
This paper has been approved for public release by DARPA. 

2021 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY 
SYMPOSIUM 

VEA / CYBER TECHNICAL SESSION 
AUGUST 10-12, 2021 - NOVI, MICHIGAN 

 
 

Real-time Analysis of Vehicle Patches and Binaries 
 

James Brock1, Jason Dahlstrom1, Stephen Wille Padnos1, and Stephen Taylor2 

 
1Web Sensing LLC, Hanover, NH 

2Thayer School of Engineering at Dartmouth, Hanover, NH 
 

ABSTRACT 
Modern data loggers of industrial bus networks provide a useful tool to record the bus traffic 
associated critical vehicle systems, but provide little insight into the impact of maintenance 
patches on the associated system binary codes and system behaviors. This paper describes an 
emerging DARPA technology, the Tactical Smart Network Interface Card (TSNIC), that provides 
a secure base from which to deploy, monitor, and interact with patched binaries. Our TSNIC 
appliance can take either a passive or active presence on the vehicle bus, obviating the need for a 
vulnerable JTAG interface, and processes diagnostic messages arriving from the patched binary. 
These messages can provide a wide range of insights into the behavior of the system. The Tactical 
Smart NIC represents the next-generation of secure and reliable patching technology for military 
and heavy industrial systems. It provides a unique way for developers, maintainers, and field 
engineers to gain a new appreciation for the operational impact of their patches. DARPA is 
actively seeking operational partners for deployment and technology evolution. This paper 
outlines the existing and planned capabilities of the platform. 
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1. BACKGROUND 

The design, validation, operation, and 
maintenance of military and industrial heavy 
vehicle systems fundamentally relies on highly 
connected networks of engine control units (ECUs) 
and other industrial controllers communicating 
over industry standard busses (i.e. CAN, J1939, 
1553)[1-3]. During the development cycle, these 
controllers will have an interface, such as JTAG, 
available for deploying and debugging binaries. 

However, once installed into a fielded system this 
interface is usually disabled because of the security 
risks posed with leaving a direct, open interface to 
the controller[4]. Unfortunately, the controllers are 
often extremely difficult to physically access for 
maintenance and updating. Additionally, the 
associated bus protocols have known 
vulnerabilities that malicious actors can exploit[5]. 
In some cases, a separate auxiliary bus is available 
for traffic related to diagnostics and maintenance, 
in addition to the primary control bus. Therefore, 
the most effective means of communicating with 
deployed control systems on heavy vehicle 
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platforms, and observing the interactions between 
them, is via these industry standard busses.  

Maintenance and update of control system 
binaries are critical to improving performance, 
adding capability, and patching vulnerabilities. 
These necessitate a system, resident on the control 
bus, capable of deploying binary patches and 
monitoring the resultant system behavior with 
precision and accuracy. Current entry-level COTS 
bus monitors can provide a moderate level of 
flexibility via custom software, but rely on software 
timers within the operating system that have poor 
fidelity for both timestamping input and replaying 
output[6]. Mid-range bus adapters address the timer 
issues, but do not provide custom replay of bus 
activity with accurate timing[7]. The current state-
of-the-art capabilities provide limited scripting 
capabilities for replaying using relatively obtuse 
lambda-style function definitions[8]. 
Consequently, there exists a need for 
programmable appliances, allowing arbitrarily 
complex functions, leveraging standard, well-
established libraries and programming practices. 

In response to this need, Web Sensing has 
developed a new Tactical Smart NIC (TSNIC) 
product, leveraging state-of-the-art Field 
Programmable Gate Array (FPGA) technology, 
under the DARPA SBIR program. This platform, 
shown in Figure 1, sits on a system bus interacting 
with a vehicle system, monitoring and validating 
mission traffic. These capabilities are incorporated 
into Hidden Hardware Monitors (HHM’s)[9,10] 
embedded within the onboard FPGA. 

 
Figure 1: Tactical Smart NIC 

The monitors are specified in a normal systems 
programming language – C/C++/System-C -- and 
can compute any arbitrary function. After software 
test and validation, they are automatically 
translated into hardware circuit blocks through a 
process termed High-Level Synthesis (HLS). The 
hardware blocks are then dynamically installed 
within in the FPGA through a process called Partial 
Reconfiguration[11]. This allows the TSNIC to 
dynamically adjust the granularity and fidelity of 
monitoring and control, adaptively react to threat 
level, and incrementally improve resilience.  

