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ABSTRACT 

One of the best ways to achieve full hardware utilization while maintaining a strict level of security and safety in a single System 
on a Chip (SoC) is through the use of virtualization. In this paper, we will explain the capabilities of the Xilinx Zynq UltraScale+ 
MultiProcessor SoC (MPSoC) and how they relate to target technology areas such as ARM processors and multi-core technology. 
We will also explain the features of Xen that aid in improving the safety and security of a virtualized system. We will provide examples 
of how to utilize these features, identify benefits, and explain how they can be used to implement several technology features 
including: SWAP-C reductions via consolidations, modular software architectures, and integration of multiple real-time operating 
systems. 

 
INTRODUCTION 

As embedded hardware improves, the added complexity 
makes it increasingly difficult to utilize all of a new platform’s 
available computing resources while maintaining the same 
levels of safety and security. With the rise and expansion of 
nation-state funded cyber terrorism, safety and security are an 
ever growing concern for the U.S. Army and the USMC, and 
the demand for rigorous safety and security must be met for 
all systems. One of the best ways to achieve full hardware 
utilization while maintaining this strict level of security and 
safety in a system is through the use of virtualization.  

 
A hypervisor is the foundational software that provides a 

means to virtualize a system. Xen is one well-established 
example that makes it possible for multiple commodity and 
real-time operating systems to be run concurrently in their 
own partitioned hardware space. Strict memory partitioning 
means that one guest operating system cannot read, write, or 
interfere in any way with the memory of another guest. Xen 
also has several features, such as CPU pinning and CPU-
pools, that allow for fine grained control of the scheduling and 
processing time of these guests across the multiple cores. For 
example, CPU pinning allows for a guest to be run only on 
specified physical CPU cores, giving a guest guaranteed 
levels of performance and significantly reducing its ability to 
interfere with other guests elsewhere on the system. CPU-
pools further enhance this control by allowing different 
scheduling algorithms to be applied to each of the system’s 
configured pools of CPU cores. 

 

ZYNQ ULTRASCALE+ MPSOC 
  The Zynq UltraScale+ MPSoC is one example of modern, 

powerful hardware that can use a hypervisor to manage its 
complexity. This system on a chip created by Xilinx contains 
several interconnected processing units, including a quad-
core ARM Cortex-A53 application processor, a dual-core 
ARM Cortex-R5 real-time processor, and an ARM Mali-400 
Graphics Processing Unit (GPU), all tightly coupled to the 
internal 16nm Xilinx UltraScale+ programmable fabric [1]. 
The ARM Cortex-A53 processor is known as the Application 
Processing Unit (APU) while the ARM Cortex-R5 is known 
as the Real-time Processing Unit (RPU). The ARM Cortex-
A53 supports the 64-bit ARM specification, ARMv8, and the 
Xilinx Zynq UltraScale+ MPSoC is one of the first SoCs 
containing the Cortex-A53 processor to come to market.  

 
The Z US+ MPSoC takes advantage of some of the newest 

ARM peripherals that improve virtualization, such as the 
Generic Interrupt Controller (GIC) and the System Memory 
Management Unit (SMMU). However, the complexity of this 
new system on a chip makes it very difficult to fully utilize 
with a single operating system or application, and further, 
running multiple applications concurrently presents security 
issues. This is where the Xen hypervisor comes in.  

 
XEN 

The Xen hypervisor is a mature, open source project that 
started as a research project almost 20 years ago and has been 
in production use for over 12 years. Xen started as the 
“XenoServer” in the late 1990’s at the University of 
Cambridge. The name was changed to the “The Xen Project” 
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in 2003 and Xen 1.0 was released the next year in 2004. In 
2007, Citrix acquired XenServer and reaffirmed continued 
corporate sponsorship of The Xen Project and its open-source 
development. In 2013, a fully functional Xen port to ARM 
was released. Xen also joined the Linux Foundation that year.  

