
This paper has been approved for public release by DARPA.

2021 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY
SYMPOSIUM

VEA / CYBER TECHNICAL SESSION
AUGUST 10-12, 2021 - NOVI, MICHIGAN

Real-time Analysis of Vehicle Patches and Binaries

James Brock1, Jason Dahlstrom1, Stephen Wille Padnos1, and Stephen Taylor2

1Web Sensing LLC, Hanover, NH

2Thayer School of Engineering at Dartmouth, Hanover, NH

ABSTRACT
Modern data loggers of industrial bus networks provide a useful tool to record the bus traffic
associated critical vehicle systems, but provide little insight into the impact of maintenance
patches on the associated system binary codes and system behaviors. This paper describes an
emerging DARPA technology, the Tactical Smart Network Interface Card (TSNIC), that provides
a secure base from which to deploy, monitor, and interact with patched binaries. Our TSNIC
appliance can take either a passive or active presence on the vehicle bus, obviating the need for a
vulnerable JTAG interface, and processes diagnostic messages arriving from the patched binary.
These messages can provide a wide range of insights into the behavior of the system. The Tactical
Smart NIC represents the next-generation of secure and reliable patching technology for military
and heavy industrial systems. It provides a unique way for developers, maintainers, and field
engineers to gain a new appreciation for the operational impact of their patches. DARPA is
actively seeking operational partners for deployment and technology evolution. This paper
outlines the existing and planned capabilities of the platform.

Citation: J. Brock, J. Dahlstrom, S. Wille Padnos, S. Taylor, “Real-time Analysis of Vehicle Patches and Binaries”,
In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi,
MI, Aug. 10-12, 2021.

1. BACKGROUND

The design, validation, operation, and
maintenance of military and industrial heavy
vehicle systems fundamentally relies on highly
connected networks of engine control units (ECUs)
and other industrial controllers communicating
over industry standard busses (i.e. CAN, J1939,
1553)[1-3]. During the development cycle, these
controllers will have an interface, such as JTAG,
available for deploying and debugging binaries.

However, once installed into a fielded system this
interface is usually disabled because of the security
risks posed with leaving a direct, open interface to
the controller[4]. Unfortunately, the controllers are
often extremely difficult to physically access for
maintenance and updating. Additionally, the
associated bus protocols have known
vulnerabilities that malicious actors can exploit[5].
In some cases, a separate auxiliary bus is available
for traffic related to diagnostics and maintenance,
in addition to the primary control bus. Therefore,
the most effective means of communicating with
deployed control systems on heavy vehicle

This research is supported under DARPA’s AMP
program under contract N66001-20-C-4022.

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Real-time Analysis of Vehicle Patches and Binaries, Brock, et al.
This paper has been approved for public release by DARPA.

Page 2 of 9

platforms, and observing the interactions between
them, is via these industry standard busses.

Maintenance and update of control system
binaries are critical to improving performance,
adding capability, and patching vulnerabilities.
These necessitate a system, resident on the control
bus, capable of deploying binary patches and
monitoring the resultant system behavior with
precision and accuracy. Current entry-level COTS
bus monitors can provide a moderate level of
flexibility via custom software, but rely on software
timers within the operating system that have poor
fidelity for both timestamping input and replaying
output[6]. Mid-range bus adapters address the timer
issues, but do not provide custom replay of bus
activity with accurate timing[7]. The current state-
of-the-art capabilities provide limited scripting
capabilities for replaying using relatively obtuse
lambda-style function definitions[8].
Consequently, there exists a need for
programmable appliances, allowing arbitrarily
complex functions, leveraging standard, well-
established libraries and programming practices.

In response to this need, Web Sensing has
developed a new Tactical Smart NIC (TSNIC)
product, leveraging state-of-the-art Field
Programmable Gate Array (FPGA) technology,
under the DARPA SBIR program. This platform,
shown in Figure 1, sits on a system bus interacting
with a vehicle system, monitoring and validating
mission traffic. These capabilities are incorporated
into Hidden Hardware Monitors (HHM’s)[9,10]
embedded within the onboard FPGA.

