Microgrids have garnered attention as they facilitate the integration of distributed renewable and non-renewable energy resources and allow flexibility to connect to the grid whenever required. When power is required for temporary missions or an emergency search and rescue mission, a vehicle-borne microgrid can supply critical power needs. In this paper, a vehicle-borne mobile microgrid consisting of a diesel generator, a battery storage system and solar panels mounted on the vehicle exterior is considered, and an operational control that minimizes the total fuel consumption and the battery degradation is formulated based on model predictive control. A simulation study is carried out considering a forward operating base mission scenario where the microgrid supplies the charging power to unmanned ground and aerial vehicles deployed in the mission. The result shows that the proposed approach is robust against uncertainties associated with renewable generation and the charging power demand of unmanned ground and aerial vehicles.