
2021 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY
SYMPOSIUM

VEHICLE ELECTRONICS & ARCHITECTURE TECHNICAL SESSION
AUGUST 10-12, 2021 - NOVI, MICHIGAN

ENABLING CUSTOM VEHICLE DIAGNOSTICS WITH A COMMON
APPLICATION PLATFORM

Andrew Ludwig, Daniel Tagliente
U.S. Army DEVCOM Armaments Center, Picatinny Arsenal, NJ

ABSTRACT
This paper discusses the Diagnostics And System Health (DASH) embedded

diagnostics software originally developed for use on the M109A7 / M992A3 Family

of Vehicles (FoV). The history and background of work completed by the

DEVCOM Armaments Center (AC) System Health & Interactive Future

Technologies (SHIFT) Division in developing and managing the DASH program

are described. The DASH software architecture and design details are also

discussed in depth, with a focus on the more recent efforts to adapt DASH to use a

generic core software application that can be integrated on a wide variety of

current and future ground combat systems to more easily provide embedded

diagnostics capability.

Citation: A. Ludwig, D. Tagliente, “Enabling Custom Vehicle Diagnostics with a Common Application Platform”,

In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi,

MI, Aug. 10-12, 2021.

1. INTRODUCTION
Onboard vehicle diagnostics for both light and

heavy-duty military ground systems have quickly

gained importance in order to decrease vehicle

downtime and increase ease of vehicle

maintenance. Vehicle diagnostics, health

management, and overall logistics support have

often been handled by original equipment

manufacturers (OEMs) offering unique, and

sometimes proprietary, software solutions for each

vehicle platform and utilized complex methods of

generating diagnostic solutions. This approach

comes with unique challenges and costs, and often

leads to increased soldier training due variations in

maintenance strategies and equipment from system

to system. [1] Organic maintenance is an alternative

to CLS in which maintenance activity and

diagnostic tools are developed and managed by a

government organization rather than the OEM, and

should theoretically be less expensive due to

government’s lack of profit motivation. [2]

Beginning with its involvement in the

development of the M109A7/M992A3 Family of

Vehicles (FoV), the System Health & Interactive

Future Technologies (SHIFT) Division at Picatinny

Arsenal’s DEVCOM Armaments Center (AC) has

developed an embedded diagnostics system to be

used for ground vehicle and armament system fault

detection, fault isolation, and general maintenance.

This organic maintenance solution, known as

Diagnostics And System Health (DASH) has been

UNCLASSIFIED

PAO Log # 397-21

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Enabling Custom Vehicle Diagnostics with a Common Application Platform, A. Ludwig, D. Tagliente.

UNCLASSIFIED

Page 2 of 12

matured over several software development cycles

and has generated interest from other ground

vehicle systems. This interest has led to the SHIFT

Division further evolving DASH to offer a

completely customizable solution that can easily be

adapted to any vehicle with standard automotive or

smart line replaceable units (LRUs).

This paper will go into detail explaining the

considerations and steps taken to adapt DASH from

a platform-specific embedded diagnostics program

to a more generic cross-platform solution with

platform-specific customization and integration

options.

2. DASH OPERATIONS
DASH’s primary objective is to help system

operators and maintainers to quickly identify fault

conditions, easily correct system failures, and to

provide overall embedded diagnostics and

maintenance capabilities.

The primary software feature implemented by

DASH to accomplish these goals is a fault list that

presents currently active faults on a system. The

displayed faults are mapped from a LRU reported

fault into a Universal Fault Code, which is

guaranteed to be unique within a vehicle, and

allows experienced maintainers to quicky visually

recognize what issue is occurring on the vehicle.

Each fault also has associated metadata such as

description, possible causes, and links to

interactive isolation and verification procedures.

In addition to fault code information, the LRU

repository definitions, diagnostic procedures, and

support scripts are all defined in the Vehicle

Configuration Package (VCP). This package,

which is unique to a family of vehicles, supplies

the data necessary for DASH to function in a way

that allows meaningful fault reporting and

procedure execution on each platform that is

supported.