This all-hardware security approach offers three 
key security properties: No software is present, 
thereby mitigating malicious implants and zero-day 
attacks; all functionality is strictly contained within 
the security perimeter provided by the chip-
boundary, thereby mitigating reverse engineering 
in the event that a TSNIC is captured in the field; 
extensive anti-tamper and refresh techniques have 
already been developed to enhance resilience. 

Under the DARPA AMP program we are 
developing tools, techniques, and procedures 
(TTP’s) for developing, testing, and deploying 
heavy vehicle HHM’s.  These monitors are already 
capable of interacting with ECUs and control 
systems via industry-standard bus architectures. 
The TTP’s allow any developer to rapidly specify, 
develop, validate, deploy, monitor, and interact 
with any vehicle control system. 

 
2. TSNIC ARCHITECTURE 
Unlike software diagnostic systems – that allow 
persistent malicious implants to penetrate into a 
vehicle system -- the TSNIC forms a hidden 
security barrier, implemented wholly in hardware, 
thereby eliminating the opportunity for software 
exploits to tamper with a vehicle or access and 
deposit implants within vehicle subsystems. The 
TSNIC is analogous to a logic analyzer for CAN, 
J1939, and MIL-STD-1553 busses, by virtue of its 
ability to accurately & precisely timestamp and 
validate bus traffic, in real time. In addition, it 
possesses advanced features enabled by its on-
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board DDR RAM, Gigabit ethernet ports, PCIe 
interface, and GPIO pins. Collectively, these 
features enable application-specific analytics 
engines to be dynamically inserted within the 
FPGA, through partial reconfiguration, allowing 
the TSNIC to meet any emerging analytic need or 
evolving threat. Custom analytics engines are able 
to utilize the memory and interfaces through 
common software APIs, such as SocketCAN[12]. 
An important security feature of the FPGA design 
is the ability to encrypt any data that may be 
transmitted or stored outside the chip/security 
boundary provided by the FPGA. As a result, all of 
the connections to interfaces and backend storage, 
through either GigE, PCIe, DDR, or GPIO 
interfaces can optionally be encapsulated using an 
IPSec Encapsulating Security Payload (ESP) and 
encrypted using AES-256. 

Figure 2 depicts the overall design methodology. 
High-Level Synthesis (HLS) allows the TSNIC to 
be adapted to alternate vehicle platforms and 
incorporate alternate analytics: HHM’s specified in 
C, C++, or System-C are directly synthesized into 
hardware blocks. The TSNIC reserves slots within 
its FPGA for multiple blocks, each of which have 
access to all of the available resources and 
interfaces. The interfaces are all presented to 
developers through intuitive APIs. The TSNIC is 
able to connect to a broad set of busses by isolating 
the physical interface from the HHM’s through a 
standard AXI stream interface that is encapsulated 
in our SocketCAN API. Thus, any physical 
interface can be replaced without affecting the rest 
of the hardware design significantly. 

 
Figure 2: The System Architecture 

 

Since the TSNIC’s analytics engines are software-
defined but deployed dynamically as hardware, an 
extremely broad array of possible operations can be 
performed on the observed bus traffic. The present 
capabilities provide precise timestamping of bus 
packets, variable and stack monitoring with basic 
statistical analysis of the observed values (min, 
max, avg, range, etc.), as well as bus-trace capture 
and differencing. Collectively, these features 
enable precise, detailed observation and analysis of 
vehicle system binaries operating on the bus in real-
time and allow the impact of patching to be 
assessed. We are also developing more complex 
analytics engines that take actions on the bus to 
avoid or mitigate observed erroneous, unwanted, or 
unsafe vehicle system behavior. 