Figure 1: Tactical Smart NIC

The monitors are specified in a normal systems
programming language – C/C++/System-C -- and
can compute any arbitrary function. After software
test and validation, they are automatically
translated into hardware circuit blocks through a
process termed High-Level Synthesis (HLS). The
hardware blocks are then dynamically installed
within in the FPGA through a process called Partial
Reconfiguration[11]. This allows the TSNIC to
dynamically adjust the granularity and fidelity of
monitoring and control, adaptively react to threat
level, and incrementally improve resilience.

This all-hardware security approach offers three
key security properties: No software is present,
thereby mitigating malicious implants and zero-day
attacks; all functionality is strictly contained within
the security perimeter provided by the chip-
boundary, thereby mitigating reverse engineering
in the event that a TSNIC is captured in the field;
extensive anti-tamper and refresh techniques have
already been developed to enhance resilience.

Under the DARPA AMP program we are
developing tools, techniques, and procedures
(TTP’s) for developing, testing, and deploying
heavy vehicle HHM’s. These monitors are already
capable of interacting with ECUs and control
systems via industry-standard bus architectures.
The TTP’s allow any developer to rapidly specify,
develop, validate, deploy, monitor, and interact
with any vehicle control system.

2. TSNIC ARCHITECTURE
Unlike software diagnostic systems – that allow
persistent malicious implants to penetrate into a
vehicle system -- the TSNIC forms a hidden
security barrier, implemented wholly in hardware,
thereby eliminating the opportunity for software
exploits to tamper with a vehicle or access and
deposit implants within vehicle subsystems. The
TSNIC is analogous to a logic analyzer for CAN,
J1939, and MIL-STD-1553 busses, by virtue of its
ability to accurately & precisely timestamp and
validate bus traffic, in real time. In addition, it
possesses advanced features enabled by its on-

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Real-time Analysis of Vehicle Patches and Binaries, Brock, et al.
This paper has been approved for public release by DARPA.

Page 3 of 9

board DDR RAM, Gigabit ethernet ports, PCIe
interface, and GPIO pins. Collectively, these
features enable application-specific analytics
engines to be dynamically inserted within the
FPGA, through partial reconfiguration, allowing
the TSNIC to meet any emerging analytic need or
evolving threat. Custom analytics engines are able
to utilize the memory and interfaces through
common software APIs, such as SocketCAN[12].
An important security feature of the FPGA design
is the ability to encrypt any data that may be
transmitted or stored outside the chip/security
boundary provided by the FPGA. As a result, all of
the connections to interfaces and backend storage,
through either GigE, PCIe, DDR, or GPIO
interfaces can optionally be encapsulated using an
IPSec Encapsulating Security Payload (ESP) and
encrypted using AES-256.

Figure 2 depicts the overall design methodology.
High-Level Synthesis (HLS) allows the TSNIC to
be adapted to alternate vehicle platforms and
incorporate alternate analytics: HHM’s specified in
C, C++, or System-C are directly synthesized into
hardware blocks. The TSNIC reserves slots within
its FPGA for multiple blocks, each of which have
access to all of the available resources and
interfaces. The interfaces are all presented to
developers through intuitive APIs. The TSNIC is
able to connect to a broad set of busses by isolating
the physical interface from the HHM’s through a
standard AXI stream interface that is encapsulated
in our SocketCAN API. Thus, any physical
interface can be replaced without affecting the rest
of the hardware design significantly.

Figure 2: The System Architecture

Since the TSNIC’s analytics engines are software-
defined but deployed dynamically as hardware, an
extremely broad array of possible operations can be
performed on the observed bus traffic. The present
capabilities provide precise timestamping of bus
packets, variable and stack monitoring with basic
statistical analysis of the observed values (min,
max, avg, range, etc.), as well as bus-trace capture
and differencing. Collectively, these features
enable precise, detailed observation and analysis of
vehicle system binaries operating on the bus in real-
time and allow the impact of patching to be
assessed. We are also developing more complex
analytics engines that take actions on the bus to
avoid or mitigate observed erroneous, unwanted, or
unsafe vehicle system behavior.