Once installed and configured for a specific

vehicle or family of vehicles, DASH will record a

fault history that allows operators and maintainers

to view historical fault events including fault

clearing and setting occurrences and system startup

and shutdown times. The fault history is

additionally used as part of the Prognostic and

Predictive Maintenance (PPMx) logs to be

offloaded for prognostic maintenance efforts.

DASH will aid in performing Periodic Maintenance

Checks and Services (PMCS) and conducting

advanced maintenance operations by guiding a

maintainer through step-by-step procedures

through the user interface. Finally, DASH provides

verification of hardware and software configuration

data from supported subsystems and LRUs.

DASH uses a wide variety of communication

interfaces to connect and share information with

system LRUs. To date, DASH has been

successfully demonstrated on fielded systems with

Ethernet and Controller Area Network (CAN) bus

communications, including those utilizing SAE

J1939 messaging, but the DASH framework is

adaptable to support other interfaces as necessary.

The primary data contents transmitted over these

interfaces consist of fault information, real-time

data values, system and subsystem events, and

hardware and software configuration data from

LRUs.

In order to use and manipulate the LRU fault and

diagnostic data received on a communication

interface in a meaningful way, the DASH server is

distributed with service plugins that can be enabled

or disabled on each supported system. These

services are loaded at runtime and use Python glue

code, which can be made interoperable in custom

and platform-specific ways. An example is the

Repository Service which provides a central

storage location for all LRU fault and runtime data

as well as current system status variables. This

service utilizes a publisher-subscriber pattern,

allowing glue code to receive and operate on

updates to the repository and pass these updates on

to other services as needed. As part of the VCP, the

Repository Service configuration defining the

individual repositories and their fields are stored

separate from the core DASH application. This

ensures only fields relevant to the current vehicle

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Enabling Custom Vehicle Diagnostics with a Common Application Platform, A. Ludwig, D. Tagliente.

UNCLASSIFIED

Page 3 of 12

and its LRUs are stored. Additionally, these fields

can be modified before and after being placed in the

repository using pre- and post-write triggers. A

common example is to convert LRU data from

engineering or raw units to Metric and English

units. Executing scripts based on repository field

events allows a great deal of flexibility for

triggering chains of events within DASH.

Meaningful information is displayed to the user

through the DASH server Display Manager Service

which connects to one or more DASH Client

applications. The client is distributed as part of the

core DASH application and can be run on most

computers with a display running any major

operating system such as Windows and Linux. The

client can be used to display current fault

information, run diagnostic procedures, check

system software versions, and view LRU runtime

data values in real time. All the data in the client is

updated through the DASH server, making the

client completely data-centric, not needing to know

anything about vehicle-specific configurations.

3. SOFTWARE CONSIDERATIONS
The core functionality of the DASH application is

designed to be communicating to and from LRUs

within a vehicle and to display their status

information to an end user. To provide this

functionality, the DASH application consists of

three main pieces, a server, one or more clients, and

a vehicle configuration package. The vehicle

configuration package is the key to providing

DASH with the logic necessary to perform the

diagnostics and communicate with LRUs on an

individual vehicle. Without this package, the

DASH client and server will function in a limited

vehicle-agnostic way, but lack the necessary

substance for meaningful or useful diagnostics. By

having a hard separation between the application

and the configuration, DASH can maintain a look,

feel, and functionality that is common between

every vehicle platform, while also providing

tailored fault reporting and diagnostics.

To coordinate the vast amount of information

within a vehicle platform that is maintained within

DASH, the server application is developed using a

proprietary framework call “pyFramework.” This

framework is a Service Oriented Architecture

(SOA) framework that utilizes components and

plugins to perform specific functions.

PyFramework was designed to be data-centric, net-

centric, configurable, scalable, and scriptable

architecture where specialized services are able to

be developed for specific platforms and included

with the DASH installation. This allows the

flexibility to leverage the plugin and scriptable

nature to develop extensive vehicle specific

capabilities. Although pyFramework is a

proprietary piece of software, the government has

the right to use it for government purposes, and it is

available for use by as a diagnostic solution on any

government platform. This differs from the current

software landscape where an OEM may see their

vehicle software as a competitive advantage and

not be willing to license it to competitors. Since

SHIFT is not a vehicle OEM, there is no such

conflict in allowing vehicles platforms to utilize

DASH and its diagnostic capabilities. The

following sections will outline the common vehicle

components within pyFramework.