 
3. HIDDEN HARDWARE MONITORS 

Recall that the TSNIC hardware is a platform onto 
which developers can deploy custom analytics 
engines called hidden hardware monitors 
(HHM’s). These monitors, because they are 
specified in a standard systems programming 
language, all utilize a common software API to 
interface to any connected bus. This API is based 
on the Berkeley Sockets API[13], widely used and 

Figure 3: Hardware monitor interfaces 
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familiar to developers. The full hardware monitor 
pipeline is shown in Figure 3. 

All hardware monitors consume streams (Tx and 
Rx) through the sockets API; generic memory 
mapped pointers can be used for arbitrary data I/O 
to all other hardware resources. This gives 
hardware monitors a common software framework 
in which to operate and makes them compatible 
with any slot in the FPGA. A protocol module sits 
between the hardware monitor and any given bus 
interface. This hardware block contains a pre-
defined hardware bus module that will translate bus 
traffic to/from the generic Rx/Tx stream and take 
necessary actions to adhere to the selected protocol. 
For example, the J1939 protocol module will 
maintain a list of claimed addresses and generate 
appropriate response address claim packets on the 
bus. This module is also responsible for applying 
accurate timestamps to incoming traffic as soon as 
it is received. FIFO buffering of both the received 
and transmitted messages can be configured to 
meet a given application’s needs. The protocol 
module is responsible for appropriate error 
handling in the chosen protocol, however, there are 
additional hardware mechanisms in the FPGA 
design to monitor and track system errors, such as 
dropped packets or error reporting from the HHM 
itself. Since hardware interfaces are unlikely to 
change often, the protocol module is statically 
preconfigured in the FPGA design at build time. 
    The central problem of concern in the DARPA 
AMP program is the validation of micropatches in 
vehicle control system binaries. Elements of the 
program involve both static analysis through de-
compilation/recompilation of binaries, as well as 
dynamic analysis through real-time monitoring. 
The TSNIC is the platform to effect dynamic 
analysis; it sits directly on J1939 CAN bus 
observing both normal traffic and diagnostic traffic 
emanating from instrumented binaries and patches. 

Early collaboration with other performers on the 
program has yielded a list of core capabilities that 
the TSNIC needs to support, so as to integrate into 
performer workflows and address the needs of the 

program. These capabilities have all been 
implemented and are available; they allow: 

 
• Monitoring the state of a variable at run-time 
• Support for arbitrarily large diagnostic payloads 
• Transmission of stimulus onto the bus with 

precisely specified timing 
• Full bus-trace recording with precise time 

stamping 
• Correlation of a binary’s Program Counter (PC) 

with another variable’s state 
• Correlation of binary’s PC with bus transactions 
• Correlation of call stack addresses and data with 

bus transactions 
• Correlate binary clock values with bus 

transaction timestamp 
• First order statistics (min, max, avg) for all of the 

above observations 
• Comparison of data point ordering for all of the 

above observations 
• Comparison of data point timing for all of the 

above observations 
• Differencing between multiple bus-traces 
• Remote access to a TSNIC platform attached to 

challenge problem hardware 
 

On top of these core capabilities, we have 
developed a cohesive, automated workflow for 
developing, synthesizing and deploying hardware 
monitors to the TSNIC. This workflow alleviates 
developer effort and is shown in Figure 4. It begins 
on the right of Figure 4. A user, such as Galois, Inc 
or the University of Michigan on the AMP 
program, deploys a patched binary to the vehicle 
system. The binary is instrumented to send 
whatever diagnostic payload over the bus they 
desire. To specify a monitor, the user provides a 
simple C-structure to represent the payload data 
and a simple JSON file that specifies the features to 
operate on the data. These definitions are fed into 
the automated workflow, shown in red, on the 
bottom half of the image. This flow first takes the 
users specifications, generates C/C++ source code 
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for the hardware monitor as well as a basic 
testbench to validate it. At this point, the developer 
can choose to add additional functionality and tests 
to the HHM source. Once the source is complete, 
our scripts run a software simulation of the HHM 
with the testbench, synthesizes it into a hardware 
module, and validates the synthesized hardware 
using the same testbench to ensure it has retained 
all expected behavior. The last step is to 
automatically deploy the HHM into one of the 
available slots in the TSNIC FPGA design. At this 
point the TSNIC becomes the custom monitor. It 
listens to the bus for the messages from the binary, 
performs the requested analytics, saves the required 
results, and may optionally interact with the 
running binary to refine diagnostics or reduce the 
impact of diagnostic messages.  

