
2020 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY

SYMPOSIUM
CYBER TECHNICAL SESSION

AUGUST 11-13, 2020 - NOVI, MICHIGAN

BEST PRACTICES FOR GROUND VEHICLE INTRUSION DETECTION
SYSTEMS

Elena I. Novikova1, Vu Le1, Michael Weber1, Cory Andersen1,
Samuel N. Hamilton2

1BAE Systems, Arlington, VA

2Plucky Innovation, Oakton, VA

ABSTRACT
Addressing the well-established need for accurate cyber situational

awareness on military vehicles and weapons platforms, we developed a well-tested,

robust Intrusion Detection System – Fox ShieldTM – currently rated TRL-8. The

system is described and the lessons learned during its development are discussed.

The basic principles of our anomaly detectors are outlined, and the details of our

innovative warning-aggregating Fuser are presented. Many attack detection

examples are presented, using a publicly available CANbus dataset.

Citation: E.I. Novikova, V. Le, M. Weber, C. Andersen, S.N. Hamilton, “Best Practices For Ground Vehicle Intrusion

Detection Systems”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium

(GVSETS), NDIA, Novi, MI, Aug. 13-15, 2020.

1. Introduction
The importance of timely, accurate cyber

situational awareness on military vehicles and

weapons platforms has been well established [1].

Achieving that awareness in those environments

with traditional enterprise network Intrusion

Detection System (IDS) approaches is infeasible

from a data processing and storage perspective, and

suboptimal from an attack surface coverage

perspective. Traditional IDSs digest voluminous

logs from disparate sensors watching many

instances of a few types of data streams (e.g., a

single HTTPS stream can be examined from the IP,

TCP, SSL, HTTP, and application layer

perspectives), being more tolerant to false alarms,

watching for known attack signatures, unknown

attacks, and signs of remote C2 and data exfiltration

over long periods of time [2]. Embedded vehicle

IDSs must examine few instances of many types of

data streams simultaneously (e.g., vehicle mission

subsystems control and status, environment

sensors, vehicle engine and related system control

and status, comms data, external threat and SA

sensors) from many perspectives, with almost no

tolerance for false alarms, watching for unexpected

types of attack against vehicle mission success in

real time, and do it without overwhelming

embedded processing systems with a fraction of the

capacity of enterprise SOC installations. It is a

difficult challenge that requires platform owners,

systems integrators, and cyber software builders to

work together. Towards that end, we share some

lessons learned from implementing our IDS system

designed for ground vehicle environments (Fox

Approved for public release; unlimited distribution.

Not export controlled per ES-FL-061920-0087

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Best Practices For Ground Vehicle Intrusion Detection Systems. Novikova, et al.

Page 2 of 18

ShieldTM), and show its performance against a

publicly available CAN Bus dataset.

In next section we will review best practices

literature for design, implementation, and

installation of IDSs. Sections 3 to 6 describe in

details how we built the embedded vehicle IDS Fox

ShieldTM, using best practices as main points of

discussion. Section 7 illustrates the concepts with a

case study.

2. Related Work
Since embedded-vehicle IDS designs and

implementations have more constraints than those

for common IP network IDSs, the related work

section first surveys best practices for building

IDSs in broader domains and then focuses on best

practices we learned during building an effective

vehicle IDS in a resource-constrained environment.

The most mentioned best practice in literature is

related to tuning IDS sensors. Tuning sensors

during implementation and deployment is

considered as one of the most important tasks in

IDS development [3-5]. Grading and selecting the

alarms [6] to display or present to operators is

essential in highlighting important messages.

Without alarm filtering [7], IDSs can overwhelm

operators with alarms, potentially affecting them

negatively. Alarms that come from different

sensors should be correlated to ensure that the

messages presented to the operators are consistent

and complete without excessive duplication [8-10].

In addition to coherent alarms, IDSs also use

logging mechanisms to detect potential attacks via

pattern matching and other data mining techniques

[11]. The correlation among logs and alarms is

necessary to ensure potential attacks are captured as

much as possible and to reduce false alarms in

many cases [12,13], which enables the use of digital

forensics.

Before tuning IDS sensors, it is imperative to

study normal operations data [14]. A baseline is

obtained by profiling the system during normal

operations, in benign environments, and is used

later for identification of any deviation from that

norm. Deviations trigger warnings or alarms,

depending on the characteristics of the abnormality.

However, not all deviations are potential intrusions;

some could come from a glitch or a sudden surge in

the number of messages, for instance. The alarms

generated in these cases are considered false alarms

[15]. The number of false alarms must be controlled

to ensure the trustworthiness of the IDS [16]. One

strategy to reduce false alarms is fine-tuning the

IDS with more data that cover as many different

situations possible.

These best practices described above are popular

and widely used in IDS implementation. Other

practices, even though not as popular, are also

mentioned in IDS-related literature. One of them is

the careful choice of the location where the IDS

sensors should be placed to obtain the best

outcome, as described in [17,18]. Since the amount

of traffic increases every year on most networks, it

is necessary to install multiple IDSs to increase the

probability of detection of network attacks [19], or

to use multi-layered IDSs [20]. This might be true

for CAN bus systems as well, with more data

flowing with most versions upgrades of software

and hardware. When the traffic becomes too

intensive, the network becomes too complex, and

the threat landscape becomes too vast, one of the

important best practices is to assess the inventory

and information to harden system cyber security

[21].

Given the strict environment where vehicle IDS is

built, additional best practices must be taken into

account. We call them “generic specialization,”

“platform-unique interface code isolation,” and

“avoid confusion by fusion.” These new best

practices will be discussed at length in next

sections.

3. Guiding principles used during
Developing Fox ShieldTM.

In light of best practices outlined above, we

approached the task of developing our IDS with

reliability, modularity, efficiency, adaptability,

transferability, and ease of tuning as our guiding

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Best Practices For Ground Vehicle Intrusion Detection Systems. Novikova, et al.

Page 3 of 18

principles. In addition, we worked under two

overarching mandates: “do no harm” and “emit

almost zero false alarms.”

These requirements are all high priority, however,

the most important one, even though it is frequently

overlooked, is the need to not make matters worse.

An IDS has to be safe to use – it should not lead to

a harmful increase in computational resource

consumption, it should not crash, and it should not

get stuck in infinite loops or have other logic errors.

A reliable IDS, in addition to being safe, is

capable of detecting anomalies and raising alarms

in a repeatable, predicable manner.

A modular IDS is written using an approach that

allows each functional component to be designed,

coded, debugged, and tuned as separately as

possible from other components.

An efficient IDS is frugal with memory and CPU

cycles while meeting its functional goals.