3.1. Core Service
The core service is responsible for initializing the

pyFramework by loading each service within the

framework and providing the service instance the

interface to its configuration data. The definition of

which services to load and their corresponding

configuration data is defined in a configuration file

as part of the vehicle configuration package. As

seen in Figure 1, at runtime, the core service can

selectively load different child services based on

the vehicle configuration.

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Enabling Custom Vehicle Diagnostics with a Common Application Platform, A. Ludwig, D. Tagliente.

UNCLASSIFIED

Page 4 of 12

Computer Running the DASH Application

Directory Containing the DASH Vehicle
Configuration Package Directory Containing the DASH Application

Core Service
Services

configuration file

Service 1 Service 2 Service 3

Load

Load
Service 1

Load
Service 2

Load via Command Line Argument

Figure 1

The Core service is also responsible for stopping

each service when shutting down the DASH server

and for monitoring each service for threading

timeouts.

Finally, the core service framework is responsible

for exposing all loaded child service interfaces to

each other. Each service developed to function

within pyFramework inherits from a common

group of service interface classes and runs its own

thread.

Each interface within pyFramework provides

boilerplate functionality for building a

pyFramework service to run within an instance of

the DASH Server. As seen in Figure 2, the root

class “IBaseService” exposes the service name and

the method for the Core service to get the interface

the service exposes to other pyFramework services.

IBaseService

ISysModule

CSysModuleImpl

Service Interface
Class

Inherited By

Inherited By

Inherited By
Concrete Service

Class

Inherited By

Figure 2

The “ISysModule” provides the functionality to

run the service in its own separate thread. The

“ISysModule” declares the virtual functions to

allow a new service to handle initialization,

starting, stopping, and cleanup when directed by

the Core service. The “Service Class Interface”

provides the interface functions that are assessable

to other services when the instance of the new

service is queried utilizing the “IBaseClass”

function. This is the same interface too that will be

exposed as a Python module at runtime making the

service accessible to the Python glue scripts. The

“CSysModuleImpl” class contains boilerplate

implementations of “IBaseService” and

“ISysModule” functionality. For most new

services, this will suffice, but is overridable in the

concrete implementation of the class. The concrete

implementation defines the logic used to determine

how the service will function. In the case of the

repository service, the concrete class contains the

data structures to maintain the individual

repositories and their fields. Through the interface

defined for the Repository service, other services

may retrieve field values for reading and writing

and access the publish functionality to set up their

subscriptions to individual field values.

By default, the Core service automatically

provides the interfaces for the common services

outlined in the next sections. Through its interface

however, a service can be searched for based on the

name defined in the service configuration. Platform

engineers can choose to define these new services

for inclusion in the vehicle configuration package

and provide their plugins for loading into the

DASH server application at runtime while utilizing

these boilerplate pyFramework interface libraries.

3.2. Repository Service
The Repository Service’s function is to manage

the data used internally in DASH and to provide a

publish-subscribe interface to this data to the rest of

the server application and to the external

maintenance interface. Upon startup, this service

loads a data schema for each repository, which

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Enabling Custom Vehicle Diagnostics with a Common Application Platform, A. Ludwig, D. Tagliente.

UNCLASSIFIED

Page 5 of 12

provides the data type, depth (historical values),

persistence over power cycles behavior, initial

value, conversion functions, and post- and pre-

trigger functions for each field. If an LRU is

defined to support different hardware variants that

require different data and thus different repository

structures, DASH can be configured to load a

common repository until communication with the

LRU and hardware version are determined. The

service is designed to maintain multiple

repositories, usually one per LRU in addition to

some vehicle function repositories. Some fields

present in all LRU repositories would include

values for connection status, software versions, and

current fault status. As with all other aspects of

DASH, these repositories are completely

configurable and individual repositories and fields

can be added or removed via the vehicle

configuration at the vehicle level or at the hardware

specific LRU level.

For even more flexibility in how the repository

functions, each field can be assigned a single pre-

trigger and multiple post-triggers.

Incoming Data

Repository Field

Pre-Trigger

Post-Trigger

Cached Value

Stored Value

Publish Value

Script

Repository Field
(1)

Repository Field
(n)

Subscriber(s)

Script

...