3. HIDDEN HARDWARE MONITORS

Recall that the TSNIC hardware is a platform onto
which developers can deploy custom analytics
engines called hidden hardware monitors
(HHM’s). These monitors, because they are
specified in a standard systems programming
language, all utilize a common software API to
interface to any connected bus. This API is based
on the Berkeley Sockets API[13], widely used and

Figure 3: Hardware monitor interfaces

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Real-time Analysis of Vehicle Patches and Binaries, Brock, et al.
This paper has been approved for public release by DARPA.

Page 4 of 9

familiar to developers. The full hardware monitor
pipeline is shown in Figure 3.

All hardware monitors consume streams (Tx and
Rx) through the sockets API; generic memory
mapped pointers can be used for arbitrary data I/O
to all other hardware resources. This gives
hardware monitors a common software framework
in which to operate and makes them compatible
with any slot in the FPGA. A protocol module sits
between the hardware monitor and any given bus
interface. This hardware block contains a pre-
defined hardware bus module that will translate bus
traffic to/from the generic Rx/Tx stream and take
necessary actions to adhere to the selected protocol.
For example, the J1939 protocol module will
maintain a list of claimed addresses and generate
appropriate response address claim packets on the
bus. This module is also responsible for applying
accurate timestamps to incoming traffic as soon as
it is received. FIFO buffering of both the received
and transmitted messages can be configured to
meet a given application’s needs. The protocol
module is responsible for appropriate error
handling in the chosen protocol, however, there are
additional hardware mechanisms in the FPGA
design to monitor and track system errors, such as
dropped packets or error reporting from the HHM
itself. Since hardware interfaces are unlikely to
change often, the protocol module is statically
preconfigured in the FPGA design at build time.
 The central problem of concern in the DARPA
AMP program is the validation of micropatches in
vehicle control system binaries. Elements of the
program involve both static analysis through de-
compilation/recompilation of binaries, as well as
dynamic analysis through real-time monitoring.
The TSNIC is the platform to effect dynamic
analysis; it sits directly on J1939 CAN bus
observing both normal traffic and diagnostic traffic
emanating from instrumented binaries and patches.

Early collaboration with other performers on the
program has yielded a list of core capabilities that
the TSNIC needs to support, so as to integrate into
performer workflows and address the needs of the

program. These capabilities have all been
implemented and are available; they allow:

• Monitoring the state of a variable at run-time
• Support for arbitrarily large diagnostic payloads
• Transmission of stimulus onto the bus with

precisely specified timing
• Full bus-trace recording with precise time

stamping
• Correlation of a binary’s Program Counter (PC)

with another variable’s state
• Correlation of binary’s PC with bus transactions
• Correlation of call stack addresses and data with

bus transactions
• Correlate binary clock values with bus

transaction timestamp
• First order statistics (min, max, avg) for all of the

above observations
• Comparison of data point ordering for all of the

above observations
• Comparison of data point timing for all of the

above observations
• Differencing between multiple bus-traces
• Remote access to a TSNIC platform attached to

challenge problem hardware

On top of these core capabilities, we have
developed a cohesive, automated workflow for
developing, synthesizing and deploying hardware
monitors to the TSNIC. This workflow alleviates
developer effort and is shown in Figure 4. It begins
on the right of Figure 4. A user, such as Galois, Inc
or the University of Michigan on the AMP
program, deploys a patched binary to the vehicle
system. The binary is instrumented to send
whatever diagnostic payload over the bus they
desire. To specify a monitor, the user provides a
simple C-structure to represent the payload data
and a simple JSON file that specifies the features to
operate on the data. These definitions are fed into
the automated workflow, shown in red, on the
bottom half of the image. This flow first takes the
users specifications, generates C/C++ source code

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Real-time Analysis of Vehicle Patches and Binaries, Brock, et al.
This paper has been approved for public release by DARPA.