Algorithms can typically trade RAM for CPU

cycles and vice-versa; choosing the correct

algorithm first and implementing it efficiently

second keeps the IDS small and fast.

An adaptable IDS easily accommodates changing

conditions, such as requiring only limited or no

retraining in field conditions without the need for

major model overhauls.

A transferable IDS can be used on other platforms

of the same type with no or minimal tuning, as well

as on platforms of completely different types with

modification only to the data ingestion and

management interfaces. The logic core of a

transferable IDS does not need code modifications

to run on different processors or buses.

An easily tuned IDS provides access to algorithm

parameters in external files that are loaded at the

startup of the system (so-called “configuration” or

“model” files). There also should be clear

documentation as to how to tune the sensors and

interpret the results. Custom external tools to aid

understanding of input data and each sensor’s

response to it also contribute to easy tuning.

Automatic tuning is a nice goal, but its outputs will

inevitably need tweaking or explaining, in which

case the custom external tools are again essential.

A trustable IDS emits almost zero false alarms.

Together with the reliability characteristic, trust

goes to the essence of an IDS. An IDS that too

frequently falses will quickly become a nuisance

ignored by the platform operators it aims to inform.

The IDS must also be decisive; it must not rapidly

issue and cancel related alarms.

We should not overlook the importance of

logging information during the work of the IDS; it

is needed for forensic analysis, as well as for

reporting. The level of detail logged is set in the

model files to support the expected decision

explanation or report granularity.

The application of best practices during

development is intended to result in the IDS that

satisfies all of the mandates and requirements.

4. Information flow through Fox ShieldTM
The generalized design of our IDS is shown in

Figure 1. The IDS consists primarily of the Front

End and the Anomaly Engine. There are auxiliary

services, such as a Logger, Scheduler, and

Performance Manager, as well as a set of model

files – all necessary for operation of the system.

Together, the Front End and Anomaly Engine (AE)

implement the generic specialization best practice.

Each detector in the AE specializes in a specific

type of anomaly, allowing it to do one thing well,

but operates on a generic data representation

produced by the Front End, allowing it to be re-used

wherever that one thing is useful. The modular and

transferable principles drive this structure.

We will discuss the main components in the

sections that follow.

4.1. Front End and data representation
Vehicles are different, but mission vulnerabilities

are often shared. Therefore, it makes sense to

separate code that must change between vehicle

types from code that can stay the same, as this limits

the scope of change required to transfer the system

to a new vehicle type. Investing time into an

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Best Practices For Ground Vehicle Intrusion Detection Systems. Novikova, et al.

Page 4 of 18

encapsulated generic approach enhances the

portability and re-usability of the brains of the IDS

– the Anomaly Engine – saving cost and reducing

risk. However, platform-specific code is

unavoidable. In Fox ShieldTM we learned several

valuable lessons about data ingestion and

representation and established these best practices.

Abstract away bytes: One might be tempted to use

raw bytes as the ultimate generic data structure.

Unfortunately, coding at the byte-level is error-

prone, requires careful consideration of

machine/compiler details, and results in platform-

or datasource-specific sensors. In Fox ShieldTM, the

Front End transforms ingested bytes into features

represented with standard data types (e.g., int or

float) for consumption by the Analysis Engine.

Platform-specific details such as bus data capture

format, data byte positions, and endianness are

contained in only the Front End, which uses a

generic format to describe those details for each

platform. Each feature definition is given a unique

ID for later reference. A feature can be a signal

value extracted from the data stream, such as a

temperature, or it can be a piece of meta-

information, such as packet arrival time or the

entropy of its contents.

Isolate platform-specific code through interfaces:

Fox ShieldTM data ingestion is decoupled from

analysis through a three-link chain. Data consumers

expect a series of timestamped values called

features that are uniquely identified by a number.

In the first link, bytes are read and transformed into

a platform-specific packet structure and added to a

queue. This function is typically performed by a

data capture mechanism outside the scope of the

IDS itself. The second link, embodied in the Front

End, reads packets off the queue, transforms them

into features, and stores them in a multi-buffered

holding pattern that permits downstream usage and

upstream ingestion simultaneously. In the final

link, data consumers process the buffered features.

This feature-oriented ingestion allows consumers

to be reused in other platforms provided that their

logic isn’t platform-specific and that the new

Figure 1: Major components of Fox ShieldTM, and the

flow of information through them.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Best Practices For Ground Vehicle Intrusion Detection Systems. Novikova, et al.

Page 5 of 18

platform’s data can be represented by feature

streams. Furthermore, this three-part system may

be multithreaded to increase throughput if

resources allow.

Separate feature values and metadata: A feature

may have a great deal of associated information that

does not change for every packet or data unit.

Bundling this metadata with ingested values is

inefficient and unnecessary. Instead, a unique

instance of metadata about the feature may be kept

separate from value instances and accessed through

the feature’s ID.

4.2. Anomaly Engine – the heart of IDS
Upon exiting the Front End, the stream of data, in

the form of series of features, enters the Anomaly

Engine (AE). The heart of our IDS, the AE consists

of seven specialized anomaly detectors (ADs) and

the Fuser. All ADs not only consume the data in the

same format, but also produce uniformly formatted

warnings.

We implemented seven ADs; their parameters are

specified in several model files. These files hold an

extract of the most important information from

available Interface Control Documents (ICDs), as

well as the results of the model-learning phase of

detector training on benign data. Placement of as

many tuning parameters as possible in the model

file instead of only in the code is driven by the

adaptable, transferable, and easily tuned

principles. While developing these detectors, we

made a few mistakes and realized shortcomings of

some approaches. The ADs and lessons learned are

discussed in detail in section 5.

The fuser consumes the warnings produced by the

ADs and issues alerts when appropriate. It provides

multi-layered, non-trivial logic, comparison and

analysis of received warning contents, and guards

against false alarms and unnecessary alert update

jitter. The fuser accomplishes its tasks using pre-

trained models that outline relationships between

various anomaly detectors, and special rules with

multiple parameters – all of which are available in

the model files. The Fuser is discussed in detail in

section 6.

5. Anomaly Detectors
We will describe all seven of our anomaly

detectors here, and emphasize some of the lessons

we learned while designing and implementing

those.

5.1. Header Anomaly Detector
The Header Detector inspects each packet header

via a ‘packet header’ feature, and by its nature each

Header AD is particular to one kind of packet.

Initially, Header AD checked only the validity of

sources and destinations (i.e., validity of Parameter

Group Numbers, PGNs on a CAN bus), but we later

realized that it would be beneficial to check the

priority and other header fields of each packet, so

those checks were added. We also learned that

ICDs are not necessarily up-to-date with respect to

the systems they document (for example, actual

packet priorities), and it is essential to check the

data observed during benign runs against most the

reliable documentation sources. When in doubt, the

data itself rules.