 
Xen is a Type 1 hypervisor, which means that it runs directly 

on the hardware, as opposed to a Type 2 hypervisor that is 
layered above another Operating System (OS) [2]. A Type 1 
hypervisor does not incur the overhead of the host OS, which 
makes it the most suitable option for embedded platforms. A 
Type 1 hypervisor gets fine grain control of all of the system 
resources, instead of just the resources that a Host OS would 
provide. A Type 1 hypervisor typically reduces the number of 
attack vectors compared to a Type 2 hypervisor.  

 
Xen on the Zynq UltraScale+ MPSoC runs solely on the 

APU. This leaves the RPU open for non-virtualized 
applications. Since Xen adds some overhead (slight, but not 
zero), applications that have very strict timing requirements 
can be run independently on the RPU. A block diagram of an 
example Xen system running on the Z US+ MPSoC can be 
seen in Figure 1.  

 

 
Figure 1: Xen on the Z US+ MPSoC 

Benefits 
The Xen hypervisor provides several benefits that should be 

considered when designing a system. (1) One of the main 
reasons to use a hypervisor is that it allows multiple OSes to 
be run on the same processor. This means that a legacy design 
that was spread among multiple, federated processors, can 

now be integrated on a single processor. This reduces the Size, 
Weight, and Power/Cost (SWaP-c) of the system. (2) Using 
the Xen hypervisor also improves code portability of 
applications/Operating Systems. Once an application or OS 
runs on top of Xen, it is much easier to port it to future 
hardware. Since Xen provides abstraction from the 
underlying hardware, old virtual machines can be easily 
migrated to Xen running on new hardware. (3) The isolation 
Xen provides between its guests also greatly enhances the 
security and safety of the system. For example, the Xen Inter-
Domain Communication framework provides the potential 
for a design with red and black on the same system for a Cross 
Domain Solution (CDS). Xen has been used in SecureView, 
which is a CDS for x86 platforms. (4) Using Xen also 
increases the reliability of a system by providing redundancy. 
Redundant guests can run concurrently, so if one guest is 
comprised, the other guest can take its place.  

 
 
 

ARM HARDWARE VIRTUALIZATION 
The ARM processor architecture has a rich history back to 

the 1980’s, and with the ARMv7a instruction set release in 
2011, ARM processors have provided support for 
virtualization extensions. These extensions provide a means 
to make virtualization easier to perform with less required 
software. To understand how these extensions work, one must 
first understand exception levels. In the ARM architecture, an 
Exception Level (EL) is an operating mode that dictates 
which instructions can be executed and which registers can be 
accessed [3]. EL3 is the highest level, with full access to all 
processor functionality. This is where a secure monitor is 
expected to run. A secure monitor is the software in the 
system that has the potential to manage everything else. It has 
the highest privilege and therefore should be the most trusted 
piece of software. EL2 is where a hypervisor is expected to 
run. EL1 is where an OS is expected to run, with limited 
access to the processor. EL0 is where applications are 
expected to run, with limited access to the processor. Xen 
follows this suggested specification, running at EL2 and 
booting guest operating systems at EL1.  

 
Each exception level has its own copy of certain registers. 

For example, each exception level has its own table for the 
Memory Management Unit (MMU). This allows Xen to map 
the memory space for a guest OS at Stage 2. Then the guest 
can map its own memory using Stage 1 translation tables, 
creating a virtual-to-physical mapping as it normally would, 
but the physical addresses are really just intermediate values 
that then go through the Stage 2 translation set up by Xen. 
This makes it easier to support the many possible memory 
configurations that could exist across multiple guest operating 
systems. 
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Some devices also have a virtualization-specific register set. 

One example of this is the system timer of the processor. A 
guest, which is running at EL1, will not be able to access the 
physical system timer, but it can access the virtual timer. The 
virtual timer works in almost the same exact way as the 
physical timer, but has an offset for each guest, so a guest 
cannot derive information about the hypervisor or other 
guests.  