Page 5 of 9

for the hardware monitor as well as a basic
testbench to validate it. At this point, the developer
can choose to add additional functionality and tests
to the HHM source. Once the source is complete,
our scripts run a software simulation of the HHM
with the testbench, synthesizes it into a hardware
module, and validates the synthesized hardware
using the same testbench to ensure it has retained
all expected behavior. The last step is to
automatically deploy the HHM into one of the
available slots in the TSNIC FPGA design. At this
point the TSNIC becomes the custom monitor. It
listens to the bus for the messages from the binary,
performs the requested analytics, saves the required
results, and may optionally interact with the
running binary to refine diagnostics or reduce the
impact of diagnostic messages.

To automate HHM code generation, the basic
functionality of a hardware monitor is supplied
though some standard boilerplate code. We have
written a series of scripts that generate some basic
hardware monitors for passively reading packets
off the bus. Options passed to these scripts are
provided in a JSON configuration file. The options
designate the generation of code implementing the

capabilities we currently support, customized to the
data the instrumented binary is transmitting for any
given use case. An example of one of these
configuration files is shown in Figure 5 (top left).
The C structure defining the payload being
transmitted by the binary is shown in the bottom
left, and a snippet of the resultant source code is on
the right side.

The primary features for which a hardware monitor
can be automatically generated are listed below:
• Generate basic HHM code to read bus data

Figure 4: Hidden hardware monitor workflow

Figure 5: Hidden hardware monitor code generation

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Real-time Analysis of Vehicle Patches and Binaries, Brock, et al.
This paper has been approved for public release by DARPA.

Page 6 of 9

• Interpret bus data as CAN or J1939 formatted
packets

• Interpret bus data payloads as a specified
payload (variable monitoring)

• Maintain min/max/avg values of all variables
over time

• Print packet header and flag information in
addition to payload information

• Print information in specified format (pretty
print, CSV, COE)

A full description of the JSON code generation
options and their effects can be found in our
published documentation. For features that print
output information, this is achieved via a simple
UART interface.
 The automated workflows and features, as well as
the adherence to industry standard APIs, make the
HHM easy to create, modify, validate, and deploy
to the TSNIC. Several exemplars are provided with
the TSNIC to ease transition and use of the device.

4. PERFORMANCE STUDY

Clearly, the user must ensure that diagnostic traffic
does not impact system behavior. Our approach
allows the level of traffic to be controlled or
completely eliminated reverting to only passive bus
tracing. This offers a broad practical trade-off space
between full observation and zero impact.
 A primary concern has been to characterize the
performance of the TSNIC and its ability to
transmit, capture, and process J1939 bus traffic in
real-time. To study this question, we connected two
J1939 interfaces to the board’s GPIO ports and
placed a BeagleBone Black based Heavy Truck
Cape [14] on the bus to have meaningful
interactions with, as shown in Figure 6. The TSNIC
was then populated with a HHM that would
transmit J1939 packets with semi-random payloads
out on one interface, and a HHM that would
receive, confirm the J1939 header, and then drop
the packet connected to the other interface. Since
the internal 125MHz clock of the TSNIC is much

faster than the bus architecture targeted, this one
experiment demonstrates the ability of the TSNIC
to transmit at maximum bus load, receive at
maximum bus load, and properly buffer packets
without generating any internal errors.

We gathered data from two sources during runs of
this experiment. First, from a COTS USB-to-CAN
bus analyzer, and second from an Integrated Logic
Analyzer (ILA) module inserted in the TSNIC
FPGA design. The ILA is capable of capturing the
FPGA’s internal signals in real-time and sending
them back to a display. Multiple runs of the
experiment confirmed that the output from our two
sources was consistent. Sample output is shown in
Figures 7 and 8. Figure 7 shows a screenshot of the
COTS bus analyzer’s output, and demonstrates that
the TSNIC transmits traffic on the bus at the
maximum feasible capacity: ~95% bus load. The
lower orange box shows graphically the current bus
load, while the upper orange box highlights the
timestamps of successive packets coming across
the bus at the expected rate. Figure 8 depicts some
of the output of the FPGA’s ILA. The upper
maroon box shows a packet being sent across
successive busses in the HHM pipeline through the
protocol module to the HHM. The lower maroon
box highlights an error count of 0, indicating that
after many packets have already been received, the

Figure 6: TSNIC system characterization

Figure 6: Performance Characterization

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Real-time Analysis of Vehicle Patches and Binaries, Brock, et al.
This paper has been approved for public release by DARPA.

