featured web services toolkit
that features not only data serialization capabilities,
but also well-formed eXtensible Markup Language
(XML) remote procedure calls (RPCs) over
Transmission Control Protocol (TCP) via its built-in
webserver. The intent is for VICTORY system
designers to build full-featured systems in XML only.
gSOAP will then automatically convert XML into C
or C++ data structures. This feature allows for system
designers to create a working model without having
any knowledge of how to program. The problem with
this method is that the summation of all of the
VICTORY services into data structures creates a very
large digital footprint. gSOAP additionally produces
large amounts of auto-generated code, including
conversion functions, typedefs, new and delete
operations, and other helper functions. The resulting
object code that is created from gSOAP is over 20
Megabytes in size. Having large executable sizes in
today’s modern workstations is a moot point, simply
because of the inexpensive nature of computing
resources. However, in the context of embedded
computing, the limited size in this scenario was a
stumbling block. In attempts to compile libVictory
natively on the target hardware itself, the GCC
compiler would experience a crash. Even when
enabling 16 Gigabytes of external swap space, GCC
would still crash and issue internal errors. GCC even
suggested filing a bug report against it. The resources
needed to compile the gSOAP library were simply too
great for the target to handle. Meanwhile, the gSOAP
library itself was able to be cross-compiled on a
workstation and copied over to the target. This
allowed the target build to run to completion.
However, having a multi-stage and multi-host
compilation process does not make for a suitable
source control and content management practice.
Only after combing through the gSOAP
documentation was a solution to this problem found.
Within the gSOAP toolkit is a program called
soapcpp2. Soapcpp2 takes input from XML files and
serializes the data into C or C++ format. If the option
of ‘-f N” is passed to soapcpp2, the tool will split into

UNCLASSIFIED
Proceedings of the 2015 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Technical Challenges Running TARDEC VECTOR Software on ARM

UNCLASSIFIED

Page 6 of 7

N XML serialized implementation files. For example,
if –f 40 was given for N, there will be 40 resultant
object files instead of 1. In the example of building
libVictory, soap object files will now be broken into
500 Kilobytes chunks. After making this change, the
gSOAP library and libVictory built seamlessly on the
target.

EXECUTION OF VECTOR APPLICATIONS
 The FMTV vehicle’s applications place the largest
load of all three vehicles onto the VICTORY-in-a-box
device. There are four main processes that run
concurrently on the target. The most demanding
software is the WMI application, followed by the
FMTV commander application, and lastly the separate
CAN and GPS adapter software utilities. The WMI
application is the graphical front-end touch-screen
user interface. The underlying framework of this
application is built upon the Qt library and it provides
window management, graphical layout, custom
widgets, and responds to user interactions. The
application provides a full range of vehicle
information that is obtained through communications
with libVictory. This information is displayed
graphically with custom vehicle widgets, and is
typically layered on top of a tactical map. The WMI
application also provides a client display for a video
stream that is originated from a network-attached PTZ
camera.
The aforementioned VECTOR software “adapters”
that execute simultaneously with the WMI software
are small snippets of code that adapt legacy device
data into VICTORY messages. The FMTV runs the
GPS adapter that converts serial messages into
VICTORY messages. Likewise, the CAN adapter
converts 16 unique CAN messages into VICTORY
messages. Finally, VECTOR’s FMTV commander
application is the executable that ties all these pieces
together. It instantiates libVictory “readers”, whose
function is to listen for incoming VICTORY messages
and forward them onto an interested party. In this
particular scenario, the commander listens to incoming
GPS and CAN messages and then frequently forwards
them onto the WMI application, and graphical updates
are made as needed. The GPS VICTORY message
updates the vehicle position and it’s placement on the
tactical map moves accordingly. Meanwhile, the CAN
messages read many types of automotive data,
including fuel level, for example. As the vehicle
continues to operate, the on-screen fuel gauge updates
in near real-time.
The vehicle test-benches in TARDEC’s lab provided a
means to measure resource usage of these applications
in execution. The table below provides some

quantitative measurements of software in execution.
Note: with multi-core processors, the summation of
CPU utilization can be greater than 100%, each CPU
can contribute up to 100% each.

Process CPU %
WMI 115%
WMI (with Streaming Video Client) 145%
CAN Adapter 20%
GPS Adapter 6%

Table 2 - Process CPU Utilization

The video streaming capabilities were also tested. The
video feed comes from a network-based PTZ camera
and is streamed at 640x480 in x264 (MPEG-4) format.
The WMI application provides two metrics for frame
rate: D fps and R fps. D fps is the number of frames
decoded per second and should typically match the
output frame rate of the source stream. The R fps is
number of frames rendered per second and can be
manually throttled back in a configuration setting if
desired. D fps for the video feed was 30, and R fps
was 22. 22 fps is not perfect, but is more than adequate
for the project needs.
The interaction with the WMI GUI was better than
expected. The smart display touch screens respond
nearly instantaneously to map zoom or move gestures
and button clicks. There were virtually no noticeable
visual or tactical performance differences between the
Intel-based mission processor and the VICTORY-in-
a-box device, both of which run VECTOR
applications.

CONCLUSION
 The VECTOR program examined the feasibility of
running a full-featured suite of VICTORY-based
applications and middle-ware programs ported to
ARM architecture. It was important to prove that
running VECTOR (and therefore VICTORY)
software could be done very inexpensively and with
limited resources. Despite many technical difficulties
in Operating System selection, software compilation,
and software integration issues, the VECTOR
applications executed without noticeable deficiencies.
Now, vehicle programs desiring to become VICTORY
compliant have an affordable and rapid entry point
with the VICTORY-in-a-box solution. Using this
hardware could represent significant cost savings for
vehicle integrators. The VECTOR program has
proven that the same objectives can be accomplished
with a much lower price point with the ARM-based
computing appliance system than the higher-end Intel-
based system.

UNCLASSIFIED
Proceedings of the 2015 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Technical Challenges Running TARDEC VECTOR Software on ARM

UNCLASSIFIED

Page 7 of 7

The VICTORY-in-a-box hardware provides many
required VICTORY components and offers rapid
adaptation of legacy equipment. Thanks to VECTOR,
Program Management Offices will now have evidence
that VICTORY-based systems provides a means for
simpler acquisition, accelerated developmental
phases, and streamlined hardware and software
integration efforts.

REFERENCES

 [1] Ubuntu Server,
https://web.archive.org/web/20130209054025/http://
www.ubuntu.com/download/server, 2013.

https://web.archive.org/web/20130209054025/http:/www.ubuntu.com/download/server
https://web.archive.org/web/20130209054025/http:/www.ubuntu.com/download/server

	ABSTRACT
	INTRODUCTION
	HARDWARE SELECTION
	FEASIBILITY OF ARM ARCHITECTURE
	OPERATING SYSTEM SELECTION
	VICTORY-IN-A-BOX DEVICE INITIAL SYSTEM DIFFICULTIES