 
As the name suggests, Exception Levels correspond to the 

occurrence of exceptions. Each possible exception in the 
system occurs at a specific EL. For example, if the current 
exception level is EL1 and an address was not mapped in the 
EL1 MMU, then when that address is accessed, a data abort 
occurs and the exception handler at EL1 gets called and the 
system stays at EL1. If the current exception level is EL1, the 
address was mapped in the EL1 MMU, and that address was 
not mapped in the EL2 MMU, then a data abort occurs and 
the exception handler at EL2 gets called and the system 
transitions to the higher exception level, EL2. This means that 
any issues get handled at the correct level of software.  

 
ARM also allows configuration for certain registers to be 

accessed at lower (less privileged) exception levels. 
Therefore, certain registers that are not deemed to be a 
security concern by Xen can be modified directly by the guest. 
One example of this is the “TLBI VAE1” (TLB Invalidate by 
VA, EL1) special register. Xen configures the system so that 
a guest can write to this register. This is not a security concern 
because the guest can only invalidate its own virtual memory 
mappings. In other cases, the register access can cause an 
exception at a higher Exception Level so that the software 
there can validate the request. One example of this is the 
“GICD_ICFGRn” (Interrupt Configuration Registers) 
register. Xen configures the system so a guest can not write to 
this register. Xen handles the interrupt that occurs and 
arbitrates the request. If a guest is allowed to map that 
interrupt, based on configuration, then Xen does the actual 
register write. If the guest is not allowed to map that interrupt, 
then Xen just returns to the guest. Xen uses these mechanisms 
to give the guests exactly the rights they need and no more 
(i.e., the security principle of least privilege).  

 
INPUT/OUTPUT (I/O) 

Embedded systems need to interact with various forms of 
input and output. Therefore, a method is needed to manage 
the I/O between the multiple guests. Xen provides two 
methods of I/O handling: paravirtualization and pass-through. 
The benefits and drawbacks of each method of device 
mapping will be described in this section. 

 

Paravirtualization 
I/O Paravirtualization uses software to share a device from 

a privileged guest to any other guest that needs to access the 
device. The privileged guest is the only one that has direct 
access to the device and contains the normal device driver to 
interact with the device. Then what Xen calls a split driver is 
used to share the data from the privileged guest to the other 
guests. A split driver is made up of a backend driver in the 
privileged guest and a frontend driver in the other guests that 
want to access the device. The backend driver sets up a shared 
ring buffer, and an event channel (a notification) for each 
guest that needs to access the device. The frontend driver in 
each guest then connects via a wrapper Application Program 
Interface (API) to those sharing mechanisms. A diagram of a 
split driver can be seen in Figure 2. 

 

 
Figure 2: Paravirtualized split driver 

Since the privileged guest arbitrates access to the device, the 
data from the device can be shared across virtual machines 
without breaking partitioning. This is useful if multiple guests 
need to access the same I/O channel. Another advantage is 
that the frontend driver presents an abstraction of the specific 
device, so that guests can be more generic and thus more 
portable. This can be an initial drawback, because if the guest 
OS does not support that frontend driver, it needs to be 
developed. Paravirtualization also adds another layer to the 
device driver stack, therefore the performance will not be as 
fast as native OS usage of the device. If multiple guests are 
sharing the same device the privileged guest must implement 
an allocation scheme to prevent a guest from monopolizing 
that device. Since this method takes advantage of the strict 
memory sharing infrastructure of Xen, it is a safe and secure 
method for handling I/O. 
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Pass-Through 
Device pass-through uses the System Memory Management 

Unit (SMMU) and the GIC that is available on the Zynq 
UltraScale+ MPSoC to directly pass a device to a guest (Intel 
architectures provide a similar device called an IOMMU). 
Pass-through means that the guest gets sole access to the 
device. A diagram of a passed-through device can be seen in 
Figure 3. 