Figure 3

As shown in Figure 3, the pre-trigger is used to

manipulate incoming data before being placed into

a repository field in the DASH server. After the pre-

trigger script is completed and the value returned, it

is cached for post-triggers and publishing, as well

as for storage in the repository data structure. Pre-

triggers are especially useful when an LRU sends

data that may be in engineering units to DASH. The

pre-trigger allows DASH to automatically convert

the incoming data to usable and maintainer

understandable units.

Each post-trigger associated with a field is applied

to the incoming data that has been cached in the

DASH server after the pre-trigger has been applied.

The other key difference is that there can be more

than one post-trigger, as opposed to only one pre-

trigger. This becomes especially useful when an

LRU sends DASH a byte array of different data

fields. The repository service facilitates the

automatic parsing of each sub-field from the byte

array and writing them into their appropriate

repository field using a post-trigger. Note that these

writes into sub-fields in the repository can come

with their own pre- and post-triggers, further

increasing the flexibility the engineers have when

implementing their vehicle specific repository

structures. Another example of the utility these

triggers offer would be using a post-trigger on a

field indicating an LRU’s connection status to

DASH. This trigger can be used to trigger a script

that sends a request to the LRU for its software

information, or any other information required to

identify or otherwise negotiate the connection.

The repository service will also expose another

fundamental piece of the DASH architecture, the

publish-subscribe interface. Through the repository

interface, defined for both C++ modules and

Python scripts, components of DASH within the

pyFramework will be able to subscribe to updates

and changes in individual fields within the

repository. This subscription interface not only

allows the subscriber to select on what kind of field

updates trigger its subscription, but also allow

automatic conversion to any DASH supported units

in the returned value. The ability to subscribe to

fields extends to all scripts defined in a vehicle

specific configuration as well. For instance, on the

M109A7/M992A3 FoV, DASH does not currently

communicate directly on the CAN bus, but rather

through three gateway LRUs over Ethernet/TCP.

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Enabling Custom Vehicle Diagnostics with a Common Application Platform, A. Ludwig, D. Tagliente.

UNCLASSIFIED

Page 6 of 12

The algorithm to select a gateway through which to

receive CAN bus messages is defined in the vehicle

specific configuration using subscriptions to the

three LRUs connected fields in the repository. This

extends DASH’s functionality in a vehicle specific

way without affecting the Core DASH application

allowing a vehicle specific engineering team to

tailor DASH to their vehicle without the need for

support from the DASH engineering team.

Additionally, if the vehicle was ever re-architected

to support direct DASH communication on the

CAN bus, the DASH vehicle configuration is

simply adjusted to add a CAN interface

configuration and delete the triggers activating the

gateway selection script.

3.3. Data Processing Service
The Data Processing Service’s (DPS) function is

to provide an interface for Python scripts defined

both in the DASH application and in the vehicle

configuration to be executed on a schedule or on

demand via other services or scripts. Every service

that is created in the DASH application defines a

python extension which acts as an interface to

Python scripts. This allows any Python script

running within DASH to import a service and

interact with its functionality and to potentially

facilitate the logic required to bridge

communication between two or more services.

DPS Configuration

Data Processing Service

Python
Script

Python
Script

Script Interpreter
Embedded

Python
Interpreter

pyFramework
Embedded

Python
Extensions

...

Figure 4

As an example, a script may analyze data from the

Repository Service, produce results, and send the

results back to the Repository service as an updated

field value which may then be published to

subscribers for further processing or updating of the

client’s display to the user. A script may also utilize

the communication service to send messages to an

LRU after a specific field has been triggered in the

Repository service.

3.4. PPMx Data Logging Service
Recent priorities within vehicle fleets have shifted

to have the need for not only periodic maintenance,

but also Prognostics and Predictive Maintenance

(PPMx) or Condition-Based Maintenance (CBM+).