5.2. IPAT Anomaly Detector
The Inter Packet Arrival Time (IPAT) detector

checks the timing of sequential packets of the same

ID (e.g., same source and PGN on a CAN bus).

Packets with different IDs are analyzed in separate

streams. The average inter-packet time is measured

in a sliding time window, and compared to the one

stated in the model files. E.G., a message sent at

10Hz might have an expected inter-arrival time of

100ms. The average inter packet arrival time (time-

delta) is allowed to be shorter than the canonical

one by a coefficient stated in the model file, and any

greater discrepancy results in an internal IPAT

warning. Violations to the longer side are not

reported. Violations to the shorter side are not

reported immediately; there is some extra filtering

present which assures the violation is legitimately

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Best Practices For Ground Vehicle Intrusion Detection Systems. Novikova, et al.

Page 6 of 18

concerning. Parameters of the extra filtering can be

tuned from the model file.

The need for different treatment of the violations

on the shorter and longer side, as well as the need

for extra filtering for the shorter-side violations,

became clear when we studied our vast database of

benign recordings. We learned on more than one

occasion that following the practice of profiling

normal network behavior carefully is a key process

for IDS successful deployment. As you see in

Figure 2, the violations of the prescribed time-

deltas to the longer side happen numerous times; it

can be attributed to various benign situations that

are beyond the scope of this writing. The violations

on the shorter side (in benign conditions) may be

attributed to rare, but possible, network traffic

conditions as well as the details of the mechanism

of time-stamping. These details can be different for

different configurations and installations, but these

violations are often transient, and thus, an extra

requirement for persistency of the reportable short

time-deltas provides a guard against false alarms.

Steps necessary to reduce the false alarm rate –

another essential best practice in developing IDS –

should be taken at every possible junction,

including in the functioning of every warning-

issuing AD. Reducing irrelevant warnings reduces

the load on the Fuser, which is tasked with

digesting warnings and issuing alerts to the external

consumer.

5.3. Heuristic Anomaly Detector
The Heuristic AD is responsible for guarding

some statistical properties of signals. Just like

IPAT, it works in a sliding time window, but unlike

IPAT, it works with individual signal values, not

packets. For each window position, for each signal,

two statistics are computed: the standard deviation

of the values of the signal, and the average inter-

packet jump in the signal values. These statistics

are compared to the maxima (per signal) allowed

(set in model files), and if a violation occurs, a

warning is sent to the Fuser.

As with all our anomaly detectors, we follow the

best practice of tuning the Heuristic sensor

independently, using well-understood benign data.

The distribution of the standard deviation measured

for one of the signals, for several vehicles, for all

positions of the sliding time window, is shown in

Figure 3. The Heuristic AD guards against

excessive jitter in data values, since it may be

indicative of several types of attacks; the

determination of the maximum allowed standard

deviation is made from benign data analysis. The

distribution shows an expected gradual drop in

observations as the standard deviation increases.

Eventually, the distribution flattens, indicating

entry into the “noise” region. Multiple trials aimed

at optimizing the Heuristic AD’s warning policy

Figure 3: Heuristic: Observed standard deviations of the

signal values (for one signal type) in sliding time window,

in benign data for several vehicles. Also are shown

approximations of regular data and noise (two straight

lines).

Figure 2: IPAT: Observed average time-deltas in sliding

time window, in benign data for several vehicles.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Best Practices For Ground Vehicle Intrusion Detection Systems. Novikova, et al.

Page 7 of 18

resulted in adopting a threshold that lies

approximately at the intersection of the downward

part of the distribution (summarized by black line

on the graph) and the noisy flat tail (blue line of the

graph). Obviously, that threshold allows a higher

probability for false warnings. In case of the

Heuristic AD, most of the solution to this problem

is delegated to the Fuser, where the lower reliability

of Heuristic warnings is taken into account.

We came across a property of the Heuristic AD

while studying the benign data that emphasized the

need for adaptability. Apparently, the second

statistic used by Heuristic AD may depend on a

specific vehicle, as Figure 5 illustrates. The ideal

reporting threshold position for this signal changes

from about 200 for the tightest distributions shown,

to about 1000 for the distribution with the heavy tail

of high values, shown by green dots. Anticipating

cases like this, a quick tune-up in the field may be

required. Alternatively, this flavor of Heuristic

warning can be disabled in the model file.

5.4. Anomaly Detector “Jump to Constant”
The Jump to Constant (JTC) AD is capable of

detecting instantaneous jumps in signal values

followed by a “plateau” – an unusual behavior in a

valid signal, but something that may be indicative

of a cyber-attack or a malfunction in a physical

sensor. JTC requires tuning similar to that of the

Heuristic AD, with additional parameters needed to

detect the “const-ness” of the signal and the

definition of a “significant” jump.

It is worth noting that our JTC AD detected a

malfunction of a physical sensor during live testing.

The alarm was raised by our IDS within a minute

of the first malfunction, while the analysis of the

hardware logs (not related to the IDS) showed the

same malfunctions hours later.

5.5. Range Anomaly Detector
The Range AD assures that signal values fit into

the proper range. From the first glance it should be

the easiest AD to code, but we learned that in

practice it is not so. Often the signals violate the

ranges stated in the ICD, and it usually happens

when the physical sensor is malfunctioning, or

during glitches of the analog-to-digital converters,

or some other such circumstances. For example, the

ICD stated that the value of a particular 8-bit signal

should not exceed 200, yet we observed values of

254 and 255. These values in some cases were flags

for the cases of “no signal” or “not ready.” We

found that cases like these are not always well

documented, and hence, care must be taken when

coding and training a Range AD. One possibility is

to always allow a signal to assume the maximum

value possible for its size in bits (and maybe even a

value one less than that maximum), but guard

against all other values exceeding the maximum

stated in the ICD.

With these uncertainties in interpretation of what

allowed range is, the Range sensor may also be a

source of excessive warnings that are not indicative

of a cyber attack. Just like in the case of Heuristic,

the Fuser model is adjusted to treat warnings from

the Range AD with extra “suspicion.”

5.6. Flood Anomaly Detector
The Flood AD detects excessive overall bus load.

It may guard several busses, if more than one is

present in the system, checking each bus separately.

Warnings are issued when the observed load

exceeds the threshold set in the model file. The

threshold should be somewhat below the knee of

Figure 4: Heuristic: Observed average delta in

consecutive values of a signal in sliding time window, in

benign data for several vehicles.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Best Practices For Ground Vehicle Intrusion Detection Systems. Novikova, et al.

Page 8 of 18

the bus’s utilization/throughput curve so that the

IDS host has time to respond to the overload

condition before it crushes the system completely.