Page 7 of 9

system has yet to detect any dropped packets or
other internal errors.

5. PERFORMER USE CASES

As mentioned earlier, under the DARPA AMP
program, we are collaborating with a number of
other performers to develop HHM’s. We have
worked closely with Galois, Inc. and the University
of Michigan to develop techniques for
automatically inserting observation points into a
patched binary. These observation points then

transmit diagnostic information over the bus to the
TSNIC for logging and analysis.
 Dr. Tristan Ravitch and his team at Galois, Inc.
and UCI, have developed a HHM that correlates the
context of a binary’s expected and actual execution
with its interactions receiving and transmitting
messages on the bus. The first part of this process
begins with simulating the binary’s execution using
QEMU and feeding instructions into LLVM MCA
to derive an estimated timing of the transmission of
bus messages. This is then compared to the actual
precise timing of bus transactions captured by our
TSNIC platform. This process is depicted in Figure
9. The next phase of Galois’ analysis is to
instrument the binary to transmit the program
counter and portions of the program call stack at
points in the program where bus messages are
received or transmitted. As well as developing a
hardware module to capture these diagnostic
messages and correlate them to that bus activity for
the purpose of reasoning about the program state
when critical system events are taking place. Both
the precise timing and characterization of the
program state will provide useful data for analyzing
binary bugs and patches.

A second use case developed by Prof. Baris

Kasikci and his team at the University of Michigan

Figure 7: COTS CAN analyzer output of TSNIC

Figure 8: Xilinx ILA display of internal
TSNIC signals

Figure 9: Galois, Inc. HHM Use Case

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Real-time Analysis of Vehicle Patches and Binaries, Brock, et al.
This paper has been approved for public release by DARPA.

Page 8 of 9

involves modules that will monitor binary variable
values during execution. These values are then
analyzed for invalid values, first-order statistics
like min/max/avg, and other characteristics that
will inform how the binary is performing. The
University of Michigan team has a process,
depicted in Figure 10, that generates candidate
binary patches and then conducts symbolic
program comparisons and non-interference proofs
on those patches to determine if a patch should be
revised or accepted. The run-time variable values
that are collected using our hardware monitoring
platform are fed into the symbolic program
comparison step to help determine which patch
should be accepted as valid.

6. FUTURE WORK
We plan to develop additional capabilities to meet
current and future industry needs. One prospective
use case involves reasoning about monitored bus
behavior for unsafe or incongruous behavior. In one
of the AMP program challenge problems, the
University of Michigan team discovered an
unintentional stack smashing vulnerability. Though
outside the scope of the original challenge problem,
this represents a common, real-world vulnerability
in the use of network software stacks. A code
snippet of the vulnerability is shown in Figure 11.

Here, the uninitialized stack variable is declared on
line 1, potentially partially written to on line 3, and
then fully read by the function called on line 11.
This allows malformed J1939 packets or packets
with improper data to be parsed and acted on by the
ECU. We are developing HHMs to detect
malformed packets, packets with suspicious extra
data, and interpret payloads to ensure that the ECU
does not take unsafe actions after receiving such a
packet.

Another desirable capability is support for
DTrace[15] probe scripts in HHM development.
DTrace is a mature, widely used standard for
developing profiling hooks and understanding
binary execution behavior. Very often in embedded
systems, memory is a scarce resource; Instead of
attempting to store all the DTrace data in system
memory, it can instead be transmitted across the
bus for collection and analysis by HHMs on the
TSNIC.