In fact, CBM+ is required as a proactive

maintenance strategy for cost-effective lifecycle

sustainment of military weapon systems.[3] The

groundwork for achieving this in a fleet of vehicles

is a robust collection of data from a large sample of

vehicles over a period. To facilitate this data

collection, the Core DASH application provides the

PPMx Data Logging service. This service leverages

the Repository service and the publish subscribe

interface to receive value changes for the logged

values according to the PPMx configuration. In

addition to containing the repository fields to

monitor, the configuration specifies channel rates,

type, and metadata, along with vehicle metadata

required for later analysis and algorithm

development and execution. The PPMx service will

aggregate all the repository values into appropriate

groups based on the configuration and write them

to an Army Bulk CBM+ Data (ABCD) formatted

file in the Common Data Format (CDF) file type.

The service will also handle writing all necessary

ABCD format metadata creating a completed log

that can be offloaded and consumed without any

additional post processing. When paired with the

DASH fault history log that is offloaded at the same

time, the log files can be used to effectively analyze

the complete vehicle status individually and at a

fleet level.

The service will handle all its own file

management as well; allowing for a predetermined

number of log files to be preserved before rolling

over older files with newer data, thus ensuring

memory can be allocated between system

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Enabling Custom Vehicle Diagnostics with a Common Application Platform, A. Ludwig, D. Tagliente.

UNCLASSIFIED

Page 7 of 12

applications properly and limiting DASH on

hardware where memory is scarce.

Over time, as new PPMx file formats are

developed and implemented, the PPMx Service can

have the CDF writing interface plugin exchanged

with a vehicle specific plugin writing to the desired

file output type with the appropriate internal

structure and metadata to continue to offer the

logged data without the need for post processing.

An example of the structure of the PPMx service

can be seen in Figure 5. At startup, the service will

determine the vehicle serial number it is currently

executing on to load the appropriate vehicle

metadata for the output files. The service will then

begin its subscription to the necessary fields and

will write placeholder data until an LRU

connection is established and real LRU sensor

values are received.

PPMx Service
Configuration

Repository Service PPMx Service

Repository Field

Repository Field

...

Cached Value

Field Change
 Subscription

Cached Value

...
Field Change
 Subscription

PPMx File
(ABCD Format)

CDF Interface

Vehicle Specific
Configuration

Figure 5

3.5. Network IO Manager Service
The function of the Network I/O Manager Service

(DASH-NETIO) is to manage Ethernet and CAN

data message traffic between DASH and connected

LRUs. Ethernet messages are sent and received

over TCP/IP connections with the LRUs, using a

message format based on the Ethernet plugin used.

On the M109A7, a DASH XML plugin is used, but

this can be easily swapped for a JSON or Protocol

Buffer based interface, for example. CAN

messages can be sent and received directly over a

CAN bus, or alternatively over an Ethernet

connection with a gateway LRU that communicates

on a CAN bus as is the case on the M109A7 FOV.

The DASH-NETIO service contains a list of the

configured LRUs, each with the configuration and

interface information needed to communicate with

that LRU. One LRU can have any combination of

defined interfaces, an example being both a CAN

and an Ethernet interface. The physical connections

and transmit/receive functionality are implemented

using Network Interface Modules. These modules

are loaded by DASH-NETIO at startup, based on

the configuration file.

The DASH-NETIO component loads an XML

configuration file on startup that contains LRU

configuration information, such as: the expected

LRUs and vehicle type identification, LRU

Interface information, such as timeout values, fault

codes for communication faults and addressing

information. The configuration file also contains

the list of Network Interface modules, along with

the configuration data required by each one. The

DASH-NETIO can be configured to only load the

interfaces needed by the specific vehicle and can

change device driver based on the current operating

system.

NETIO Service
Configuration

Vehicle Specific
Configuration

NETIO Manager Service

LRU LRU LRU

Ethernet Interface Physical CAN Interface

Net Interface
Ethernet

Net Interface CAN

Net Connection
Eth

Net Connection
CAN

Repository Service
Incoming LRU Data

LRU CLient

LRU Interface Eth

LRU CLient

LRU Interface Eth

LRU CLient

LRU Interface CAN

Load Request, Status/Comm Faults

Figure 6

The DASH-NETIO contains a set of LRU clients,

one for each LRU defined in its configuration as

part of the vehicle configuration. Each of these

instances will maintain the required status of the

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Enabling Custom Vehicle Diagnostics with a Common Application Platform, A. Ludwig, D. Tagliente.