 

 
Figure 3: Passed-Through Device 

This direct and exclusive access to the device is enforced by 
the SMMU hardware, making this I/O method quite secure. 
Only memory-mapped devices, such as a UART, can be 
passed-through. Also, bus-style interfaces must pass-through 
the root bus controller.  For example, an entire SPI bus needs 
to be passed into a guest – not individual SPI devices. Pass-
through provides the best performance, since the guest gets 
direct access to the device, but at the cost of preventing 
sharing of devices. The Z US+ MPSoC helps mitigate this by 
providing a large number of peripherals, such as 4 Ethernets 
and 4 UARTs. An example simple configuration of XZD is 
shown in Figure 4. 

 
Figure 4: Simple Example XZD Configuration 

This simple configuration with Xen on the Zynq 
UltraScale+ MPSoC could have system domain (Dom0) 
mapped to CPU0 with a UART and an Ethernet device, then 
3 guests could each run on their own CPU with their own 
UART and Ethernet device passed-through. Xen is used to 
enforce the passed-through devices and CPU configurations. 
Pass-through can also be used to give a guest direct access to 
additional peripherals that are instantiated on the FPGA of the 
Z US+ MPSoC. 
 
MULTICORE AND SCHEDULING 

Since the Z US+ MPSoC contains a quad-core processor, it 
is important to effectively manage which tasks run on which 
cores. This requires schedulers that are multicore capable. 
Xen provides multiple schedulers that have this ability. Xen 
also provides a couple of ways to more finely control the 
system than just choosing the scheduler. These features are 
CPU Pinning and CPU Pools. 

 
Schedulers 
Xen has several available schedulers: Credit, ARINC653, 

and RTDS. These schedulers determine which guest runs on 
which physical Central Processing Unit (pCPU) using virtual 
CPUs (vCPUs), where the vCPUs are schedulable processor 
units. Each guest can have multiple vCPUs, where each vCPU 
is run on a pCPU. This means that a guest can run on multiple 
cores at the same time, allowing multi-threaded applications 
in one guest to take advantage of multiple cores. 

 
The Credit scheduler is the default scheduler in Xen. It is a 

“fair time” algorithm similar to the default Linux scheduler. 
This scheduler gives guests a roughly equal amount of time, 
with some load balancing built in, therefore it is the scheduler 
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that is used in the vast majority of server applications. This 
scheduler supports multicore scheduling. This scheduler 
maximizes CPU throughput at the cost of latency.  

 
The ARINC653 is a real-time scheduler that meets the 

aviation standard, ARINC653, originally developed by 
DornerWorks and contributed to the Xen open source 
community. It is a scheduler that provides strict time isolation 
and system determinism. If a guest needs to run for 20 ms 
every 30 ms, that time is guaranteed to be given to that guest. 
This scheduler supports a limited form of multicore support 
using CPU Pools. The determinism of this scheduler does 
reduce the CPU throughput since it is not a work conserving 
algorithm.  

 
The Real Time Deferrable Server (RTDS) scheduler, 

originally called RT-Xen [4], is an experimental real-time 
scheduler for the Xen hypervisor. vCPUs are scheduled using 
the deferrable server algorithm. A vCPU receives budget of 
CPU resources every period. Budget is replenished at the start 
of every period. Each vCPU consumes budget when running 
and suspends execution when no budget remains. The vCPU’s 
budget is preserved when there is no task, i.e., another vCPU 
will not be scheduled until the budget is depleted for the 
current vCPU. 

 
CPU Pinning 
CPU Pinning is a configuration option that specifies the 

physical CPUs (pCPUs) on which a guest can run. This can 
be as simple as allowing a guest to run on a single pCPU or 
pinning the guest to a sequence of the available pCPUs. 
Pinning a guest to a pCPU does not limit any other guests 
from running on the pCPU. If a system needs a single critical 
guest and a few other less critical guests, CPU Pinning can be 
used to pin the critical guest to one or two pCPUs and then 
the other guests can be pinned to the remaining available 
pCPUs.  

