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ABSTRACT 
Addressing the well-established need for accurate cyber situational 

awareness on military vehicles and weapons platforms, we developed a well-tested, 

robust Intrusion Detection System – Fox ShieldTM – currently rated TRL-8. The 

system is described and the lessons learned during its development are discussed. 

The basic principles of our anomaly detectors are outlined, and the details of our 

innovative warning-aggregating Fuser are presented. Many attack detection 

examples are presented, using a publicly available CANbus dataset. 
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1. Introduction 
The importance of timely, accurate cyber 

situational awareness on military vehicles and 

weapons platforms has been well established [1]. 

Achieving that awareness in those environments 

with traditional enterprise network Intrusion 

Detection System (IDS) approaches is infeasible 

from a data processing and storage perspective, and 

suboptimal from an attack surface coverage 

perspective. Traditional IDSs digest voluminous 

logs from disparate sensors watching many 

instances of a few types of data streams (e.g., a 

single HTTPS stream can be examined from the IP, 

TCP, SSL, HTTP, and application layer 

perspectives), being more tolerant to false alarms, 

watching for known attack signatures, unknown 

attacks, and signs of remote C2 and data exfiltration 

over long periods of time [2]. Embedded vehicle 

IDSs must examine few instances of many types of 

data streams simultaneously (e.g., vehicle mission 

subsystems control and status, environment 

sensors, vehicle engine and related system control 

and status, comms data, external threat and SA 

sensors) from many perspectives, with almost no 

tolerance for false alarms, watching for unexpected 

types of attack against vehicle mission success in 

real time, and do it without overwhelming 

embedded processing systems with a fraction of the 

capacity of enterprise SOC installations. It is a 

difficult challenge that requires platform owners, 

systems integrators, and cyber software builders to 

work together. Towards that end, we share some 

lessons learned from implementing our IDS system 

designed for ground vehicle environments (Fox  
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ShieldTM), and show its performance against a 

publicly available CAN Bus dataset.  

In next section we will review best practices 

literature for design, implementation, and 

installation of IDSs. Sections 3 to 6 describe in 

details how we built the embedded vehicle IDS Fox 

ShieldTM, using best practices as main points of 

discussion. Section 7 illustrates the concepts with a 

case study. 

 

2. Related Work 
Since embedded-vehicle IDS designs and 

implementations have more constraints than those 

for common IP network IDSs, the related work 

section first surveys best practices for building 

IDSs in broader domains and then focuses on best 

practices we learned during building an effective 

vehicle IDS in a resource-constrained environment.  

The most mentioned best practice in literature is 

related to tuning IDS sensors. Tuning sensors 

during implementation and deployment is 

considered as one of the most important tasks in 

IDS development [3-5]. Grading and selecting the 

alarms [6] to display or present to operators is 

essential in highlighting important messages. 

Without alarm filtering [7], IDSs can overwhelm 

operators with alarms, potentially affecting them 

negatively. Alarms that come from different 

sensors should be correlated to ensure that the 

messages presented to the operators are consistent 

and complete without excessive duplication [8-10]. 

In addition to coherent alarms, IDSs also use 

logging mechanisms to detect potential attacks via 

pattern matching and other data mining techniques 

[11]. The correlation among logs and alarms is 

necessary to ensure potential attacks are captured as 

much as possible and to reduce false alarms in 

many cases [12,13], which enables the use of digital 

forensics. 

Before tuning IDS sensors, it is imperative to 

study normal operations data [14]. A baseline is 

obtained by profiling the system during normal 

operations, in benign environments, and is used 

later for identification of any deviation from that 

norm. Deviations trigger warnings or alarms, 

depending on the characteristics of the abnormality. 

However, not all deviations are potential intrusions; 

some could come from a glitch or a sudden surge in 

the number of messages, for instance. The alarms 

generated in these cases are considered false alarms 

[15]. The number of false alarms must be controlled 

to ensure the trustworthiness of the IDS [16]. One 

strategy to reduce false alarms is fine-tuning the 

IDS with more data that cover as many different 

situations possible.  

These best practices described above are popular 

and widely used in IDS implementation. Other 

practices, even though not as popular, are also 

mentioned in IDS-related literature. One of them is 

the careful choice of the location where the IDS 

sensors should be placed to obtain the best 

outcome, as described in [17,18]. Since the amount 

of traffic increases every year on most networks, it 

is necessary to install multiple IDSs to increase the 

probability of detection of network attacks [19], or 

to use multi-layered IDSs [20]. This might be true 

for CAN bus systems as well, with more data 

flowing with most versions upgrades of software 

and hardware. When the traffic becomes too 

intensive, the network becomes too complex, and 

the threat landscape becomes too vast, one of the 

important best practices is to assess the inventory 

and information to harden system cyber security 

[21].  

Given the strict environment where vehicle IDS is 

built, additional best practices must be taken into 

account. We call them “generic specialization,” 

“platform-unique interface code isolation,” and 

“avoid confusion by fusion.” These new best 

practices will be discussed at length in next 

sections. 
 

3. Guiding principles used during 
Developing Fox ShieldTM. 

In light of best practices outlined above, we 

approached the task of developing our IDS with 

reliability, modularity, efficiency, adaptability, 

transferability, and ease of tuning as our guiding 
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principles. In addition, we worked under two 

overarching mandates: “do no harm” and “emit 

almost zero false alarms.” 

These requirements are all high priority, however, 

the most important one, even though it is frequently 

overlooked, is the need to not make matters worse. 

An IDS has to be safe to use – it should not lead to 

a harmful increase in computational resource 

consumption, it should not crash, and it should not 

get stuck in infinite loops or have other logic errors.  

A reliable IDS, in addition to being safe, is 

capable of detecting anomalies and raising alarms 

in a repeatable, predicable manner.  

A modular IDS is written using an approach that 

allows each functional component to be designed, 

coded, debugged, and tuned as separately as 

possible from other components. 

An efficient IDS is frugal with memory and CPU 

cycles while meeting its functional goals. 

Algorithms can typically trade RAM for CPU 

cycles and vice-versa; choosing the correct 

algorithm first and implementing it efficiently 

second keeps the IDS small and fast.  