5.7. Set of Autoencoder Anomaly Detectors
Finally, we employ a set of Autoencoder anomaly

detectors. An autoencoder is a neural net trained to

reproduce its input as its output. The input in our

case is a trio of instantaneous values from three

well-chosen signals. We call each such trio of

signals a “group.” The process of choosing groups

is based on relationships between signals – only

signals related to each other in some manner,

however complex, end up forming a group.

A signal may belong to several groups, depending

on how it interacts with other signals. To study this

interaction, we interpret the normalized

instantaneous values of three signals (the potential

candidates to form a group) as coordinates in 3-D

space, and thus, each instance in time is represented

by a point in this 3-D space. By “interaction”

between different signals we mean the patterns of

the manifolds and sub-volumes formed by the

cloud of these points in the full 3-D space.

As seen in Figure 5, the “cloud” of points from a

well performing group is showing a clear pattern;

the volume of the cloud occupied by these points is

a small fraction of the full 3-D space bounded by

the min and max of the three signals. This

formation of manifolds and sub-planes happens

every time when the signals represent some

physical variables that are related to each other, or

some “state variables” that are somehow

connected.

For each IDS implementation (in this content, for

each deployment of the Anomaly Engine to a

different environment) we identify as many well-

formed 3-signal groups as possible. Each group

results in one Autoencoder anomaly detector, and

we use all well-formed groups, resulting in several

Autoencoders running simultaneously (if possible,

in multithreaded manner). Each group guards its

three signals to fit inside the 3-D point cloud

learned from the benign data. If, for any given

moment in time, one or more signals in the group

assume a value that “pulls” the corresponding data

point away from the expected pattern established

for this group – this may be an indication of a

violation of the established benign behavior. The

Autoencoder’s neural net recognizes the violation

and produces a warning, with a significance value

proportional to the degree of the violation, to the

Fuser.

We learned a valuable lesson when developing

our Autoencoder detector, which can be formulated

as the following best practice that should be always

followed: “Pay attention to what your preliminary

analysis of the data is trying to tell you.” In our

case, the “talking” was done by the distribution of

the error of reconstruction. This error is defined as

the distance between the points Pbefore and Pafter.

Pbefore is a point 3-D space, like one of the dots in

Figure 5, with coordinates equal to the normalized

values of the three signals at a moment in time,

before this trio entered the neural net. Pafter is the

point reconstructed by the neural net from the

values of Pbefore. By the very definition of the

autoencoder, this distance (in agreed upon

measure) has to be minimal, although it is never

zero. This distance, i.e., the error of the

reconstruction, is averaged over all of the pointes in

Figure 5: Autoencoder: manifolds and sub-volumes

formed by one of the groups of SynCAN data [22].

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Best Practices For Ground Vehicle Intrusion Detection Systems. Novikova, et al.

Page 9 of 18

each training epoch. Training stops when the

average error stops shrinking from epoch to epoch.

In our attempts to find the best configuration for

the 3-signal autoencoder, we decided to

characterize every configuration with not just the

average of the reconstruction errors during

training, but with a distribution of the errors. After

training of each configuration was complete, we

considered a histogram reflecting the distribution of

the reconstruction error, as seen in Figure 6, where

the reconstruction error for all points used during

training is depicted.

It is clear from the blue curve in Figure 6 that the

peak at the left side of the histogram represents

some special case that has to be investigated. If we

were not to use the full histogram, and were to be

satisfied by the (very small) average reconstruction

error, we would have stopped here, and would have

never seen that the small average error is almost

fully attributable to the fact that about 90% of data

fall into this peak. Further investigation showed

that the peak is formed by the points that belong to

one very limited volume in the 3-D space of

potential instantaneous values of the three signals.

This means that, during training, the neural net is

overconcentrated in reflecting this small volume of

the 3-D space in its weights, i.e. overtraining itself

for the points in this specific portion of space, and

“forgetting” to pay attention to all other data. We

argue that it is wise to force the neural net to train

more uniformly, to cover equally all possible

relations between three signals, and not “get stuck”

on one small sub-volume due to popularity. This

idea resulted in changing how we selected training

data points; instead of using all available points in

the training data, we implemented a “bin-and-cut”

approach: the 3-D space is diced into small cuboids,

and only a limited number of data points from each

cuboid is allowed into training data set, cutting

away the rest of repetitive data points.

Autoencoders trained using the bin-and-cut

approach adapt to recognize patterns formed in all

sub-volumes and manifolds of the 3-D space. This

behavior is reflected in the new distribution of

errors (red curve) shown in Figure 6: the overall

histogram is shifted to the left with respect to the

blue curve, signaling significant improvement in

recognition of all patterns present in the

relationships between the three signals in the group.

Autoencoder AD is very reliable, but just like

another reliable detector – IPAT, – it can use some

extra filtering, to assure that the violations it detects

are not transient.

6. Fuser
Warnings from all ADs are consumed by the

Fuser, which acts as an integrator and filter. A

diagram of information flow inside the Fuser

consumes the better portion of Figure 1. In the

following sections, we will examine the Fuser’s

construction and operation in detail, emphasizing

the best practices leveraged to develop a better,

safer, more robust IDS generating as few false

alarms as possible.

The Fuser is a tiered system working with four

main classes of object: (1) consolidated warnings,

(2) situations, (3) internal alerts, and (4) external

alerts. In the spirit of modularity, we designed,

coded, and debugged these classes separately,

tuning the behaviors of each one independently,

and then tuning the interactions between them.

Also, to practice efficiency, we paid close attention

to the memory consumption and execution time for

Figure 6: Autoencoder: distribution of the reconstruction

error for all training data, for one of the autoencoder of 3-

signal groups.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Best Practices For Ground Vehicle Intrusion Detection Systems. Novikova, et al.

Page 10 of 18

each component algorithm, since the ability to work

in real time and to fit onto an execution platform

with limited resources is crucial for a vehicle IDS.

6.1. Consolidated Warnings
A reliable vehicle IDS must carefully track alert

priority, timing, and “need-to-issue.” To that end,

each anomaly detector assigns a significance metric

to each warning it issues; this is the beginning of

the anomaly intensity assessment for potential

alerts. The locality principle suggests that each AD

is best equipped to determine that significance, as

its logic performs the initial detection, and it has

access to more information than would make sense

to pass on to another module to do the same job.

The fuser receives these warnings and proceeds

with its first task: consolidation of incoming

warnings, including tracking their significance and

timing.

All incoming warnings for the “same” anomaly

are collapsed into one Consolidated Warning

(CW). “Same” means the warnings were issued by

the same AD for the same source and target with

respect to the same feature ID. Observation time

and severity may change, so the CW tracks the first

and last times this “same” warning has been

received along with the highest significance seen.