7. CONCLUDING REMARKS
FPGA devices provide unique security and
performance opportunities over existing COTS
solutions for accurate real-time monitoring and
interaction with critical control systems. When
deployed on our Tactical Smart NIC (TSNIC), they
can allow deployment, debugging, and validation
of patched control system binaries while also
presenting enhanced telemetry and security.
DARPA is actively seeking transition opportunities
for this technology within the heavy vehicle
community.

Figure 10: University of Michigan HHM
Use Case

Figure 11: Stack smashing vulnerability code

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Real-time Analysis of Vehicle Patches and Binaries, Brock, et al.
This paper has been approved for public release by DARPA.

Page 9 of 9

8. ACKNOWLEDGEMENTS
This research is supported under DARPA’s AMP
program under contract N66001-20-C-4022. We
would also like to thank the principal investigators
and teams at Galois, Inc. and the University of
Michigan for their collaboration and support under
the DARPA AMP program.

1. REFERENCES
 [1] Szydlowski, C., “CAN Specification 2.0:

Protocol and Implementations,” SAE Technical
Paper 921603, 1992,
https://doi.org/10.4271/921603

[2] SAE International. “SAE Truck and Bus
Control & Communications Network Standards
Manual”. SAE Technical Paper, 2013.
https://www.sae.org/publications/collections/co
ntent/j1939_dl/

[3] United States Department of Defense. “Digital
Time Division Command/Response Multiplex
Data Bus”. MIL-STD 1553, 2018.
https://quicksearch.dla.mil/qsDocDetails.aspx?i
dent_number=36973

[4] P. Murvay and B. Groza, "Security
Shortcomings and Countermeasures for the SAE
J1939 Commercial Vehicle Bus Protocol,"
in IEEE Transactions on Vehicular Technology,
vol. 67, no. 5, pp. 4325-4339, May 2018, doi:
10.1109/TVT.2018.2795384.

[5] Cybersecurity & Infrastructure Security
Agency. ICS Medical Advisory (ICSMA-19-
274-01). 2020. https://us-
cert.cisa.gov/ics/advisories/icsma-19-274-01

[6] IXXAT USB-to-CAN v2 Pro Data Logger
https://www.ixxat.com/products/products-
industrial/can-interfaces/usb-can-
interfaces/usb-to-can-v2-professional

[7] CSS Electronics CAN Bus Logger with RTC
timestamp.
https://www.csselectronics.com/screen/product/
can-bus-logger-canlogger2000

[8] NEOVI Fire 2 Vehicle Interface and Data
Logger.
https://store.intrepidcs.com/product/neovi-fire2

[9] Dahlstrom, J., Taylor, S., “Migrating an OS
Scheduler into Tightly Coupled FPGA Logic to
Increase Attacker Workload”, In proceedings of
MILCOM 2013, pp 986-991, Nov 2013.

[10] Dahlstrom, J., Taylor, S., “Hardware-Based
Code Monitors on Hybrid, Processor-FPGA
System-on-Chip Architectures”, MILCOM
2015, pp 968-973, Oct 2015.

[11] Dahlstrom, J., Brock, J., Tenaw, M., Shaver,
M., Taylor, S., “Hardening Containers for
Cross-Domain Applications,” MILCOM 2019 –
2019 IEEE Military Communications
Conference (MILCOM), Norfolk, VA, USA,
2019, pp 1-6.

[12] Kleine-Budde, Marc. “The Official CAN API
of the Linux Kernel”, in proceedings of iCC,
2012.

[13] Stevens, R., Fenner, B., Rudoff, A., “Unix
Network Programming Volume 1, Third
Edition: The Sockets Networking API”,
Addison Wesley, 2003.

[14] Daily, J., “Heavy Truck Cape”, Colorado
State University, 2016,
https://github.com/SystemsCyber/TruckCapePr
ojects

[15] Oracle DTrace Linux, 2013,
https://docs.oracle.com/en/operating-
systems/oracle-linux/dtrace-
guide/dt_about.html