To automate HHM code generation, the basic 
functionality of a hardware monitor is supplied 
though some standard boilerplate code. We have 
written a series of scripts that generate some basic 
hardware monitors for passively reading packets 
off the bus. Options passed to these scripts are 
provided in a JSON configuration file. The options 
designate the generation of code implementing the 

capabilities we currently support, customized to the 
data the instrumented binary is transmitting for any 
given use case. An example of one of these 
configuration files is shown in Figure 5 (top left). 
The C structure defining the payload being 
transmitted by the binary is shown in the bottom 
left, and a snippet of the resultant source code is on 
the right side. 

 

 

The primary features for which a hardware monitor 
can be automatically generated are listed below:  
• Generate basic HHM code to read bus data 

Figure 4: Hidden hardware monitor workflow 

Figure 5: Hidden hardware monitor code generation 



Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Real-time Analysis of Vehicle Patches and Binaries, Brock, et al. 
This paper has been approved for public release by DARPA. 
 

Page 6 of 9 

• Interpret bus data as CAN or J1939 formatted 
packets 

• Interpret bus data payloads as a specified 
payload (variable monitoring) 

• Maintain min/max/avg values of all variables 
over time 

• Print packet header and flag information in 
addition to payload information 

• Print information in specified format (pretty 
print, CSV, COE)  

 
A full description of the JSON code generation 
options and their effects can be found in our 
published documentation. For features that print 
output information, this is achieved via a simple 
UART interface.  
   The automated workflows and features, as well as 
the adherence to industry standard APIs, make the 
HHM easy to create, modify, validate, and deploy 
to the TSNIC. Several exemplars are provided with 
the TSNIC to ease transition and use of the device. 
 
4. PERFORMANCE STUDY 
 
Clearly, the user must ensure that diagnostic traffic 
does not impact system behavior. Our approach 
allows the level of traffic to be controlled or 
completely eliminated reverting to only passive bus 
tracing. This offers a broad practical trade-off space 
between full observation and zero impact.  
   A primary concern has been to characterize the 
performance of the TSNIC and its ability to 
transmit, capture, and process J1939 bus traffic in 
real-time. To study this question, we connected two 
J1939 interfaces to the board’s GPIO ports and 
placed a BeagleBone Black based Heavy Truck 
Cape [14] on the bus to have meaningful 
interactions with, as shown in Figure 6. The TSNIC 
was then populated with a HHM that would 
transmit J1939 packets with semi-random payloads 
out on one interface, and a HHM that would 
receive, confirm the J1939 header, and then drop 
the packet connected to the other interface. Since 
the internal 125MHz clock of the TSNIC is much 

faster than the bus architecture targeted, this one 
experiment demonstrates the ability of the TSNIC 
to transmit at maximum bus load, receive at 
maximum bus load, and properly buffer packets 
without generating any internal errors.  

 

We gathered data from two sources during runs of 
this experiment. First, from a COTS USB-to-CAN 
bus analyzer, and second from an Integrated Logic 
Analyzer (ILA) module inserted in the TSNIC 
FPGA design. The ILA is capable of capturing the 
FPGA’s internal signals in real-time and sending 
them back to a display. Multiple runs of the 
experiment confirmed that the output from our two 
sources was consistent. Sample output is shown in 
Figures 7 and 8. Figure 7 shows a screenshot of the 
COTS bus analyzer’s output, and demonstrates that 
the TSNIC transmits traffic on the bus at the 
maximum feasible capacity: ~95% bus load. The 
lower orange box shows graphically the current bus 
load, while the upper orange box highlights the 
timestamps of successive packets coming across 
the bus at the expected rate. Figure 8 depicts some 
of the output of the FPGA’s ILA. The upper 
maroon box shows a packet being sent across 
successive busses in the HHM pipeline through the 
protocol module to the HHM. The lower maroon 
box highlights an error count of 0, indicating that 
after many packets have already been received, the 

Figure 6: TSNIC system characterization  

Figure 6: Performance Characterization 
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system has yet to detect any dropped packets or 
other internal errors. 