In this way, a continuous stream of warnings about

an ongoing anomaly from a single AD is condensed

to a single object describing how long something

has been going on and how significant the

originating AD believes it to be. The fuser keeps all

CWs in a single CW container that reflects the

current status of the continuously changing stream

of “feeder” warnings coming from all anomaly

detectors.

When a new kind of “feeder” warning arrives at

the Fuser and there is not already a CW that is the

“same,” a new CW is created and assigned a “time

of life” constant. Per the easily tuned principle,

these constants are specified for each AD in the

model files. Every CW must be updated by a

matching “feeder” warning at least as often as its

“time of life,” otherwise it is marked for deletion

and elimination from all “downstream” structures it

participates in, such as situations and alerts.

6.2. Situations
The concept of situations was first introduced by

Debar and Wespi [23]. A situation is a collection of

CWs that have one, two, or three properties in

common, where the properties are: source, target,

and the issuing AD. A situation with all three

properties matching may contain only one CW,

since by definition all incoming warnings that have

matching source, target, and issuing AD will be

consolidated into a single CW. Situations of the

other six types may contain multiple CWs whose

properties match in a specific way. For example,

CWs whose source and target fields match but

whose issuing AD do not match define a type, and

CWs whose target and AD fields match but whose

sources do not match define another type. Seven

different types of situations are possible given the

three properties tested. Important attributes of a

situation include its severity, which is calculated

from the significances of its member CWs, and its

rank, which is an ordering of the importance or

meaningfulness for the seven possible types. This

ordering is configured in the model files.

Fox Shield™ uses situations to characterize

what’s happening on the vehicle with maximum

accuracy, based on all information coming from all

ADs, considering all sources, targets, and types of

anomaly. This characterization goes long way

towards satisfying the best practice of profiling

normal network behavior (during tuning) as a key

process for IDS deployment. The advantage of

situations is that the tuning process produces a

detailed picture of how warnings of different types

interact, and how those interactions should be

considered during the fusion process. In keeping

with the adaptable, transferable, and easily tuned

principles, these consideration tunings are stored in

the model files.

When the fuser updates the set of CWs, each of

them is checked for membership in existing

situations, which are updated based the properties

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Best Practices For Ground Vehicle Intrusion Detection Systems. Novikova, et al.

Page 11 of 18

of their member CWs. Next, the fuser scans the

updated set of CWs to determine if new situations

have arisen due to the current relationships among

the CWs. The creation of new situations is stopped

when there is no warning left that doesn’t belong to

at least one situation. Thus, the order of creation of

the situations of different types is important, and

remains as one of the tuning parameters in the

model file.

After all possible situations are created, the next

step in their evolution happens: all situations, both

old ones and the newly created ones, absorb

warnings from the current set of CWs. Each CW

can belong to any number of situations. A CW is

absorbed into a situation if its source/target/AD

tuple properly matches corresponding properties of

the situation, given its type. As a result of this

absorption, there will be situations that have, for

example, all warnings coming from a particular

AD, or situations that have matching source and

target, but different issuing ADs, and so on.

Some situations are deemed “alertable.”

Alertability of a situation is fully defined by its

severity and by the types of anomaly detectors that

issued its warnings. A situation with only one AD

involved is alertable when its severity exceeds the

self-alert threshold for the issuing AD. If there are

two warning-issuing ADs involved in a given

situation, it is called alertable if its severity exceeds

a threshold set for this AD pair in a symmetrical

square matrix with the size equal to the number of

ADs in the system. If there are more than two ADs

involved in the situation, the situation's severity has

to exceed the highest threshold for all available

pairs of ADs. Such an approach assures that only

CWs from compatible detectors are forming

alertable situations. All these thresholds are set in

the model file.

With this system, Fox Shield™ achieves fine

control over the relative importance of different

ADs, their reliability (how much we can trust their

warnings), and interactions between different ADs,

down to outright prohibition of alertable situation

that happens to involve certain pairs of anomaly

detectors. For example, a situation that involves

Header and JTC warnings will never be deemed

alertable, because of the high value of the threshold

set for this pairing. Even if these two detectors are

reporting at the same time, chances are they are

reporting about unrelated events. Similarly, JTC

and IPAT are incompatible. The two noisiest ADs,

Heuristic and Range, have a relatively high

threshold for alertability as a pair, thus shifting the

responsibility of alert initiation to other, more

reliable situations (the self-alert threshold for each

of these two ADs is even higher than their pair-

threshold).

In the course of evolution of situations, a change

of situation’s alertability may happen. A previously

non-alertable situation may become alertable if

escalation of significance of some or all of its

warnings leads to a sufficient increase of situation’s

severity. The loss of alertability is also possible.

The last property to describe here is the end-of-

life of situations and warnings. As we already

mentioned, a CW expires when it isn’t updated for

a time exceeding its time-of-life. When a CW

expires, it is removed from all situations it belongs

to, which may lead to a change of situation’s type

or an empty situation. Empty situations

immediately expire. After situation updates,

duplicate situations are removed.

6.3. Internal Alerts
After all updated CWs are absorbed into

situations, the situations updated, and the situation

list is cleared of expired items and duplicates, the

forming and updating of internal alerts begins. An

Internal alert consists of one or more alertable

situations deemed to be part of the same alertable

cause. Internal alerts can be viewed as the union of

all CWs present in its member situations.

Internal alert update processing starts by checking

whether every current alertable situation belongs to

at least one internal alert; we will call an alertable

situation that is not yet a member of an internal alert

an “orphan.” If any orphan situations exist,

aggregation by similarity occurs: situations that are

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Best Practices For Ground Vehicle Intrusion Detection Systems. Novikova, et al.

Page 12 of 18

already members of existing internal alerts evaluate

their similarity to each of the orphan situations to

determine if the orphan should be pulled in to an

existing alert. The evaluations are done in order of

situation rank, from high to low; this represents one

of the parameters for Fuser tuning. Higher-ranked

situations have a better chance of pulling the new

situation into its host internal alert, similar to a

sports team draft picking process. In our current

tuning, the situation type containing warnings

matched by both source and target have the highest

rank, followed by situations having warnings with

matching target and issuing AD. Orphan situations

not pulled in to any existing internal alert form new

internal alerts.

We will describe here the aggregation rules,

which are an important part of internal alert

formation and evolution, using Figure 7 as an

example. Three moments in time are shown: At

“time 1,” situation #2 is pulled in to internal alert

#1. At “time 2” (occurring after “time 1”),

situations #3, #4, and #5 are evaluated, but only

situation #3 is pulled, indicated by the green arrow.

As a result, at “time 3” (occurring after “time 2”),

there are three active internal alerts.