An adaptable IDS easily accommodates changing 

conditions, such as requiring only limited or no 

retraining in field conditions without the need for 

major model overhauls. 

A transferable IDS can be used on other platforms 

of the same type with no or minimal tuning, as well 

as on platforms of completely different types with 

modification only to the data ingestion and 

management interfaces. The logic core of a 

transferable IDS does not need code modifications 

to run on different processors or buses.  

An easily tuned IDS provides access to algorithm 

parameters in external files that are loaded at the 

startup of the system (so-called “configuration” or 

“model” files). There also should be clear 

documentation as to how to tune the sensors and 

interpret the results. Custom external tools to aid 

understanding of input data and each sensor’s 

response to it also contribute to easy tuning. 

Automatic tuning is a nice goal, but its outputs will 

inevitably need tweaking or explaining, in which 

case the custom external tools are again essential. 

A trustable IDS emits almost zero false alarms. 

Together with the reliability characteristic, trust 

goes to the essence of an IDS. An IDS that too 

frequently falses will quickly become a nuisance 

ignored by the platform operators it aims to inform. 

The IDS must also be decisive; it must not rapidly 

issue and cancel related alarms. 

We should not overlook the importance of 

logging information during the work of the IDS; it 

is needed for forensic analysis, as well as for 

reporting. The level of detail logged is set in the 

model files to support the expected decision 

explanation or report granularity.  

The application of best practices during 

development is intended to result in the IDS that 

satisfies all of the mandates and requirements. 

 

4. Information flow through Fox ShieldTM 
The generalized design of our IDS is shown in 

Figure 1. The IDS consists primarily of the Front 

End and the Anomaly Engine. There are auxiliary 

services, such as a Logger, Scheduler, and 

Performance Manager, as well as a set of model 

files – all necessary for operation of the system. 

Together, the Front End and Anomaly Engine (AE) 

implement the generic specialization best practice. 

Each detector in the AE specializes in a specific 

type of anomaly, allowing it to do one thing well, 

but operates on a generic data representation 

produced by the Front End, allowing it to be re-used 

wherever that one thing is useful. The modular and 

transferable principles drive this structure. 

We will discuss the main components in the 

sections that follow. 

 

4.1. Front End and data representation 
Vehicles are different, but mission vulnerabilities 

are often shared. Therefore, it makes sense to 

separate code that must change between vehicle 

types from code that can stay the same, as this limits 

the scope of change required to transfer the system 

to a new vehicle type. Investing time into an 
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encapsulated generic approach enhances the 

portability and re-usability of the brains of the IDS 

– the Anomaly Engine – saving cost and reducing 

risk. However, platform-specific code is 

unavoidable. In Fox ShieldTM we learned several 

valuable lessons about data ingestion and 

representation and established these best practices. 

Abstract away bytes: One might be tempted to use 

raw bytes as the ultimate generic data structure. 

Unfortunately, coding at the byte-level is error-

prone, requires careful consideration of 

machine/compiler details, and results in platform-

or datasource-specific sensors. In Fox ShieldTM, the 

Front End transforms ingested bytes into features 

represented with standard data types (e.g., int or 

float) for consumption by the Analysis Engine. 

Platform-specific details such as bus data capture 

format, data byte positions, and endianness are 

contained in only the Front End, which uses a 

generic format to describe those details for each 

platform. Each feature definition is given a unique 

ID for later reference. A feature can be a signal 

value extracted from the data stream, such as a 

temperature, or it can be a piece of meta-

information, such as packet arrival time or the 

entropy of its contents. 

Isolate platform-specific code through interfaces: 

Fox ShieldTM data ingestion is decoupled from 

analysis through a three-link chain. Data consumers 

expect a series of timestamped values called 

features that are uniquely identified by a number. 

In the first link, bytes are read and transformed into 

a platform-specific packet structure and added to a 

queue. This function is typically performed by a 

data capture mechanism outside the scope of the 

IDS itself. The second link, embodied in the Front 

End, reads packets off the queue, transforms them 

into features, and stores them in a multi-buffered 

holding pattern that permits downstream usage and 

upstream ingestion simultaneously. In the final 

link, data consumers process the buffered features. 

This feature-oriented ingestion allows consumers 

to be reused in other platforms provided that their 

logic isn’t platform-specific and that the new 

Figure 1: Major components of Fox ShieldTM, and the 

flow of information through them. 
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platform’s data can be represented by feature 

streams. Furthermore, this three-part system may 

be multithreaded to increase throughput if 

resources allow. 

Separate feature values and metadata: A feature 

may have a great deal of associated information that 

does not change for every packet or data unit. 

Bundling this metadata with ingested values is 

inefficient and unnecessary. Instead, a unique 

instance of metadata about the feature may be kept 

separate from value instances and accessed through 

the feature’s ID.  

 

4.2. Anomaly Engine – the heart of IDS 
Upon exiting the Front End, the stream of data, in 

the form of series of features, enters the Anomaly 

Engine (AE). The heart of our IDS, the AE consists 

of seven specialized anomaly detectors (ADs) and 

the Fuser. All ADs not only consume the data in the 

same format, but also produce uniformly formatted 

warnings.  

We implemented seven ADs; their parameters are 

specified in several model files. These files hold an 

extract of the most important information from 

available Interface Control Documents (ICDs), as 

well as the results of the model-learning phase of 

detector training on benign data. Placement of as 

many tuning parameters as possible in the model 

file instead of only in the code is driven by the 

adaptable, transferable, and easily tuned 

principles. While developing these detectors, we 

made a few mistakes and realized shortcomings of 

some approaches. The ADs and lessons learned are 

discussed in detail in section 5. 

The fuser consumes the warnings produced by the 

ADs and issues alerts when appropriate. It provides 

multi-layered, non-trivial logic, comparison and 

analysis of received warning contents, and guards 

against false alarms and unnecessary alert update 

jitter. The fuser accomplishes its tasks using pre-

trained models that outline relationships between 

various anomaly detectors, and special rules with 

multiple parameters – all of which are available in 

the model files. The Fuser is discussed in detail in 

section 6. 