 
CPU Pools 
CPU Pools are used to separate the physical CPUs into 

scheduler pools. This can be used to have more than one type 
of scheduler running on the system at the same time. This is 
useful if a system needs a real-time scheduler for just a portion 
of the guests. Each pCPU can only be in a single pool, but 
each pool can contain multiple pCPUs. Each pool can only 
run a single scheduler. CPU pools are used to achieve 
ARINC653 on a multicore system. Each CPU is placed in its 
own pool. Therefore, each CPU has its own instance of the 
scheduler running.  

 
XEN ZYNQ DISTRIBUTION 

The Xen Zynq Distribution (XZD) from DornerWorks 
provides a prebuilt Xen system that works on the Zynq 

UltraScale+ MPSoC. This distribution is highly customizable 
and completely open source. The distribution provides all of 
the necessary components for booting and using a Xen 
system: a Xen kernel, a sample Device Tree Blob (DTB), a 
system domain (dom0, including a Linux Kernel and File 
System), sample guest configuration files, a sample Linux 
guest kernel, sample Linux guest file systems, and a sample 
“Baremetal” guest image. The XZD is a means to quick start 
development or to easily test out Xen and its features on the 
Z US+ MPSoC. XZD also has a companion User Manual that 
explains how to boot the system, perform basic Xen 
administrative tasks, and how to build the XZD from source 
code. XZD can be downloaded for free from http://xen.world. 

 
PERFORMANCE 

One of the biggest concerns with embedded systems is 
performance. Adding anything new to a system can increase 
overhead to the system, which may prevent the system from 
meeting requirements. 

 
Developers at Citrix executed performance benchmarks on 

the Applied Micro X-Gene, an ARMv8 64-bit 8 cores 2.4 Ghz 
processor, and on an Intel Xeon CPU X5650 [5]. In most 
cases, Xen on ARM had less overhead than Xen on x86. In all 
cases, Xen had less overhead than KVM (an open source 
competitor hypervisor to Xen). In all cases, Xen on ARM had 
a 2% or less virtualization overhead increase. That is, 
virtualizing applications incurred less than 2% performance 
penalty compared to running them natively. 

 
Xen Overhead on ARM 

< 2% 

Table 1: Xen Overhead Percentage 

Boot Time 
DornerWorks has performed measurements of the boot time 

and interrupt overhead of Xen on the Xilinx ZCU102. 
Normally, to get performance numbers in a Xen system 
Xentrace is used. Xentrace is a series of Xen system calls that 
captures the current time and saves it for later viewing. 
Xenalyze is an application that is then used to read the results 
from Xentrace calls. However, Xentrace is not available for 
use at the entry point of Xen or earlier, so a different method 
was needed to get the boot times. The code was instrumented 
at key points in the boot-up sequence and timestamps were 
collected at those points. Each time stamp was collected with 
a single assembly instruction. These timestamps are displayed 
on the console after the boot-up sequence has completed, so 
that it does not influence the boot time. The timer used to get 
the time stamps is the 64-bit ARM Physical Generic Timer. 
This timer has a frequency of 100 MHz (10 nanosecond 
resolution). The boot sequence of XZD starts with the First 
Stage Boot Loader (FSBL), which sets up peripherals like the 
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DDR controller and programs the FPGA with a Bitstream. 
The FSBL then executes U-Boot, which loads the Xen kernel, 
the system DTB, and the Dom0 Linux kernel. U-Boot then 
executes the Xen kernel. The Xen kernel initializes and then 
executes Dom0. For these measurements, we start at U-Boot 
because the boot time of the FSBL can vary due to different 
booting methods and configuration. Using this methodology, 
the boot times at the start of U-Boot were found as follows: 

 

 
Figure 5: Xen System Boot Times 

 U-Boot ends booting after 929.2 ms and the Xen kernel 
finishes booting after 986.3 ms. So Xen itself only adds 57.1 
ms to the boot time. Dom0 currently adds another 4086.8 ms 
to the boot time. The Dom0 kernel that was used for testing 
was a Linux Ubuntu distribution, which could likely be 
optimized to remove unused drivers. This would help reduce 
the boot time of the Dom0 kernel.  