When an evaluation is made, a situation tries to

pull the orphan in to join an internal alert. Pulling

is successful if the situations are similar enough,

which is the case if there is at least one pair of CWs

(one CW in the pulling situation, and another CW

in the situation being pulled) that are similar

enough. Similarity is measured by the degree of

match between sources and targets multiplied by

the entry in the “proximity matrix” for the pair of

ADs issuing the warnings. For the pull to succeed,

the degree of similarity has to exceed a threshold

specified in the model file.

The proximity matrix is an asymmetric square

matrix specified in the model file; it is the main

tuning tool for the Fuser. It determines the priority

of each AD with respect to other ADs. The

proximity matrix governs what ADs are considered

to be “primary” (warnings with these ADs will be

successful “pullers”), and what ADs are considered

to be “secondary” (warnings coming from these

ADs will be pulled in by others, but will rarely or

never successfully initiate a pull). The proximity

Figure 7: Example of evolution of internal alerts, in terms

of absorbing new situations. The status of internal alert(s)

and situations are shown for three moments in time.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Best Practices For Ground Vehicle Intrusion Detection Systems. Novikova, et al.

Page 13 of 18

matrix also reflects our opinion of what pairs of

detectors are likely to trigger during the same

attack, and what pairs of detectors, even if triggered

at the same time, were probably triggered by

different attacks. For example, Flood warnings are

very likely to pull situations with IPAT warnings in

them – these two detectors are triggered by the

same type of disturbance and should typically

inform a single alert. IPAT is also allowed to easily

pull Flood. Autoencoder warnings are allowed to

pull Heuristic warnings, but not vice-versa.

Heuristic warnings are not an exclusive signature of

attacks that cause Autoencoder to trigger; Heuristic

warnings may as well be caused by an attack that

triggers JTC or even IPAT.

The presence of a new alertable situation that was

not pulled into any of the existing internal alerts

typically indicates that it is incompatible with the

existing internal alerts, and should reside in a new

internal alert.

Returning to Figure 7, we will explain why each

of the pulling attempts succeeded or failed.

At “time 1,” the existing internal alert #1 contains

only situation #1, which evaluates pulling situation

#2. For the pull to succeed, one of the CWs inside

the alert (i.e., inside situation #1) has to be able to

pull one of the CWs inside the situation being

pulled (i.e., situation #2), which in this case

contains only one Heuristic CW. First, the source

and target similarity is checked. CW #1 (puller) has

the same source/target combination as CW #4

(pullee), producing a score of two (one each for

target and source match). This score is multiplied

by the proximity matrix value for the

Autoencoder/Heuristic puller/pullee combination.

This value is set high, because we know that

anomalies triggering autoencoder have a

reasonable probability of triggering Heuristic as

well (but the opposite is not true, as mentioned

above).

When aggregation at “time 1” is complete,

internal alert #1 has two situations and four CWs,

as shown in panel “time 2.” At “time 2,” there are

also three new situations present. Situation #3 can

be easily pulled into the alert by the virtue of CW

#1 pulling CW #5. Their source and target both

match, and the proximity matrix value for

Autoencoder/IPAT is high. Notice also that this is

the only way situation #3 can be pulled into the

alert: CW #6 (the second warning of the situation

#3) has no matching sources or targets with any of

the warnings already present in the alert, and CW

#5 cannot be pulled by any warning other than #1.

CWs #2 and #3 do not match the sources or targets

of CW #5 (so the score to be multiplied by the

proximity matrix entry is zero). CW #4 has a

matching source/target combination, but the

proximity matrix entry for the Heuristic/IPAT

combination is zero: Heuristic warnings are not

allowed to pull other warnings.

Turning to situation #4 at “time 2,” CW #7 has a

non-zero source/target score with CW #1 and #4.

For warnings #1 and #7, the proximity matrix

prohibits Autoencoder and Header from pulling

each other because they are likely triggered by

unrelated disturbances (which may be happening at

the same time, but have a different nature). For

warnings #4 and #7, the pull cannot succeed

because the proximity matrix values prevent

Heuristic warnings from pulling any other warnings

(since Heuristic warnings can be seen in many

different types of disturbances). Thus, neither

situation #1 nor situation #2 can pull situation #4

into internal alert #1.

Considering situation #5: the proximity matrix

has a high score for the JTC detector as a pullee for

the Autoencoder as puller. Unfortunately, there is

no source/target match between CW #8, the only

entry in the situation #5, and any of the

Autoencoder warnings already present in the

internal alert #1. The only other CW in the alert, #4,

is from Heuristic, which as discussed above always

fails to pull. Thus, situation #5 cannot be pulled in

to internal alert #1, and aggregation assessments for

time #2 are complete.

This brings us to “time 3,” shown in the last panel

of Figure 7. The fuser created an internal alert for

the higher-ranked situation, and after another round

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Best Practices For Ground Vehicle Intrusion Detection Systems. Novikova, et al.

Page 14 of 18

of aggregation evaluation, another internal alert for

the last situation since they could not be aggregated

due to the proximity matrix and source/target

scores. These separate internal alerts indicate

possible simultaneous disturbances, separate and

different from the one that resulted in internal alert

#1.

An important characteristic of an internal alert is

its severity, computed from the severity of its

member situations. For later external consumption,

this number is then reduced to a discrete

characteristic: “low,” “medium,” or “high,” using

thresholds set in model file.

Another property of the internal alert is its type,

which is a characterization of a possible attack that

caused this alert. This characterization is done via

mapping of the set of ADs that caused the alert to

an attack name, such as “Flood,” “Impersonation,”

“Status manipulation,” “Fuzzing,” “Substitution,”

or “Shadow.”

Internal alerts evolve when their component

situations and warnings evolve and when new

situations are pulled into existing alerts. As old

warnings “age out” and are removed, the situations

change: their type or severity may change, or they

may die out altogether. All these changes cause

changes in the internal alert. When new situations

are pulled into existing alerts, the severity of the

alerts may change. All these changes mean that

internal alerts are fluid entities that reflect the most

up-to-date information happening “on the wire,”

the information that is initially sent to the Fuser by

anomaly detectors and consolidated using multiple

highly configurable mechanisms inside the Fuser.

6.4. External Alerts
Internal alerts lead to the issuance of External

alerts, the only notification available to the

consumer of our IDS, besides logs. External alerts

are generated by an internal alert under certain

conditions. First, the corresponding internal alert

has to have at least one alertable situation. Even

though an internal alert cannot be created out of

non-alertable situation, the evolution of the

member warnings may lead to the loss of the

alertability property. Second, a certain time has to

pass after creation of the internal alert before it can

trigger an external alert: this delay allows for the

initial evolution to happen, i.e., multiple situations

(and warnings) will collect themselves in this alert,

resulting in a better evaluation of the status of the

vehicle. The delay time depends on the alert’s

severity and is set in the model file.