 

5. Anomaly Detectors 
We will describe all seven of our anomaly 

detectors here, and emphasize some of the lessons 

we learned while designing and implementing 

those. 
 

5.1. Header Anomaly Detector 
The Header Detector inspects each packet header 

via a ‘packet header’ feature, and by its nature each 

Header AD is particular to one kind of packet. 

Initially, Header AD checked only the validity of 

sources and destinations (i.e., validity of Parameter 

Group Numbers, PGNs on a CAN bus), but we later 

realized that it would be beneficial to check the 

priority and other header fields of each packet, so 

those checks were added. We also learned that 

ICDs are not necessarily up-to-date with respect to 

the systems they document (for example, actual 

packet priorities), and it is essential to check the 

data observed during benign runs against most the 

reliable documentation sources. When in doubt, the 

data itself rules. 

 

5.2. IPAT Anomaly Detector 
The Inter Packet Arrival Time (IPAT) detector 

checks the timing of sequential packets of the same 

ID (e.g., same source and PGN on a CAN bus). 

Packets with different IDs are analyzed in separate 

streams. The average inter-packet time is measured 

in a sliding time window, and compared to the one 

stated in the model files. E.G., a message sent at 

10Hz might have an expected inter-arrival time of 

100ms. The average inter packet arrival time (time-

delta) is allowed to be shorter than the canonical 

one by a coefficient stated in the model file, and any 

greater discrepancy results in an internal IPAT 

warning. Violations to the longer side are not 

reported. Violations to the shorter side are not 

reported immediately; there is some extra filtering 

present which assures the violation is legitimately 
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concerning. Parameters of the extra filtering can be 

tuned from the model file.  

The need for different treatment of the violations 

on the shorter and longer side, as well as the need 

for extra filtering for the shorter-side violations, 

became clear when we studied our vast database of 

benign recordings. We learned on more than one 

occasion that following the practice of profiling 

normal network behavior carefully is a key process 

for IDS successful deployment. As you see in 

Figure 2, the violations of the prescribed time-

deltas to the longer side happen numerous times; it 

can be attributed to various benign situations that 

are beyond the scope of this writing. The violations 

on the shorter side (in benign conditions) may be 

attributed to rare, but possible, network traffic 

conditions as well as the details of the mechanism 

of time-stamping. These details can be different for 

different configurations and installations, but these 

violations are often transient, and thus, an extra 

requirement for persistency of the reportable short 

time-deltas provides a guard against false alarms. 

Steps necessary to reduce the false alarm rate – 

another essential best practice in developing IDS – 

should be taken at every possible junction, 

including in the functioning of every warning-

issuing AD. Reducing irrelevant warnings reduces 

the load on the Fuser, which is tasked with 

digesting warnings and issuing alerts to the external 

consumer. 

 

5.3. Heuristic Anomaly Detector  
The Heuristic AD is responsible for guarding 

some statistical properties of signals. Just like 

IPAT, it works in a sliding time window, but unlike 

IPAT, it works with individual signal values, not 

packets. For each window position, for each signal, 

two statistics are computed: the standard deviation 

of the values of the signal, and the average inter-

packet jump in the signal values. These statistics 

are compared to the maxima (per signal) allowed 

(set in model files), and if a violation occurs, a 

warning is sent to the Fuser. 

As with all our anomaly detectors, we follow the 

best practice of tuning the Heuristic sensor 

independently, using well-understood benign data. 

The distribution of the standard deviation measured 

for one of the signals, for several vehicles, for all 

positions of the sliding time window, is shown in 

Figure 3. The Heuristic AD guards against 

excessive jitter in data values, since it may be 

indicative of several types of attacks; the 

determination of the maximum allowed standard 

deviation is made from benign data analysis. The 

distribution shows an expected gradual drop in 

observations as the standard deviation increases. 

Eventually, the distribution flattens, indicating 

entry into the “noise” region. Multiple trials aimed 

at optimizing the Heuristic AD’s warning policy 

Figure 3: Heuristic: Observed standard deviations of the 

signal values (for one signal type) in sliding time window, 

in benign data for several vehicles. Also are shown 

approximations of regular data and noise (two straight 

lines). 

Figure 2: IPAT: Observed average time-deltas in sliding 

time window, in benign data for several vehicles. 
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resulted in adopting a threshold that lies 

approximately at the intersection of the downward 

part of the distribution (summarized by black line 

on the graph) and the noisy flat tail (blue line of the 

graph). Obviously, that threshold allows a higher 

probability for false warnings. In case of the 

Heuristic AD, most of the solution to this problem 

is delegated to the Fuser, where the lower reliability 

of Heuristic warnings is taken into account.  

We came across a property of the Heuristic AD 

while studying the benign data that emphasized the 

need for adaptability. Apparently, the second 

statistic used by Heuristic AD may depend on a 

specific vehicle, as Figure 5 illustrates. The ideal 

reporting threshold position for this signal changes 

from about 200 for the tightest distributions shown, 

to about 1000 for the distribution with the heavy tail 

of high values, shown by green dots. Anticipating 

cases like this, a quick tune-up in the field may be 

required. Alternatively, this flavor of Heuristic 

warning can be disabled in the model file. 

  

5.4. Anomaly Detector “Jump to Constant”  
The Jump to Constant (JTC) AD is capable of 

detecting instantaneous jumps in signal values 

followed by a “plateau” – an unusual behavior in a 

valid signal, but something that may be indicative 

of a cyber-attack or a malfunction in a physical 

sensor. JTC requires tuning similar to that of the 

Heuristic AD, with additional parameters needed to 

detect the “const-ness” of the signal and the 

definition of a “significant” jump. 

It is worth noting that our JTC AD detected a 

malfunction of a physical sensor during live testing. 

The alarm was raised by our IDS within a minute 

of the first malfunction, while the analysis of the 

hardware logs (not related to the IDS) showed the 

same malfunctions hours later. 