UNCLASSIFIED

Page 8 of 12

individual LRU for reporting to the repository

associate with the LRU. Within the LRU client, is

an LRU interface which contains the parameters

that define a particular logical network connection

such as Ethernet or CAN.

The status of the connection to the LRU will also

be maintained here and propagated to the

Repository service as a field within the LRUs

repository. Finally, the net interface modules are

created based on the network interfaces that are

defined, such as Ethernet, CAN, MIL-STD-1553,

etc. These modules provide the interface to the

actual hardware and manage the connections. Since

these are created at runtime, the DASH-NETIO can

be tailored to an individual vehicle’s interfaces,

keeping the instance of DASH as lean and efficient

as possible.

3.6. DASH Client
To display current vehicle status and facilitate

fault troubleshooting, the DASH application

contains a client application that can be run on a

wide variety of hardware and operating systems. As

is the case with the rest of the DASH application,

the client is completely configurable with a

configuration being supplied after its initial

connection to the server portion of the application.

Figure 7

This configuration is used to supply the client with

the appropriate values for its user interface look and

feel. Figures 7 and 8 both show two DASH clients

running from the same source code. However, their

supplied configurations are different, leading to a

distinct look while still offering the same

functionality and experience to operators and

maintainers who are already familiar with DASH.

Figure 7 shows the DASH client used on the

M109A7 / M992A3 FoV, which includes a black

background with white text and yellow secondary

color. The DASH client also displays the current

fault count and system time in its top status bar.

Figure 8 shows the DASH client as adapted for

the M2A4 Bradley vehicle, which utilizes a grey

background with black text and a blue secondary

color. This scheme better matches the rest of the

Bradley graphic interface software to make DASH

blend seamlessly into the tactical system.

Figure 8

 Another distinct difference is that the Bradley

implementation of the DASH client does not show

a fault count or system time in its status bar. This is

because when DASH was first planned for

integration into the Bradley software, it was

embedded within a parent application which

handles window management and already

contained a status bar with a fault count indicator

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Enabling Custom Vehicle Diagnostics with a Common Application Platform, A. Ludwig, D. Tagliente.

UNCLASSIFIED

Page 9 of 12

and system time. DASH’s flexibility in configuring

its display, allowed engineering team to prevent

redundant information from being shown in this

instance.

Not only is the look and feel configurable, but the

data shown to the user can also be changed per

project and even per vehicle within a project. Since

DASH is aware of which vehicle it is currently

running on, the menu can be configured to show

vehicle specific options, such as weapon calibration

on an M109A7, while hiding them when running

the same configuration on a M992A3. This change

in menu content does not even require a restart of

the application and is sent as a message to the client

as part of the negotiation with the server. On the

M109A7 / M992A3 DASH can maintain one

configuration, allowing hard drives or smart

display units to be swapped between vehicles, and

the menu is dynamically updated with the correct

items for the current vehicle.

Since the DASH client is written using the cross

platform Qt framework, all the files used to

describe the GUI are written in QML/QtQuick and

stored in a Qt resource file that is embedded into

the application executable at build time. However,

this too can be overridden or added to at runtime

from a resource file sent from the server to the

client. For instance, the default fault list page in the

DASH client can be seen in figure 9.

This page could be replaced with a newly

designed QML page in a resource file sent over at

runtime simply by editing the menu configuration

file for the client to point to the new page.

Engineers can completely customize the

functionality of DASH in this way to limit or add

to the features of the application to suit their

vehicle’s needs. At runtime, the DASH server will

select the appropriate configuration for the

connecting client, including any resource files.

Figure 9

These resource files can be transmitted over the

network to the client which is able to dynamically

load it. Once this resource file is loaded, any

resources it contains can be used by the client

including new QML pages, icons, support files, etc.

Finally, the DASH server supports the ability to

send an individual configuration to each client that

connects, based on the IP address the client

connects from, or how the client is configured to

identify itself. With this flexibility, the on-vehicle

DASH clients could be provided with a production

configuration, but clients that connect from an

engineer’s development machine could be

configured to provide application debug

information, special screens to run tests, or

additional screens showing detailed status of

vehicle LRUs or communication buses, to make

vehicle integration more efficient and less error

prone.