Evolution of internal alerts may result in updates

or outright cancellation of corresponding external

alerts. Depending on the current status, the external

change may happen immediately, i.e. together with

the change in the internal alerts, or after some delay

(in case of a change in severity, for example).

Cancellation of an external alert, in most cases, will

be delayed with respect to cancellation of the

internal alert. All of the delays between creation,

change, and cancellation of internal alerts, and the

corresponding actions in the external alerts, are

needed to allow for the internal alert to settle down

and minimize change and on-and-off jitter in the

external alerts.

6.5. Summing up the role of Fuser
As we see in the previous sections, the Fuser is a

layered system with multiple tuning possibilities:

various thresholds and relationship matrices,

collected in the model file, allow for turning the

multiple warnings sent by many anomaly detectors

into a concise, jitter-free, low false-alarm-rate set of

external alerts. As best practices of IDS

development require, each of the multiple phases of

the transformation from warnings to external alerts

can be tuned separately. Interactions between

phases can also be handled one-at-a-time. The

principles of reliability, modularity, efficiency,

adaptability, transferability, and ease of tuning are

all observed. As a result, the final system is capable

of correctly reflecting the status of the systems it

protects within the scope of its detectors, even if

several different attacks are happening

simultaneously.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Best Practices For Ground Vehicle Intrusion Detection Systems. Novikova, et al.

Page 15 of 18

7. Case Study
Comparison of the behavior of different IDSs, or

even different configurations for a single IDS,

requires a stable input dataset. While we developed

our IDS against large volumes of internal data, we

also tested it using a published dataset, SynCAN

[22]. After training on the SynCAN benign data set,

we tested our IDS using their “attack” files. We will

concentrate here on the simultaneous detection of

the attacks by our various ADs, as well as on the

merging ability of our unique Fuser; the response

of our Autoencoder detectors to other SynCAN

attacks will be detailed in a future publication.

7.1. Examples of “plateau” attacks
Figure 8 shows the response of the Fox Shield™

IDS to three consecutive SynCAN “plateau” attack

signals. During Attack 1, signal ID4-Sig1 is

flattened (the blue curve in Figure 8a), while the

signal ID5-Sig1 is left at its original values. During

Attack 2, the signal ID1-Sig1 (orange curve) is

pulled down significantly and flattened. During

Attack 3, signal ID5-Sig1 is flattened (green curve),

while the other signals remain untouched.

In our study of SynCAN data, These three signals

form the Autoencoder group #8, while ID1-Sig1 is

also a member of Autoencoder groups #1 and #2.

The response of all three Autoencoder groups is

shown in Figure 8b; the height of the colored bars

is proportional to the significance of the warnings.

Attack 2 is the easiest to detect, and warnings from

all three groups containing the attacked signal

(groups #1, #2, and #8) arrive at full force. Attacks

1 and 3 are not so easily detectable, as the flattened

portions of the attacked signals remain well inside

their corresponding data ranges. However,

Autoencoder group #8 issued very clear warnings

in both cases.

Autoencoder detector, in addition to its neural net,

also has a low-pass filter, with some additional

dampening properties, which is applied to the raw

warnings before they are issued to the Fuser; this is

done to eliminate transients and to reduce false

alarms. This results in the short time delay of the

start and end of the autoencoder warnings activity,

compared to the time of start and end of the attacks,

as can be noticed in Figure 8b.

The JTC AD successfully detected all three

attacks (Figure 8c). JTC has a delay reaction to the

attack as it waits to see that the value of the signal

stays constant after the jump.

The Heuristic AD detects unusual statistical

properties of a signal using a sliding time window.

It easily catches the abrupt change in value during

the beginning and the end of the Attack 2, but not

during Attack 3, or at the end of Attack 1, when the

disturbance is not strong enough (Figure 8d). It also

gives a few false-positive warnings after Attack 1.

The work of the Fuser is shown in Figure 8e. The

warnings related to the Attack 1 are coming from

Heuristic, Autoencoder, and JTC sensors. Heuristic

warning shows up first, but it is not highly

respected by the Fuser, since it is known to have

false-positives. Thus, the internal alert is not

formed for Attack 1 until Heuristic warnings are

confirmed by the Autoencoder warnings. Soon

Figure 8: Detecting "plateau” attacks in SynCAN data.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Best Practices For Ground Vehicle Intrusion Detection Systems. Novikova, et al.

Page 16 of 18

after, JTC joins the chorus of warnings, and the

internal alert intensity is upgraded (see the step up

in the purple bars). Soon after the upgrade, the

external alert is issued to the host system (the red

bar above the line). The small time delay between

internal and external alerts allows for settlement of

the severity and for completeness of the evolution

of the internal alert, allowing it to collect all its

situations and warnings. As a result, the jitter of the

alerts going out of the system is reduced: only one

external alert is issued, and it fully describes the

attack taking place. After the warnings that gave

rise to the internal alert expire, the internal alert is

cancelled, and, after appropriate delay, the external

alert is cancelled as well (the red bar below the

line). Attacks 2 and 3 are handled similarly.

7.2. Examples of “flood” attacks
Flood attacks are characterized by a large number

of extra packets for one or more packet types.

Detection of three flood attacks is shown in Figure

9, with the panel a giving the rate of three types of

packets as a function of time. Our IPAT anomaly

detector, working in a sliding time window (hence

reacting with a short delay), easily finds these

attacks (see Figure 9b), and issues appropriate

warnings, with significance proportional to the

degree of violation of the expected time deltas.

Recall that each packet may have several signals in

it; any violation of the packet rate most probably

means violations of signal shapes for every signal

contained in that packet. The response of the

Heuristic detector (Figure 9c) is shown for some of

the signals contained in packets ID1, ID2, and ID9;

and it confirms the violation of the expected

statistics for these signals. Autoencoder, as another

signal-based detector, issues warnings for many

groups (Figure 9d), since each packet under attack

has several signals involved, and some signals

participate in more than one group. The Fuser

(Figure 9e) has no problem summarizing the

received warnings, creating internal alerts, and

issuing (and canceling) external alerts.

For in-depth understanding on how our ADs

detect the flood attacks of SynCAN dataset,

consider Figure 10, where an attack on packet ID7

is shown in detail. The number of ID7 packets per

second and the values of the signal ID7-Sig1 are

shown as a function of time in panels a) and b). It

Figure 9: Detecting "flood” attacks in SynCAN data. Figure 10: Anatomy of a flood attack and its detection.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Best Practices For Ground Vehicle Intrusion Detection Systems. Novikova, et al.