 

5.5. Range Anomaly Detector 
The Range AD assures that signal values fit into 

the proper range. From the first glance it should be 

the easiest AD to code, but we learned that in 

practice it is not so. Often the signals violate the 

ranges stated in the ICD, and it usually happens 

when the physical sensor is malfunctioning, or 

during glitches of the analog-to-digital converters, 

or some other such circumstances. For example, the 

ICD stated that the value of a particular 8-bit signal 

should not exceed 200, yet we observed values of 

254 and 255. These values in some cases were flags 

for the cases of “no signal” or “not ready.” We 

found that cases like these are not always well 

documented, and hence, care must be taken when 

coding and training a Range AD. One possibility is 

to always allow a signal to assume the maximum 

value possible for its size in bits (and maybe even a 

value one less than that maximum), but guard 

against all other values exceeding the maximum 

stated in the ICD. 

With these uncertainties in interpretation of what 

allowed range is, the Range sensor may also be a 

source of excessive warnings that are not indicative 

of a cyber attack. Just like in the case of Heuristic, 

the Fuser model is adjusted to treat warnings from 

the Range AD with extra “suspicion.”  

 

5.6. Flood Anomaly Detector 
The Flood AD detects excessive overall bus load. 

It may guard several busses, if more than one is 

present in the system, checking each bus separately. 

Warnings are issued when the observed load 

exceeds the threshold set in the model file. The 

threshold should be somewhat below the knee of 

Figure 4: Heuristic: Observed average delta in 

consecutive values of a signal in sliding time window, in 

benign data for several vehicles. 
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the bus’s utilization/throughput curve so that the 

IDS host has time to respond to the overload 

condition before it crushes the system completely. 

 

5.7. Set of Autoencoder Anomaly Detectors 
Finally, we employ a set of Autoencoder anomaly 

detectors. An autoencoder is a neural net trained to 

reproduce its input as its output. The input in our 

case is a trio of instantaneous values from three 

well-chosen signals. We call each such trio of 

signals a “group.” The process of choosing groups 

is based on relationships between signals – only 

signals related to each other in some manner, 

however complex, end up forming a group. 

A signal may belong to several groups, depending 

on how it interacts with other signals. To study this 

interaction, we interpret the normalized 

instantaneous values of three signals (the potential 

candidates to form a group) as coordinates in 3-D 

space, and thus, each instance in time is represented 

by a point in this 3-D space. By “interaction” 

between different signals we mean the patterns of 

the manifolds and sub-volumes formed by the 

cloud of these points in the full 3-D space. 

As seen in Figure 5, the “cloud” of points from a 

well performing group is showing a clear pattern; 

the volume of the cloud occupied by these points is 

a small fraction of the full 3-D space bounded by 

the min and max of the three signals. This 

formation of manifolds and sub-planes happens 

every time when the signals represent some 

physical variables that are related to each other, or 

some “state variables” that are somehow 

connected. 

For each IDS implementation (in this content, for 

each deployment of the Anomaly Engine to a 

different environment) we identify as many well-

formed 3-signal groups as possible. Each group 

results in one Autoencoder anomaly detector, and 

we use all well-formed groups, resulting in several 

Autoencoders running simultaneously (if possible, 

in multithreaded manner). Each group guards its 

three signals to fit inside the 3-D point cloud 

learned from the benign data. If, for any given 

moment in time, one or more signals in the group 

assume a value that “pulls” the corresponding data 

point away from the expected pattern established 

for this group – this may be an indication of a 

violation of the established benign behavior. The 

Autoencoder’s neural net recognizes the violation 

and produces a warning, with a significance value 

proportional to the degree of the violation, to the 

Fuser.  

We learned a valuable lesson when developing 

our Autoencoder detector, which can be formulated 

as the following best practice that should be always 

followed: “Pay attention to what your preliminary 

analysis of the data is trying to tell you.” In our 

case, the “talking” was done by the distribution of 

the error of reconstruction. This error is defined as 

the distance between the points Pbefore and Pafter. 

Pbefore is a point 3-D space, like one of the dots in 

Figure 5, with coordinates equal to the normalized 

values of the three signals at a moment in time, 

before this trio entered the neural net. Pafter is the 

point reconstructed by the neural net from the 

values of Pbefore. By the very definition of the 

autoencoder, this distance (in agreed upon 

measure) has to be minimal, although it is never 

zero. This distance, i.e., the error of the 

reconstruction, is averaged over all of the pointes in 

Figure 5: Autoencoder: manifolds and sub-volumes 

formed by one of the groups of SynCAN data [22]. 
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each training epoch. Training stops when the 

average error stops shrinking from epoch to epoch. 

In our attempts to find the best configuration for 

the 3-signal autoencoder, we decided to 

characterize every configuration with not just the 

average of the reconstruction errors during 

training, but with a distribution of the errors. After 

training of each configuration was complete, we 

considered a histogram reflecting the distribution of 

the reconstruction error, as seen in Figure 6, where 

the reconstruction error for all points used during 

training is depicted. 

It is clear from the blue curve in Figure 6 that the 

peak at the left side of the histogram represents 

some special case that has to be investigated. If we 

were not to use the full histogram, and were to be 

satisfied by the (very small) average reconstruction 

error, we would have stopped here, and would have 

never seen that the small average error is almost 

fully attributable to the fact that about 90% of data 

fall into this peak. Further investigation showed 

that the peak is formed by the points that belong to 

one very limited volume in the 3-D space of 

potential instantaneous values of the three signals. 

This means that, during training, the neural net is 

overconcentrated in reflecting this small volume of 

the 3-D space in its weights, i.e. overtraining itself 

for the points in this specific portion of space, and 

“forgetting” to pay attention to all other data. We 

argue that it is wise to force the neural net to train 

more uniformly, to cover equally all possible 

relations between three signals, and not “get stuck” 

on one small sub-volume due to popularity. This 

idea resulted in changing how we selected training 

data points; instead of using all available points in 

the training data, we implemented a “bin-and-cut” 

approach: the 3-D space is diced into small cuboids, 

and only a limited number of data points from each 

cuboid is allowed into training data set, cutting 

away the rest of repetitive data points. 