 

 
 

 

 
 
5. PERFORMER USE CASES 

As mentioned earlier, under the DARPA AMP 
program, we are collaborating with a number of 
other performers to develop HHM’s.  We have 
worked closely with Galois, Inc. and the University 
of Michigan to develop techniques for 
automatically inserting observation points into a 
patched binary. These observation points then 

transmit diagnostic information over the bus to the 
TSNIC for logging and analysis.  
    Dr. Tristan Ravitch and his team at Galois, Inc. 
and UCI, have developed a HHM that correlates the 
context of a binary’s expected and actual execution 
with its interactions receiving and transmitting 
messages on the bus. The first part of this process 
begins with simulating the binary’s execution using 
QEMU and feeding instructions into LLVM MCA 
to derive an estimated timing of the transmission of 
bus messages. This is then compared to the actual 
precise timing of bus transactions captured by our 
TSNIC platform. This process is depicted in Figure 
9. The next phase of Galois’ analysis is to 
instrument the binary to transmit the program 
counter and portions of the program call stack at 
points in the program where bus messages are 
received or transmitted. As well as developing a 
hardware module to capture these diagnostic 
messages and correlate them to that bus activity for 
the purpose of reasoning about the program state 
when critical system events are taking place. Both 
the precise timing and characterization of the 
program state will provide useful data for analyzing 
binary bugs and patches. 

 

 
A second use case developed by Prof. Baris 

Kasikci and his team at the University of Michigan 

Figure 7: COTS CAN analyzer output of TSNIC 

Figure 8: Xilinx ILA display of internal 
TSNIC signals 

Figure 9: Galois, Inc. HHM Use Case 
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involves modules that will monitor binary variable 
values during execution. These values are then 
analyzed for invalid values, first-order statistics 
like min/max/avg, and other characteristics that 
will inform how the binary is performing. The 
University of Michigan team has a process, 
depicted in Figure 10, that generates candidate 
binary patches and then conducts symbolic 
program comparisons and non-interference proofs 
on those patches to determine if a patch should be 
revised or accepted. The run-time variable values 
that are collected using our hardware monitoring 
platform are fed into the symbolic program 
comparison step to help determine which patch 
should be accepted as valid. 

 

 
 
6. FUTURE WORK 
We plan to develop additional capabilities to meet 
current and future industry needs. One prospective 
use case involves reasoning about monitored bus 
behavior for unsafe or incongruous behavior. In one 
of the AMP program challenge problems, the 
University of Michigan team discovered an 
unintentional stack smashing vulnerability. Though 
outside the scope of the original challenge problem, 
this represents a common, real-world vulnerability 
in the use of network software stacks. A code 
snippet of the vulnerability is shown in Figure 11. 

Here, the uninitialized stack variable is declared on 
line 1, potentially partially written to on line 3, and 
then fully read by the function called on line 11. 
This allows malformed J1939 packets or packets 
with improper data to be parsed and acted on by the 
ECU. We are developing HHMs to detect 
malformed packets, packets with suspicious extra 
data, and interpret payloads to ensure that the ECU 
does not take unsafe actions after receiving such a 
packet.  

 
Another desirable capability is support for 
DTrace[15] probe scripts in HHM development. 
DTrace is a mature, widely used standard for 
developing profiling hooks and understanding 
binary execution behavior. Very often in embedded 
systems, memory is a scarce resource; Instead of 
attempting to store all the DTrace data in system 
memory, it can instead be transmitted across the 
bus for collection and analysis by HHMs on the 
TSNIC. 
 
7. CONCLUDING REMARKS 
FPGA devices provide unique security and 
performance opportunities over existing COTS 
solutions for accurate real-time monitoring and 
interaction with critical control systems. When 
deployed on our Tactical Smart NIC (TSNIC), they 
can allow deployment, debugging, and validation 
of patched control system binaries while also 
presenting enhanced telemetry and security. 
DARPA is actively seeking transition opportunities 
for this technology within the heavy vehicle 
community. 

 

Figure 10: University of Michigan HHM 
Use Case 

Figure 11: Stack smashing vulnerability code 
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