Page 17 of 18

is clear that the attack consists of inserting extra

packets with valid, zeroed signal values into the

ID7 packet stream (the lack of Range warnings

indicates zero is a valid value for that signal). While

IPAT AD focuses on the timing of packets, both

Heuristic and Autoencoder examine the values of

signals. The zeroed values produce disturbances in

the patterns expected by both of these ADs; this

results in warnings, issued in support of warnings

from IPAT – see Figure 10c. The significance of

Autoencoder warnings diminish as time progresses

because the actual, original values approach the

artificial values inserted into the signal over time,

as seen in panel b). Coherent work of all ADs

involved allows the Fuser (Figure 10d) not only to

issue a proper timely alert, but also classify it

correctly.

8. Conclusions
We demonstrated how a collection of best

practices and principles allowed us to create a

reliable, low-false-alarm IDS currently at TRL-8.

Best practices include “generic specialization,”

“platform-unique interface code isolation,” and

“avoid confusion by fusion.” Guiding principles

include reliability, modularity, efficiency,

adaptability, transferability, and ease of tuning. The

performance of that IDS was also demonstrated on

a publicly available dataset.

REFERENCES

[1] P. Hayden, D. Woolrich and K. Sobolewski.

Providing Cyber Situational Awareness on

Defense Platform Networks. 2018. Journal of

Cyber Security and Information Systems.

[2] J.A. Mohammed, and B.G. Kok. Intrusion

Detection Systems: Principles and Perspectives.

2018. Journal of Multidisciplinary Engineering

Science Studies. ISSN: 2458-925X.

[3] B. Greenwood. Tuning an IDS/IPS From The

Ground UP. 2007. SANS Institute.

[4] A. Ely. IDS Best Practices. 2010.

https://www.networkcomputing.com/networkin

g/ids-best-practice

[5] Z. Yu, J. Tsai, and T. Weigert. An

Automatically Tuning Intrusion Detection

System. 2007. IEEE Transactions on

Cybernetics 37(2):373-84.

https://doi.org/10.1109/TSMCB.2006.885306

[6] L. LaPadula. Intrusion detection system

requirements: a capabilities description in terms

of the network monitoring and assessment

module of CSAP21. 2001. MITRE Technical

Report.

[7] T. Sommestad, U. Franke. A test of intrusion

alert filtering based on network information.

2015. Security and Communication

Networks/Volumn 8, Issue 13.

https://doi.org/10.1002/sec.1173.

[8] M.M. Siraj. Survey and Comparative Analysis

of Alert Correlation Systems in Information

Security. 2007. The 3rd Brunei International

Conference on Engineering and Technology

2008.

[9] S. Salah, G.M. Fernandez, and J.E. Diaz-

Verdejo. A model-based survey of alert

correlation techniques. 2013. Computer

Networks 57:1289-1317.

https://doi.org/10.1016/j.commet.2012.10.022.

[10] S. A. Mirheidari, S. Arshad, and R. Jalili. Alert

Correlation Algorithms: A survey and

taxonomy. 2013. In Cyberspace Safety and

Security.

https://arxiv.org/ftp/arxiv/papers/1811/1811.00

921.pdf.

[11] A. Muscat. A Log Analysis based Intrusion

Detection System for the creation of a

Specification Based Intrusion Prevention

System. 2003. Proceedings of the University of

Malta Annual Computer Science Research

Workshop, 2003.

[12] D. Gorton. Extending Intrusion Detection with

Alert Correlation and Intrusion Tolerance. 2003.

https://www.networkcomputing.com/networking/ids-best-practice
https://www.networkcomputing.com/networking/ids-best-practice
https://doi.org/10.1109/TSMCB.2006.885306
https://doi.org/10.1002/sec.1173
https://doi.org/10.1016/j.commet.2012.10.022
https://arxiv.org/ftp/arxiv/papers/1811/1811.00921.pdf
https://arxiv.org/ftp/arxiv/papers/1811/1811.00921.pdf

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Best Practices For Ground Vehicle Intrusion Detection Systems. Novikova, et al.

Page 18 of 18

MPhil Thesis, Chalmers University of

Technology, Department of Computer

Engineering, Goteborg, Sweden.

[13] R. Yusof, S.R. Selamat, and S. Sahib. Intrusion

alert correlation technique analysis for

heterogeneous log. 2008. International Journal

of Computer Science and Network Security,

8:132–138, September 2008.

[14] L.H. Yeo, X. Che, and S. Lakkaraju.

Understanding Modern Intrusion Detection

Systems: A Survey. 2017. arXiv:1708.07174

[15] H.S. Milan, K. Singh: Reducing false alarms in

intrusion detection systems – a survey. 2018. Int.

Res. J. Eng. Technol. (IRJET) 05(02), 9–12

[16] Q. Qassim, A. Patel, and A. Mohd-Zin.

Strategy to Reduce False Alarms in Intrusion

Detection and Prevention Systems. 2014.

International Arab Journal of Information

Technology, Vol. 11, No. 5, September 2014

[17] L. Babatope, B. Lawal, and I. Ayobami.

Strategic Sensor Placement for Intrusion

Detection in Network-Based IDS. 2014. I.J.

Intelligent Systems and Applications, 2014, 02,

61-68.

[18] S. Noel, and S. Jajodia. Optimal IDS Sensor

Placement and Alert Prioritization Using Attack

Graphs. 2018. Journal of Network and Systems

Management 16(3):259-275. DOI:

10.1007/s10922-008-9109-x

[19] T. Ha, S. Yoon, A. C. Risdianto, J. Kim and H.

Lim. Suspicious Flow Forwarding for Multiple

Intrusion Detection Systems on Software-

Defined Networks. 2016. in IEEE Network, vol.

30, no. 6, pp. 22-27, November-December 2016,

doi: 10.1109/MNET.2016.1600106NM.

[20] C. Wang, R. Huang, W. Zhang and J. Sun.

Multilayer Intrusion Detection System Based On

Semi-supervised Clustering. 2019. 16th

International Computer Conference on Wavelet

Active Media Technology and Information

Processing, Chengdu, China, 2019, pp. 355-360.

[21] D. Zahn. ICS Cybersecurity: You Cannot

Secure What You Cannot See. 2017. PAS

Global, LLC 2017.

[22] M. Hanselmann, T. Strauss, K. Dormann, and

H. Ulmer, “CANet: An Unsupervised Intrusion

Detection System for High Dimensional CAN

Bus Data”, arXiv preprint arXiv:1906.02492,

2019

[23] H. Debar, and A. Wespi. Aggregation and

correlation of intrusion-detection alerts. In

Proceedings of the International Symposium on

Recent Advances in Intrusion Detection. 2001.

85--103