Autoencoders trained using the bin-and-cut 

approach adapt to recognize patterns formed in all 

sub-volumes and manifolds of the 3-D space. This 

behavior is reflected in the new distribution of 

errors (red curve) shown in Figure 6: the overall 

histogram is shifted to the left with respect to the 

blue curve, signaling significant improvement in 

recognition of all patterns present in the 

relationships between the three signals in the group. 

Autoencoder AD is very reliable, but just like 

another reliable detector – IPAT, – it can use some 

extra filtering, to assure that the violations it detects 

are not transient. 

 

6. Fuser 
Warnings from all ADs are consumed by the 

Fuser, which acts as an integrator and filter. A 

diagram of information flow inside the Fuser 

consumes the better portion of Figure 1. In the 

following sections, we will examine the Fuser’s 

construction and operation in detail, emphasizing 

the best practices leveraged to develop a better, 

safer, more robust IDS generating as few false 

alarms as possible.  

The Fuser is a tiered system working with four 

main classes of object: (1) consolidated warnings, 

(2) situations, (3) internal alerts, and (4) external 

alerts. In the spirit of modularity, we designed, 

coded, and debugged these classes separately, 

tuning the behaviors of each one independently, 

and then tuning the interactions between them. 

Also, to practice efficiency, we paid close attention 

to the memory consumption and execution time for 

Figure 6: Autoencoder: distribution of the reconstruction 

error for all training data, for one of the autoencoder of 3-

signal groups. 
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each component algorithm, since the ability to work 

in real time and to fit onto an execution platform 

with limited resources is crucial for a vehicle IDS. 

 

6.1. Consolidated Warnings 
A reliable vehicle IDS must carefully track alert 

priority, timing, and “need-to-issue.” To that end, 

each anomaly detector assigns a significance metric 

to each warning it issues; this is the beginning of 

the anomaly intensity assessment for potential 

alerts. The locality principle suggests that each AD 

is best equipped to determine that significance, as 

its logic performs the initial detection, and it has 

access to more information than would make sense 

to pass on to another module to do the same job. 

The fuser receives these warnings and proceeds 

with its first task: consolidation of incoming 

warnings, including tracking their significance and 

timing. 

All incoming warnings for the “same” anomaly 

are collapsed into one Consolidated Warning 

(CW). “Same” means the warnings were issued by 

the same AD for the same source and target with 

respect to the same feature ID. Observation time 

and severity may change, so the CW tracks the first 

and last times this “same” warning has been 

received along with the highest significance seen. 

In this way, a continuous stream of warnings about 

an ongoing anomaly from a single AD is condensed 

to a single object describing how long something 

has been going on and how significant the 

originating AD believes it to be. The fuser keeps all 

CWs in a single CW container that reflects the 

current status of the continuously changing stream 

of “feeder” warnings coming from all anomaly 

detectors. 

When a new kind of “feeder” warning arrives at 

the Fuser and there is not already a CW that is the 

“same,” a new CW is created and assigned a “time 

of life” constant. Per the easily tuned principle, 

these constants are specified for each AD in the 

model files. Every CW must be updated by a 

matching “feeder” warning at least as often as its 

“time of life,” otherwise it is marked for deletion 

and elimination from all “downstream” structures it 

participates in, such as situations and alerts. 

 

6.2. Situations 
The concept of situations was first introduced by 

Debar and Wespi [23]. A situation is a collection of 

CWs that have one, two, or three properties in 

common, where the properties are: source, target, 

and the issuing AD. A situation with all three 

properties matching may contain only one CW, 

since by definition all incoming warnings that have 

matching source, target, and issuing AD will be 

consolidated into a single CW. Situations of the 

other six types may contain multiple CWs whose 

properties match in a specific way. For example, 

CWs whose source and target fields match but 

whose issuing AD do not match define a type, and 

CWs whose target and AD fields match but whose 

sources do not match define another type. Seven 

different types of situations are possible given the 

three properties tested. Important attributes of a 

situation include its severity, which is calculated 

from the significances of its member CWs, and its 

rank, which is an ordering of the importance or 

meaningfulness for the seven possible types. This 

ordering is configured in the model files. 

Fox Shield™ uses situations to characterize 

what’s happening on the vehicle with maximum 

accuracy, based on all information coming from all 

ADs, considering all sources, targets, and types of 

anomaly. This characterization goes long way 

towards satisfying the best practice of profiling 

normal network behavior (during tuning) as a key 

process for IDS deployment. The advantage of 

situations is that the tuning process produces a 

detailed picture of how warnings of different types 

interact, and how those interactions should be 

considered during the fusion process. In keeping 

with the adaptable, transferable, and easily tuned 

principles, these consideration tunings are stored in 

the model files. 

When the fuser updates the set of CWs, each of 

them is checked for membership in existing 

situations, which are updated based the properties 
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of their member CWs. Next, the fuser scans the 

updated set of CWs to determine if new situations 

have arisen due to the current relationships among 

the CWs. The creation of new situations is stopped 

when there is no warning left that doesn’t belong to 

at least one situation. Thus, the order of creation of 

the situations of different types is important, and 

remains as one of the tuning parameters in the 

model file. 

After all possible situations are created, the next 

step in their evolution happens: all situations, both 

old ones and the newly created ones, absorb 

warnings from the current set of CWs. Each CW 

can belong to any number of situations. A CW is 

absorbed into a situation if its source/target/AD 

tuple properly matches corresponding properties of 

the situation, given its type. As a result of this 

absorption, there will be situations that have, for 

example, all warnings coming from a particular 

AD, or situations that have matching source and 

target, but different issuing ADs, and so on. 

Some situations are deemed “alertable.” 

Alertability of a situation is fully defined by its 

severity and by the types of anomaly detectors that 

issued its warnings. A situation with only one AD 

involved is alertable when its severity exceeds the 

self-alert threshold for the issuing AD. If there are 

two warning-issuing ADs involved in a given 

situation, it is called alertable if its severity exceeds 

a threshold set for this AD pair in a symmetrical 

square matrix with the size equal to the number of 

ADs in the system. If there are more than two ADs 

involved in the situation, the situation's severity has 

to exceed the highest threshold for all available 

pairs of ADs. Such an approach assures that only 

CWs from compatible detectors are forming 

alertable situations. All these thresholds are set in 

the model file. 