 
Interrupt Overhead 
The approach taken for determining the hypervisor impact 

to IRQ latency was to measure the average IRQ latency of an 
application running natively, delay, and then subtract that 
from the average IRQ latency of the same application running 
as a Xen guest, delay’. This approach factors out any 
hardware or application software delays and leaves only the 
additional delay that should be attributed to running the 
application as a Xen guest. To measure delay and delay' an 
application was written that, upon detection of a general 
purpose I/O (GPIO) line going low, changes the state of a 
second GPIO line. The ZCU102 provides a PS push button on 
MIO-22 and a PS controlled LED on MIO-23, which were 
used to meet the application’s GPIO needs. The application 
toggles the LED state almost immediately after the interrupt 
generated by the push button vectors to the generic IRQ 
handling code. Only a minimal context, specifically registers 
X0 and X1, is saved off before toggling the LED. The PS push 
button was pressed and an oscilloscope was used to measure 
the time delta between the start of the waveform change on 
the PS push button channel to the start of the waveform 
change on the LED channel. Using this process, the following 
data sets were collected.  

 

 

Sample 

Native Linux  
IRQ Latency 

(usec) 

Xen Linux 
Guest 

IRQ Latency 
(usec) 

1 0.272 2.56 

2 0.272 2.7 

3 0.636 2.54 

4 0.644 2.6 

5 0.272 2.34 

6 0.272 2.66 

7 0.272 2.52 

8 0.272 2.58 

9 0.272 2.64 

10 0.272 2.8 

11 0.272 2.54 

12 0.272 2.56 

13 0.284 2.68 

14 0.264 2.58 

15 0.264 2.68 

16 0.272 2.54 

17 0.268 2.66 

18 0.268 2.62 

19 0.268 2.52 

20 0.252 2.56 

21   2.52 

22   2.56 

23   2.56 

24   2.44 

Average 
(usec) 0.307 2.58 

  

Xen IRQ  
Delay (usec)   2.27 

Table 2: Interrupt Overhead Samples 

The Xen delay was calculated as follows: 
 

Xen delay = delay' - delay  
 

Xen delay = 2.58usec - 0.31usec  
 

Xen delay = ~2.3usec 
 
 

U-Boot 

Start, 0
U-Boot End, 

929.2

Xen C Env 
Enter, 946.3

Xen Pre-Init 
Time, 956.3

Xen Boot 
End Time, 

986.3

Dom0 Start, 
989.4

Dom0 
Threads 

Spawned, 
1374.1

Dom0 End, 
5073.1

0 1000 2000 3000 4000 5000 6000

Delta From U-Boot Start (milliseconds)



Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

XEN ON THE ZYNQ ULTRASCALE+ MPSOC 
 

Page 7 of 7 

CONCLUSION 
As computing systems become more complicated, 

hypervisors can be used to more easily utilize all the power a 
platform provides. The Xen Project is a mature, open source 
hypervisor which has been used in the industry as a secure, 
safe, and efficient solution. Using the hardware virtualization 
extensions that the ARM Cortex-A53 processor provides, 
Xen provides a virtualized environment to run multiple guests 
on the single chip. The Z US+ MPSoC provides an SMMU 
and a GIC, which allows Xen to pass-through I/O devices to 
guests to give them sole, direct access to those devices. All of 
these features combined with Xen implementation can be 
used to bring virtualization to the embedded world. 

  
The Xen Zynq Distribution provides a means to quickly get 

up and running with Xen on the Zynq UltraScale+ MPSoC. 
This distribution can be modified to meet the needs of the user 
and is a great way to start a project (http://xen.world). It is 
also useful to test out the Xen hypervisor.  
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