3.7. DASH Diagnostic Procedures
Reporting each LRU’s status and fault conditions

is a piece of vehicle health monitoring, but without

the ability to isolate faults to a single root cause,

this functionality cannot fill the entirety of a

vehicle’s diagnostic needs. The DASH application

gives engineers a palette of Visio shapes that

perform specific actions and can be linked together

in a flowchart used to guide a maintainer through

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Enabling Custom Vehicle Diagnostics with a Common Application Platform, A. Ludwig, D. Tagliente.

UNCLASSIFIED

Page 10 of 12

diagnosing and potentially isolating a fault to a

single point of failure. This Visio document is then

converted to XML through a DASH translator and

loaded into the DASH server as part of the vehicle

specific configuration. Form within the

configuration, a procedure can be linked to

individual fault codes to function as a user

launchable way to isolate the fault code or to guide

the user through verifying a repair if the fault code

is not cleared by an LRU automatically.

The procedures can also be used as a DASH

background procedure. These special procedures

are loaded at startup and scanned for repository

values in the shapes within the procedure. When a

repository value is found, the background

procedure will be subscribed to the corresponding

field and will be executed whenever the field

changes. Since a procedure can subscribe to any

number of fields, complex logic can be executed

automatically allowing engineers to dynamically

hide multiple faults to set a root cause fault and

clearly indicate a failure to the maintainer. [4]

3.8. External Maintenance Interface
After running a procedure, DASH may determine

that the fault is unable to be isolated simply via non-

intrusive testing. In this case, a diagnostics engineer

can design a DASH procedure to set a link to an

external diagnostic procedure associated with the

fault code by using the “Set Maintenance Link”

shape within a procedure. This will internally

assign the link value to the DASH fault code and

present a new softkey on the DASH fault list

allowing a maintainer to advertise the link to an

external diagnostic application. The advertisement

of this link is done through the “External

Maintenance Interface” which is an Ethernet TCP

interface that supports a JSON messaging structure

for external applications to communicate with

DASH. The purpose of this interface is to allow the

external application which would guide the user

through more intrusive testing, to query DASH for

LRU sensor values, subscribe to a field in the

DASH repository, or leverage DASH’s ability to

command an LRU to execute an Initiated Built in

Test (IBIT). After completing the necessary testing,

this interface can be used to clear fault codes that

were associated with the issue and to set a log

message indicating the final status of the procedure.

3.9. Program Management Considerations
Creating a software item that can be deployed on

a wide variety of systems causes unique program

and configuration management concerns. Different

platforms and programs have different

requirements and controls that can have an impact

on the number and types of documentation and

processes that must be followed. In order to

effectively meet these requirements while also

remaining flexible, DASH uses a document

hierarchy that allows for supplemental documents

to be added as necessary. There is a core set of

DASH documentation, including a Software

Requirements Specification (SRS), Interface

Requirements Specification (IRS), Software

Design Description (SDD) and Interface Design

Description (IDD) that can be used as a starting

point and be supplemented with requirements and

design details for a specific target system. For

example, the DASH SRS includes all of the

requirements supported by the core DASH

application. A specific platform may have

additional requirements that need to be included in

a requirements document, but are allocated to that

platform’s configuration. In this instance, a

supplemental SRS will be written for that platform

that specifies the additional requirements that will

be used on that implementation of DASH.

Similarly, if a specific platform intentionally

chooses to not implement a requirement included in

the core DASH application, the supplemental SRS

can include a statement that certain higher-level

requirements are not included on the specific

system. This approach can be applied to other

documents as well.

The DEVCOM AC SHIFT Division has also

developed a series of documents that can serve as

an aid in creating or maintaining DASH

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Enabling Custom Vehicle Diagnostics with a Common Application Platform, A. Ludwig, D. Tagliente.

UNCLASSIFIED

Page 11 of 12

configurations on additional systems. Included in

this document set are a “Developer’s

Implementation Guide for the DASH Application

Program” and an “IDD for the DASH System

Diagnostic Procedure Shape and XML Format.”

Together, these documents allow system OEMs

and other developers to quickly develop a vehicle-

specific DASH configuration that can be used with

the latest released version of the core DASH

application.