With this system, Fox Shield™ achieves fine 

control over the relative importance of different 

ADs, their reliability (how much we can trust their 

warnings), and interactions between different ADs, 

down to outright prohibition of alertable situation 

that happens to involve certain pairs of anomaly 

detectors. For example, a situation that involves 

Header and JTC warnings will never be deemed 

alertable, because of the high value of the threshold 

set for this pairing. Even if these two detectors are 

reporting at the same time, chances are they are 

reporting about unrelated events. Similarly, JTC 

and IPAT are incompatible. The two noisiest ADs, 

Heuristic and Range, have a relatively high 

threshold for alertability as a pair, thus shifting the 

responsibility of alert initiation to other, more 

reliable situations (the self-alert threshold for each 

of these two ADs is even higher than their pair-

threshold). 

In the course of evolution of situations, a change 

of situation’s alertability may happen. A previously 

non-alertable situation may become alertable if 

escalation of significance of some or all of its 

warnings leads to a sufficient increase of situation’s 

severity. The loss of alertability is also possible.  

The last property to describe here is the end-of-

life of situations and warnings. As we already 

mentioned, a CW expires when it isn’t updated for 

a time exceeding its time-of-life. When a CW 

expires, it is removed from all situations it belongs 

to, which may lead to a change of situation’s type 

or an empty situation. Empty situations 

immediately expire. After situation updates, 

duplicate situations are removed. 

 

6.3. Internal Alerts 
After all updated CWs are absorbed into 

situations, the situations updated, and the situation 

list is cleared of expired items and duplicates, the 

forming and updating of internal alerts begins. An 

Internal alert consists of one or more alertable 

situations deemed to be part of the same alertable 

cause. Internal alerts can be viewed as the union of 

all CWs present in its member situations. 

Internal alert update processing starts by checking 

whether every current alertable situation belongs to 

at least one internal alert; we will call an alertable 

situation that is not yet a member of an internal alert 

an “orphan.” If any orphan situations exist, 

aggregation by similarity occurs: situations that are 
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already members of existing internal alerts evaluate 

their similarity to each of the orphan situations to 

determine if the orphan should be pulled in to an 

existing alert. The evaluations are done in order of 

situation rank, from high to low; this represents one 

of the parameters for Fuser tuning. Higher-ranked 

situations have a better chance of pulling the new 

situation into its host internal alert, similar to a 

sports team draft picking process. In our current 

tuning, the situation type containing warnings 

matched by both source and target have the highest 

rank, followed by situations having warnings with 

matching target and issuing AD. Orphan situations 

not pulled in to any existing internal alert form new 

internal alerts. 

We will describe here the aggregation rules, 

which are an important part of internal alert 

formation and evolution, using Figure 7 as an 

example. Three moments in time are shown: At 

“time 1,” situation #2 is pulled in to internal alert 

#1. At “time 2” (occurring after “time 1”), 

situations #3, #4, and #5 are evaluated, but only 

situation #3 is pulled, indicated by the green arrow. 

As a result, at “time 3” (occurring after “time 2”), 

there are three active internal alerts. 

When an evaluation is made, a situation tries to 

pull the orphan in to join an internal alert. Pulling 

is successful if the situations are similar enough, 

which is the case if there is at least one pair of CWs 

(one CW in the pulling situation, and another CW 

in the situation being pulled) that are similar 

enough. Similarity is measured by the degree of 

match between sources and targets multiplied by 

the entry in the “proximity matrix” for the pair of 

ADs issuing the warnings. For the pull to succeed, 

the degree of similarity has to exceed a threshold 

specified in the model file. 

The proximity matrix is an asymmetric square 

matrix specified in the model file; it is the main 

tuning tool for the Fuser. It determines the priority 

of each AD with respect to other ADs. The 

proximity matrix governs what ADs are considered 

to be “primary” (warnings with these ADs will be 

successful “pullers”), and what ADs are considered 

to be “secondary” (warnings coming from these 

ADs will be pulled in by others, but will rarely or 

never successfully initiate a pull). The proximity 

Figure 7: Example of evolution of internal alerts, in terms 

of absorbing new situations. The status of internal alert(s) 

and situations are shown for three moments in time. 
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matrix also reflects our opinion of what pairs of 

detectors are likely to trigger during the same 

attack, and what pairs of detectors, even if triggered 

at the same time, were probably triggered by 

different attacks. For example, Flood warnings are 

very likely to pull situations with IPAT warnings in 

them – these two detectors are triggered by the 

same type of disturbance and should typically 

inform a single alert. IPAT is also allowed to easily 

pull Flood. Autoencoder warnings are allowed to 

pull Heuristic warnings, but not vice-versa. 

Heuristic warnings are not an exclusive signature of 

attacks that cause Autoencoder to trigger; Heuristic 

warnings may as well be caused by an attack that 

triggers JTC or even IPAT. 

The presence of a new alertable situation that was 

not pulled into any of the existing internal alerts 

typically indicates that it is incompatible with the 

existing internal alerts, and should reside in a new 

internal alert. 

Returning to Figure 7, we will explain why each 

of the pulling attempts succeeded or failed. 

At “time 1,” the existing internal alert #1 contains 

only situation #1, which evaluates pulling situation 

#2. For the pull to succeed, one of the CWs inside 

the alert (i.e., inside situation #1) has to be able to 

pull one of the CWs inside the situation being 

pulled (i.e., situation #2), which in this case 

contains only one Heuristic CW. First, the source 

and target similarity is checked. CW #1 (puller) has 

the same source/target combination as CW #4 

(pullee), producing a score of two (one each for 

target and source match). This score is multiplied 

by the proximity matrix value for the 

Autoencoder/Heuristic puller/pullee combination. 

This value is set high, because we know that 

anomalies triggering autoencoder have a 

reasonable probability of triggering Heuristic as 

well (but the opposite is not true, as mentioned 

above). 

When aggregation at “time 1” is complete, 

internal alert #1 has two situations and four CWs, 

as shown in panel “time 2.” At “time 2,” there are 

also three new situations present. Situation #3 can 

be easily pulled into the alert by the virtue of CW 

#1 pulling CW #5. Their source and target both 

match, and the proximity matrix value for 

Autoencoder/IPAT is high. Notice also that this is 

the only way situation #3 can be pulled into the 

alert: CW #6 (the second warning of the situation 

#3) has no matching sources or targets with any of 

the warnings already present in the alert, and CW 

#5 cannot be pulled by any warning other than #1. 

CWs #2 and #3 do not match the sources or targets 

of CW #5 (so the score to be multiplied by the 

proximity matrix entry is zero). CW #4 has a 

matching source/target combination, but the 

proximity matrix entry for the Heuristic/IPAT 

combination is zero: Heuristic warnings are not 

allowed to pull other warnings. 

Turning to situation #4 at “time 2,” CW #7 has a 

non-zero source/target score with CW #1 and #4. 

For warnings #1 and #7, the proximity matrix 

prohibits Autoencoder and Header from pulling 

each other because they are likely triggered by 

unrelated disturbances (which may be happening at 

the same time, but have a different nature). For 

warnings #4 and #7, the pull cannot succeed 

because the proximity matrix values prevent 

Heuristic warnings from pulling any other warnings 

(since Heuristic warnings can be seen in many 

different types of disturbances). Thus, neither 

situation #1 nor situation #2 can pull situation #4 

into internal alert #1. 

Considering situation #5: the proximity matrix 

has a high score for the JTC detector as a pullee for 

the Autoencoder as puller. Unfortunately, there is 

no source/target match between CW #8, the only 

entry in the situation #5, and any of the 

Autoencoder warnings already present in the 

internal alert #1. The only other CW in the alert, #4, 

is from Heuristic, which as discussed above always 

fails to pull. Thus, situation #5 cannot be pulled in 

to internal alert #1, and aggregation assessments for 

time #2 are complete. 

This brings us to “time 3,” shown in the last panel 

of Figure 7. The fuser created an internal alert for 

the higher-ranked situation, and after another round 
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of aggregation evaluation, another internal alert for 

the last situation since they could not be aggregated 

due to the proximity matrix and source/target 

scores. These separate internal alerts indicate 

possible simultaneous disturbances, separate and 

different from the one that resulted in internal alert 

#1. 

An important characteristic of an internal alert is 

its severity, computed from the severity of its 

member situations. For later external consumption, 

this number is then reduced to a discrete 

characteristic: “low,” “medium,” or “high,” using 

thresholds set in model file. 

Another property of the internal alert is its type, 

which is a characterization of a possible attack that 

caused this alert. This characterization is done via 

mapping of the set of ADs that caused the alert to 

an attack name, such as “Flood,” “Impersonation,” 

“Status manipulation,” “Fuzzing,” “Substitution,” 

or “Shadow.” 

Internal alerts evolve when their component 

situations and warnings evolve and when new 

situations are pulled into existing alerts. As old 

warnings “age out” and are removed, the situations 

change: their type or severity may change, or they 

may die out altogether. All these changes cause 

changes in the internal alert. When new situations 

are pulled into existing alerts, the severity of the 

alerts may change. All these changes mean that 

internal alerts are fluid entities that reflect the most 

up-to-date information happening “on the wire,” 

the information that is initially sent to the Fuser by 

anomaly detectors and consolidated using multiple 

highly configurable mechanisms inside the Fuser. 

 

6.4. External Alerts 
Internal alerts lead to the issuance of External 

alerts, the only notification available to the 

consumer of our IDS, besides logs. External alerts 

are generated by an internal alert under certain 

conditions. First, the corresponding internal alert 

has to have at least one alertable situation. Even 

though an internal alert cannot be created out of 

non-alertable situation, the evolution of the 

member warnings may lead to the loss of the 

alertability property. Second, a certain time has to 

pass after creation of the internal alert before it can 

trigger an external alert: this delay allows for the 

initial evolution to happen, i.e., multiple situations 

(and warnings) will collect themselves in this alert, 

resulting in a better evaluation of the status of the 

vehicle. The delay time depends on the alert’s 

severity and is set in the model file. 

Evolution of internal alerts may result in updates 

or outright cancellation of corresponding external 

alerts. Depending on the current status, the external 

change may happen immediately, i.e. together with 

the change in the internal alerts, or after some delay 

(in case of a change in severity, for example). 

Cancellation of an external alert, in most cases, will 

be delayed with respect to cancellation of the 

internal alert. All of the delays between creation, 

change, and cancellation of internal alerts, and the 

corresponding actions in the external alerts, are 

needed to allow for the internal alert to settle down 

and minimize change and on-and-off jitter in the 

external alerts.  

 

6.5. Summing up the role of Fuser 
As we see in the previous sections, the Fuser is a 

layered system with multiple tuning possibilities: 

various thresholds and relationship matrices, 

collected in the model file, allow for turning the 

multiple warnings sent by many anomaly detectors 

into a concise, jitter-free, low false-alarm-rate set of 

external alerts. As best practices of IDS 

development require, each of the multiple phases of 

the transformation from warnings to external alerts 

can be tuned separately. Interactions between 

phases can also be handled one-at-a-time. The 

principles of reliability, modularity, efficiency, 

adaptability, transferability, and ease of tuning are 

all observed. As a result, the final system is capable 

of correctly reflecting the status of the systems it 

protects within the scope of its detectors, even if 

several different attacks are happening 

simultaneously. 
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7. Case Study 
Comparison of the behavior of different IDSs, or 

even different configurations for a single IDS, 

requires a stable input dataset. While we developed 

our IDS against large volumes of internal data, we 

also tested it using a published dataset, SynCAN 

[22]. After training on the SynCAN benign data set, 

we tested our IDS using their “attack” files. We will 

concentrate here on the simultaneous detection of 

the attacks by our various ADs, as well as on the 

merging ability of our unique Fuser; the response 

of our Autoencoder detectors to other SynCAN 

attacks will be detailed in a future publication. 