4. PLANNED FUTURE WORK
The DEVCOM AC SHIFT Division has partnered

with several Program and Product Managers within

Program Executive Office (PEO) Ground Combat

Systems (GCS) to create a DASH solution on a

number of systems. As mentioned earlier, DASH is

currently fielded to the M109A7/M992A3 FoV and

software sustainment and maintenance efforts for

these platforms are ongoing. DASH is also fielded

as the embedded diagnostics system within the

overall software suite included with Mortar Fire

Control Systems (MFCS). The M2A4 Bradley

Infantry Fighting Vehicle (IFV) is currently

transitioning its diagnostic solution to DASH. The

DEVCOM AC SHIFT Division continues to

support these efforts, and also performs traditional

software sustainment and maintenance activity to

keep DASH and its inputs as up-to-date as possible.

At the forefront of these efforts is the inclusion of

Deep Learning, utilizing artificial intelligence, as

either a service within DASH or as a

complementary application running concurrently

with DASH, sending information through the

DASH-NETIO interface. This module would, in

theory, accept an updated vehicle model created at

a remote location as part of a system’s automated

log retrieval and collection process, allowing each

vehicle to remain in sync with the newest data for

determining the useful life of components. The end

goal of this effort would be to allow DASH to

identify operational and maintenance tasks prior to

a system component failing or fault condition being

realized. If successful, this would enable a true

prognostic solution across vehicle and weapon

system fleets.

A current effort in the prototype phase explores

the use of integrating DASH with other established

SHIFT technologies to create a dedicated PPMx

data recorder and wireless log off-loader. The goal

of this effort is to leverage DASH’s robust

communication, data management, and logging

capabilities paired with a secure, automatic,

wireless offload application within one ruggedized

LRU. This LRU could then be configured and

mounted on any vehicle in order to implement

PPMx logging easily and efficiently. The primary

benefit of wireless automatic offloading is that it

reduces the likelihood of lost logs due to negligence

and eliminates the need to train users how to

operate new hardware or perform new periodic

maintenance tasks.

5. CONCLUSION
With each new DoD vehicle or weapon system

that is developed, new or changed communication

standards, and hardware that implements these

standards, will be introduced into fleets. Each of

these systems will need a means of addressing

faults and performing diagnostics and maintenance

on this hardware and will require an adaptable

system to communicate on these standards. Due to

the wide variety of operating systems, computing

resources, and the infinite customizability of the

DASH Server and Client through VCP, DASH

would be adaptable to fill maintenance

requirements. As DASH gains time in the field and

is placed on more vehicle platforms, program and

product managers would realize reduced

maintainer training burdens by having a common

diagnostic system that is already in use on several

vehicle platforms while simultaneously reducing

development costs by utilizing a modern and

intuitive diagnostic development process. While

DASH may not be deployed to every vehicle

platform, it remains an organic maintenance option

for system developers who are seeking a diagnostic

solution for in development vehicles, or current

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Enabling Custom Vehicle Diagnostics with a Common Application Platform, A. Ludwig, D. Tagliente.

UNCLASSIFIED

Page 12 of 12

platforms looking to upgrade to a modern

diagnostic solution. DASH is mature and field-

proven diagnostics solution that provides

commonality with every other vehicle that

implements it to the benefit of system maintainers.

6. REFERENCES

 [1] B. D. Coryell, “Performance-based Logistics,

Contractor Logistics Support, and Stryker,”

Ph.D. Thesis, US Army Command and General

Staff College, Fort Leavenworth, Kansas, Jun.

2007.

[2] P. H. Porter, “Organic Versus Contractor

Logistics Support for Depot-Level Repair:

Factors That Drive Sub-Optimal Decisions,”

Research Report, Air War College,

Montgomery, Alabama, Feb. 2016.

[3] DoD Instruction (DoDI) 4151.22, “Condition-

Based Maintenance Plus for Materiel

Maintenance,” 14 August 2020.

 [4] D. A. Tagliente, M. D. Lospinuso and F.

DiRosa, "Dynamic Fault Monitoring and Fault-

Based Decision Making in Vehicle Health

Management Systems," 2017 IEEE

AUTOTESTCON, 2017, pp. 1-5.