 

7.1. Examples of “plateau” attacks 
Figure 8 shows the response of the Fox Shield™ 

IDS to three consecutive SynCAN “plateau” attack 

signals. During Attack 1, signal ID4-Sig1 is 

flattened (the blue curve in Figure 8a), while the 

signal ID5-Sig1 is left at its original values. During 

Attack 2, the signal ID1-Sig1 (orange curve) is 

pulled down significantly and flattened. During 

Attack 3, signal ID5-Sig1 is flattened (green curve), 

while the other signals remain untouched. 

In our study of SynCAN data, These three signals 

form the Autoencoder group #8, while ID1-Sig1 is 

also a member of Autoencoder groups #1 and #2. 

The response of all three Autoencoder groups is 

shown in Figure 8b; the height of the colored bars 

is proportional to the significance of the warnings. 

Attack 2 is the easiest to detect, and warnings from 

all three groups containing the attacked signal 

(groups #1, #2, and #8) arrive at full force. Attacks 

1 and 3 are not so easily detectable, as the flattened 

portions of the attacked signals remain well inside 

their corresponding data ranges. However, 

Autoencoder group #8 issued very clear warnings 

in both cases. 

Autoencoder detector, in addition to its neural net, 

also has a low-pass filter, with some additional 

dampening properties, which is applied to the raw 

warnings before they are issued to the Fuser; this is 

done to eliminate transients and to reduce false 

alarms. This results in the short time delay of the 

start and end of the autoencoder warnings activity, 

compared to the time of start and end of the attacks, 

as can be noticed in Figure 8b. 

The JTC AD successfully detected all three 

attacks (Figure 8c). JTC has a delay reaction to the 

attack as it waits to see that the value of the signal 

stays constant after the jump. 

The Heuristic AD detects unusual statistical 

properties of a signal using a sliding time window. 

It easily catches the abrupt change in value during 

the beginning and the end of the Attack 2, but not 

during Attack 3, or at the end of Attack 1, when the 

disturbance is not strong enough (Figure 8d). It also 

gives a few false-positive warnings after Attack 1.  

The work of the Fuser is shown in Figure 8e. The 

warnings related to the Attack 1 are coming from 

Heuristic, Autoencoder, and JTC sensors. Heuristic 

warning shows up first, but it is not highly 

respected by the Fuser, since it is known to have 

false-positives. Thus, the internal alert is not 

formed for Attack 1 until Heuristic warnings are 

confirmed by the Autoencoder warnings. Soon 

Figure 8: Detecting "plateau” attacks in SynCAN data. 
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after, JTC joins the chorus of warnings, and the 

internal alert intensity is upgraded (see the step up 

in the purple bars). Soon after the upgrade, the 

external alert is issued to the host system (the red 

bar above the line). The small time delay between 

internal and external alerts allows for settlement of 

the severity and for completeness of the evolution 

of the internal alert, allowing it to collect all its 

situations and warnings. As a result, the jitter of the 

alerts going out of the system is reduced: only one 

external alert is issued, and it fully describes the 

attack taking place. After the warnings that gave 

rise to the internal alert expire, the internal alert is 

cancelled, and, after appropriate delay, the external 

alert is cancelled as well (the red bar below the 

line). Attacks 2 and 3 are handled similarly. 

 

7.2. Examples of “flood” attacks 
Flood attacks are characterized by a large number 

of extra packets for one or more packet types. 

Detection of three flood attacks is shown in Figure 

9, with the panel a giving the rate of three types of 

packets as a function of time. Our IPAT anomaly 

detector, working in a sliding time window (hence 

reacting with a short delay), easily finds these 

attacks (see Figure 9b), and issues appropriate 

warnings, with significance proportional to the 

degree of violation of the expected time deltas. 

Recall that each packet may have several signals in 

it; any violation of the packet rate most probably 

means violations of signal shapes for every signal 

contained in that packet. The response of the 

Heuristic detector (Figure 9c) is shown for some of 

the signals contained in packets ID1, ID2, and ID9; 

and it confirms the violation of the expected 

statistics for these signals. Autoencoder, as another 

signal-based detector, issues warnings for many 

groups (Figure 9d), since each packet under attack 

has several signals involved, and some signals 

participate in more than one group. The Fuser 

(Figure 9e) has no problem summarizing the 

received warnings, creating internal alerts, and 

issuing (and canceling) external alerts. 

For in-depth understanding on how our ADs 

detect the flood attacks of SynCAN dataset, 

consider Figure 10, where an attack on packet ID7 

is shown in detail. The number of ID7 packets per 

second and the values of the signal ID7-Sig1 are 

shown as a function of time in panels a) and b). It 

Figure 9: Detecting "flood” attacks in SynCAN data. Figure 10: Anatomy of a flood attack and its detection. 



Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Best Practices For Ground Vehicle Intrusion Detection Systems. Novikova, et al. 

 

Page 17 of 18 

is clear that the attack consists of inserting extra 

packets with valid, zeroed signal values into the 

ID7 packet stream (the lack of Range warnings 

indicates zero is a valid value for that signal). While 

IPAT AD focuses on the timing of packets, both 

Heuristic and Autoencoder examine the values of 

signals. The zeroed values produce disturbances in 

the patterns expected by both of these ADs; this 

results in warnings, issued in support of warnings 

from IPAT – see Figure 10c. The significance of 

Autoencoder warnings diminish as time progresses 

because the actual, original values approach the 

artificial values inserted into the signal over time, 

as seen in panel b). Coherent work of all ADs 

involved allows the Fuser (Figure 10d) not only to 

issue a proper timely alert, but also classify it 

correctly. 

 

8. Conclusions 
We demonstrated how a collection of best 

practices and principles allowed us to create a 

reliable, low-false-alarm IDS currently at TRL-8. 

Best practices include “generic specialization,” 

“platform-unique interface code isolation,” and 

“avoid confusion by fusion.” Guiding principles 

include reliability, modularity, efficiency, 

adaptability, transferability, and ease of tuning. The 

performance of that IDS was also demonstrated on 

a publicly available dataset.  
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